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Abstract
In this paper, we will present fixed point theorems for singlevalued and multivalued
operators in spaces endowed with vector-valued metrics, as well as a Gnana
Bhaskar-Lakshmikantham-type theorem for the coupled fixed point problem,
associated to a pair of singlevalued operators (satisfying a generalized mixed
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discussed.
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1 Introduction
The classical Banach contraction principle is a very useful tool in nonlinear analysis with
many applications to operatorial equations, fractal theory, optimization theory and other
topics. Banach contraction principle was extended for singlevalued contraction on spaces
endowed with vector-valued metrics by Perov [] and Perov and Kibenko []. For some
other contributions to this topic, we also refer to [–], etc. The case of multivalued con-
tractions on spaces endowed with vector-valued metrics is treated in [–], etc.
In the study of the fixed points for an operator, it is sometimes useful to consider a

more general concept, namely coupled fixed points. The concept of coupled fixed point
for nonlinear operators was introduced and studied byOpoitsev (see [–]) and then, in
, byGuo andLakshmikantham (see []) in connectionwith coupled quasisolutions of
an initial value problem for ordinary differential equations. Later, a new research direction
for the theory of coupled fixed points in ordered metric spaces was initiated by Gnana
Bhaskar and Lakshmikantham in [] and by Lakshmikantham and Ćirić in []. Their
approach is based on some contractive type conditions on the operator. For other results
on coupled fixed point theory, see [–], etc.
Let us recall first some important preliminary concepts and results.
Let X be a nonempty set. A mapping d : X × X → R

m is called a vector-valued metric
on X if the following properties are satisfied:
(a) d(x, y)≥ O for all x, y ∈ X ; if d(x, y) =O, then x = y (where O := (, , . . . , )︸ ︷︷ ︸

m-times

);
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(b) d(x, y) = d(y,x) for all x, y ∈ X ;
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X .
A nonempty set X endowed with a vector-valued metric d is called a generalized metric

space in the sense of Perov (in short, a generalized metric space), and it will be denoted
by (X,d). The notions of convergent sequence, Cauchy sequence, completeness, open and
closed subset, open and closed ball, . . . are similar to those for usual metric spaces.
Notice that the generalizedmetric space in the sense of Perov is a particular case of Riesz

spaces (see [, ]) and of so-called conemetric spaces (orK-metric space) (see [, ]).
We denote byMmm(R+) the set of allm×mmatrices with positive elements and by I the

identity m×mmatrix. If x, y ∈ R
m, x = (x, . . . ,xm) and y = (y, . . . , ym), then, by definition

x ≤ y if and only if xi ≤ yi for i ∈ {, , . . . ,m}.

Notice that through this paper, we will make an identification between row and column
vectors in R

m.

Definition . A square matrix of real numbers is said to be convergent to zero if and
only if its spectral radius ρ(A) is strictly less than . In other words, this means that all the
eigenvalues of A are in the open unit disc, i.e., |λ| < , for every λ ∈C with det(A– λI) = ,
where I denotes the unit matrix ofMm,m(R) (see []).

A classical result in matrix analysis is the following theorem (see [, ]).

Theorem . Let A ∈Mmm(R+). The following assertions are equivalent
(i) A is convergent towards zero;
(ii) An →O as n→ ∞;
(iii) The matrix (I –A) is nonsingular and

(I –A)– = I +A + · · · +An + · · · ; ()

(iv) The matrix (I –A) is nonsingular and (I –A)– has nonnegative elements;
(v) Anq →O and qAn →O as n→ ∞, for each q ∈R

m;
(vi) The matrices qA and Aq converge to O for each q ∈ (,Q), where Q := 

ρ(A) .

If X is a nonempty set and f : X → X is an operator, then

Fix(f ) :=
{
x ∈ X;x = f (x)

}
.

We recall now Perov’s fixed point theorem (see [], see also []).

Theorem . (Perov) Let (X,d) be a complete generalized metric space, and let the oper-
ator f : X → X be with the property that there exists a matrix A ∈ Mmm(R+) convergent
towards zero such that

d
(
f (x), f (y)

) ≤ Ad(x, y), for all x, y ∈ X.

Then
() Fix(f ) = {x∗};
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() the sequence of successive approximations (xn)n∈N, xn := f n(x) is convergent in X to
x∗, for all x ∈ X ;

() one has the following estimation

d
(
xn,x∗) ≤ An(I –A)–d(x,x); ()

() if g : X → X is an operator such that there exists y∗ ∈ Fix(g), and there exists
η := (η, . . . ,ηm) ∈R

m
+ with ηi >  for each i ∈ {, , . . . ,m} such that

d
(
f (x), g(x)

) ≤ η, for each x ∈ X,

then

d
(
x∗, y∗) ≤ (I –A)–η;

() if g : X → X is an operator, yn := gn(x), and there exists η := (η, . . . ,ηm) ∈ R
m
+ with

ηi >  for each i ∈ {, , . . . ,m} such that

d
(
f (x), g(x)

) ≤ η, for all x ∈ X,

we have the following estimation

d
(
yn,x∗) ≤ (I –A)–η +An(I –A)–d(xo,x). ()

Notice that in Precup [], as well as in [, ] and [] are pointed out the advantages of
working with vector-valued norm with respect to the usual scalar norms.
There is a vast literature concerning this approach, see also, for example, [, , , , ],

etc.
We will focus our attention to the following system of operatorial equations⎧⎨⎩x = T(x, y),

y = T(x, y),

where T,T : X ×X → X are two given operators.
By definition, a solution (x, y) ∈ X×X of the above system is called a coupled fixed point

for the operators T and T. Notice that if S : X ×X → X is an operator and we define

T(x, y) := S(x, y) and T(x, y) := S(y,x),

then we get the classical concept of a coupled fixed point for the operator S introduced
by Opoitsev and then intensively studied in some papers by Guo and Lakshmikantham,
Gnana Bhaskar and Lakshmikantham, Lakshmikantham and Ćirić, etc.
The case of an operatorial inclusion is defined in a similar way, namely, by using the

symbol ∈ instead of =. The concept of a coupled fixed point for a multivalued operator S
is accordingly defined.
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First aim of this work is to present some existence and stability results for fixed point
equations and inclusions in generalized metric spaces in the sense of Perov. Our sec-
ond purpose is to present, in the setting of an ordered metric space, a Gnana Bhaskar-
Lakshmikantham-type theorem for the coupled fixed point problem associated to a pair
of singlevalued operators satisfying a generalized mixed monotone assumption. The ap-
proach is based on an abstract fixed point theorem in ordered complete metric spaces.
Our results are related with other existence and stability results for the a coupled fixed
point problem for singlevalued operators proved in [] by the support of Perov’s fixed
point theorem.

2 Existence, uniqueness and stability for fixed point equations and inclusions
We start this section by an extension of Perov’s theorem. At the same time, the result is a
generalization to vector-valued metric spaces of the main theorem in [].

Theorem . Let (X,d) be a generalized complete metric space, and let f : X → X be an
almost contraction with matrices A, B and C, i.e., the matrix A + C ∈ Mmm(R+) converges
to zero, B ∈Mmm(R+) and

d
(
f (x), f (y)

) ≤ Ad(x, y) + Bd
(
y, f (x)

)
+Cd

(
x, f (x)

)
, for all x, y ∈ X.

Then, the following conclusions hold
. f has at least one fixed point in X and, for each x ∈ X , the sequence xn := f n(x) of

successive approximations of f starting from x converges to x∗(x) ∈ Fix(f ) as n→ ∞;
. For each x ∈ X , we have

d
(
xn,x∗(x)

) ≤ An(I –A)–d
(
x, f (x)

)
, for all n ∈N

and

d
(
x,x∗(x)

) ≤ (I –A)–d
(
x, f (x)

)
;

. If, additionally, the matrix A + B converges to zero, then f has a unique fixed point
in X .

Proof Let x ∈ X be arbitrary, and consider (xn)n∈N the sequence of successive approxi-
mations for f starting from x, i.e.,

xn+ = f (xn), for all n ∈N.

We have that d(x,x) = d(f (x), f (x)) ≤ Ad(x,x) + Bd(x, f (x)) + Cd(x, f (x)) = (A +
C)d(x,x).
Inductively, we get that the sequence (xn)n∈N satisfies, for all n ∈ N, the following esti-

mation

d(xn,xn+) ≤ (A +C)nd(x,x).
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Hence, for all n ∈N and p ∈N, p ≥ , we get that

d(xn,xn+p) ≤ d(xn,xn+) + d(xn+,xn+) + · · · + d(xn+p–,xn+p)

≤ (A +C)nd(x,x) + (A +C)n+d(x,x) + · · · + (A +C)n+p–d(x,x)

≤ (A +C)n
[
I + (A +C) + (A +C) + · · · + (A +C)p– + · · · ]d(x,x)

≤ (A +C)n
[
I – (A +C)

]–d(x,x).
Thus, d(xn,xn+p) → O, as n → ∞. Hence (xn)n∈N is a Cauchy sequence in the complete
metric space (X,d). Thus, (xn)n∈N converges to a certain element x∗(x) ∈ X.
Next, we show that x∗ := x∗(x) ∈ Fix(f ). Indeed, we have the following estimation

d
(
x∗, f

(
x∗)) ≤ d

(
x∗,xn

)
+ d

(
xn, f

(
x∗)) = d

(
x∗,xn

)
+ d

(
f (xn–), f

(
x∗))

≤ d
(
x∗,xn

)
+Ad

(
xn–,x∗) + Bd

(
x∗,xn

)
+Cd(xn–,xn) →O, as n→ ∞.

Hence x∗ ∈ Fix(f ). In addition, letting p → ∞ in the estimation of d(xn,xn+p), we get

d
(
xn,x∗(x)

) ≤ (A +C)n
[
I – (A +C)

]–d(
x, f (x)

)
, for all n ∈N.

For n = , we obtain

d
(
x,x∗(x)

) ≤ (A +C)n
[
I – (A +C)

]–d(
x, f (x)

)
.

We show now the uniqueness of the fixed point.
Let x∗, y∗ ∈ Fix(f ) with x∗ �= y∗. Then

d
(
x∗, y∗) = d

(
f
(
x∗), f (y∗)) ≤ Ad

(
x∗, y∗) + Bd

(
y∗, f

(
x∗)) +Cd

(
x∗, f

(
x∗))

= (A + B)d
(
x∗, y∗).

Thus (I –A – B)d(x∗, y∗) ≤O ∈R
m. Since A + B converges to zero, we get that I –A – B is

non-singular and (I –A – B)– ∈Mm,m(R+). Hence d(x∗, y∗) ≤ O and so x∗ = y∗. �

Remark . The result above extends Corollary . in [], where the case of almost con-
tractions with matric C =O is treated.

Two important abstract concepts are given now.

Definition . (see [, ]) If (X,d) is a generalizedmetric space, then f : X → X is called
a weakly Picard operator if and only if the sequence (f n(x))n∈N of successive approxima-
tions of f converges for all x ∈ X and the limit (which may depend on x) is a fixed point
of f .

If f is weakly Picard operator, then we define the operator f ∞ : X → X by

f ∞(x) := lim
n→∞ f n(x).

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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Notice that, in this case, f ∞(X) = Fix(f ). Moreover, f ∞ is a set retraction of X to Fix(f ).
If f is weakly Picard operator and Fix(f ) = {x∗}, then by definition f is a Picard operator.

In this case, f ∞ is the constant operator, i.e., f ∞(x) = x∗ for all x ∈ X.

Definition . (see []) Let (X,d) be a generalized metric space, and let f : X → X be an
operator. Then, f is said to be aψ-weakly Picard operator if and only if f is a weakly Picard
operator andψ :Rm

+ →R
m
+ is an increasing operator, continuous inOwithψ(O) =O such

that

d
(
x, f ∞(x)

) ≤ ψ(d
(
x, f (x)

)
, for all x ∈ X.

Moreover, a ψ-weakly Picard operator f : X → X with a unique fixed point is said to
be a ψ-Picard operator. In particular, if ψ : Rm

+ → R
m
+ is given by ψ(t) = M · t (with

C ∈ Mmm(R+)), then we say that f is M-weakly Picard operator (respectively a M-Picard
operator).

From Theorem ., we get the following example.

Example . If (X,d) is a generalized complete metric space and f : X → X is an almost
contraction withmatrices A, B, and C, then f is aψ-weakly Picard operator with the func-
tion ψ(t) := [I – (A+C)]–t. In particular, if f : X → X is a contraction with matrix A, then
f is a ψ-Picard operator with ψ(t) := (I –A)–t.

For the proof of our next theorems we need the following notion.

Definition . Let (X,d) be a generalized metric space, and let f : X → X be an operator.
Then, the fixed point equation

x = f (x) ()

is said to be generalized Ulam-Hyers stable if there exists an increasing functionψ :Rm
+ →

R
m
+ , continuous in O with ψ(O) = O such that for any ε := (ε, . . . , εm) with εi >  for i ∈

{, . . . ,m} and any ε-solution y∗ ∈ X of (), i.e.,

d
(
y∗, f

(
y∗)) ≤ ε, ()

there exists a solution x∗ of () such that

d
(
x∗, y∗) ≤ ψ(ε). ()

In particular, ifψ(t) = C · t, t ∈R
m
+ (whereC ∈Mmm(R+)), then the fixed point equation ()

is called Ulam-Hyers stable.

We can prove now the following abstract result (see also Rus []) concerning the Ulam-
Hyers stability of the fixed point equation ().

Theorem . Let (X,d) be a generalized metric space, and let f : X → X be a ψ-weakly
Picard operator. Then, the fixed point equation () is generalized Ulam-Hyers stable.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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Proof Let ε := (ε, . . . , εm) (with εi >  for i ∈ {, . . . ,m}), and let y∗ ∈ X be a ε-solution
of (), i.e., d(y∗, f (y∗)) ≤ ε. Since f is a ψ-Picard operator, we have that

d
(
x, f ∞(x)

) ≤ ψ(d
(
x, f (x)

)
, for each x ∈ X.

Hence, there exists x∗ := f ∞(y∗) ∈ Fix(f ) such that

d
(
y∗, f ∞(

y∗)) ≤ ψ(d
(
y∗, f

(
y∗)) ≤ ψ(ε). �

Remark . In particular, if (X,d) is a generalized complete metric space, and f : X → X
is an almost contraction with matrices A, B and C, then, by Example . and Theorem .,
we get that the fixed point equation () is Ulam-Hyers stable.

We now move our attention to the multivalued case. If (X,ρ) is a metric space, and we
denote by P(X) the space of all nonempty subsets of X, then the gap functional (generated
by ρ) on P(X) is defined as

Dρ : P(X)× P(X) →R+, Dρ(A,B) := inf
{
ρ(a,b)|a ∈ A,b ∈ B

}
.

In particular, if x ∈ X, we put Dρ(x,B) in place of Dρ({x},B).
We will denote by Hρ the Pompeiu-Hausdorff functional on P(X), defined as

Hρ : P(X)× P(X) →R+ ∪ {+∞}, Hρ(A,B) =max
{
sup
a∈A

Dρ(a,B), sup
b∈B

Dρ(b,A)
}
.

Let (X,d) be a generalized metric space with d(x, y) :=
( d(x,y)

···
dm(x,y)

)
.

Notice that d is a generalized metric on X if and only if di are metrics on X for each
i ∈ {, , . . . ,m}.
We denote by

D(A,B) :=

⎛⎜⎝Dd (A,B)
· · ·

Ddm (A,B)

⎞⎟⎠ , the generalized gap functional on P(X)

and by

H(A,B) :=

⎛⎜⎝Hd (A,B)
· · ·

Hdm (A,B)

⎞⎟⎠ , the generalized Pompeiu-Hausdorff functional on P(X).

It is well known that if di is a metric on X, x ∈ X and Y ∈ P(X), then Ddi (x,Y ) =  if and
only if x ∈ Ydi , where Ydi denotes the closure of Y in (X,di). As a consequence,

Ydi =
{
x ∈ X :Ddi (x,Y ) = 

}
.

Hence, x ∈ Ydi for each i ∈ {, , . . . ,m} is equivalent with Ddi (x,Y ) =  for each i ∈
{, , . . . ,m}, which is also equivalent with D(x,Y ) =O.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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Since Yd = {x ∈ X :D(x,Y ) =O}, we have:
(a) x ∈ Yd ⇔ x ∈ Ydi for each i ∈ {, , . . . ,m}.
(b) Y is closed with respect to d ⇔ Y is closed with respect to each di for

i ∈ {, , . . . ,m}.
We denote by Pcl(X) the set of all nonempty closed (with respect to d) subsets of X.
We have the following two auxiliary results.

Lemma . Let (X,d) be a generalized metric space, let x ∈ X, and let Y ∈ Pcl(X). Then,

x ∈ Y if and only if D(x,Y ) =O.

Lemma . Let (X,d) be a generalized metric space, Y ,Z ∈ P(X), q > . Then, for any
y ∈ Y , there exists z ∈ Z such that

d(y, z) ≤ qH(Y ,Z).

If (X,d) is a nonempty set, and F : X → P(X) is a multivalued operator, then the graph
of the operator F is denoted by

Graph(F) :=
{
(x, y) ∈ X ×X : y ∈ F(x)

}
,

while the fixed point set and, respectively, the strict fixed point set of F are denoted by the
symbols

Fix(F) :=
{
x ∈ X : x ∈ F(x)

}
, respectively SFix(F) :=

{
x ∈ X : F(x) = {x}}.

We will present now an extension of the Nadler fixed point theorem in a space endowed
with a vector-valued metric, which is also a multivalued version of Perov’s theorem.

Theorem . Let (X,d) be a generalized complete metric space, and let F : X → Pcl(X)
be a multivalued almost contraction with matrices A and B, i.e., there exists two matrices
A,B ∈Mmm(R+) such that A converges to zero and

H
(
F(x),F(y)

) ≤ Ad(x, y) + BD
(
y,F(x)

)
, for all x, y ∈ X.

Then
(i) Fix(F) �= ∅;
(ii) for each (x, y) ∈Graph(F), there exists a sequence (xn)n∈N (with x = x, x = y and

xn+ ∈ F(xn) for each n ∈N
∗) such that (xn)n∈N is convergent to a fixed point

x∗ := x∗(x, y) of F , and the following relations hold

d
(
xn,x∗) ≤ An(I –A)–d(x,x), for each n ∈N

∗

and

d
(
x,x∗) ≤ (I –A)–d(x, y).

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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Proof Let x ∈ X and x ∈ F(x) be arbitrarily chosen. Let q ∈ (,Q), whereQ is defined by
Theorem .. Then, by Lemma ., there exists x ∈ F(x) such that

d(x,x)≤ qH
(
F(x),F(x)

) ≤ q
(
Ad(x,x) + BD

(
x,F(x)

))
= qAd(x,x).

Inductively, there exists xn+ ∈ F(xn) such that

d(xn,xn+) ≤ (qA)nd(x,x), for any n ∈N
∗.

We have

d(xn,xn+p) ≤ d(xn,xn+) + · · · + d(xn+p–,xn+p)

≤ (qA)nd(x,x) + · · · + (qA)n+p–d(x,x)

≤ (qA)n
[
I + qA + · · · + (qA)p– + · · · ]d(x,x)

= (qA)n(I – qA)–d(x,x).

Thus

d(xn,xn+p) ≤ (qA)n(I – qA)–d(x,x), for n ∈N
∗ and p ∈N

∗. ()

Letting n → ∞, we get that (xn) is a Cauchy sequence in X. Since (X,d) is complete, it

follows that there exists x∗ ∈ X such that xn
d−→ x∗, n → ∞. Thus,

D
(
x∗,F

(
x∗)) =

⎛⎜⎝D(x∗,F(x∗))
· · ·

Dm(x∗,F(x∗))

⎞⎟⎠

≤
⎛⎜⎝ d(x∗,xn+) +D(xn+,F(x∗))

· · ·
dm(x∗,xn+) +Dm(xn+,F(x∗))

⎞⎟⎠

≤
⎛⎜⎝ d(x∗,xn+) +H(F(xn),F(x∗))

· · ·
dm(x∗,xn+) +Hm(F(xn),F(x∗))

⎞⎟⎠
= d

(
x∗,xn+

)
+H

(
F(xn),F

(
x∗))

≤ d
(
x∗,xn+

)
+Ad

(
xn,x∗) + BD

(
x∗,F(xn)

)
≤ d

(
x∗,xn+

)
+Ad

(
xn,x∗) + B

(
d
(
x∗,xn+

)
+D

(
xn+,F(xn)

))
= d

(
x∗,xn+

)
+Ad

(
xn,x∗) + Bd

(
x∗,xn+

)
.

Letting n→ ∞, we get that D(x∗,F(x∗)) =O. By Lemma ., we get that x∗ ∈ F(x∗). More-
over, letting p→ ∞ in (), we obtain

d
(
xn,x∗) ≤ (qA)n(I – qA)–d(x,x), for any n ∈N

∗.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218


Petruşel et al. Fixed Point Theory and Applications 2013, 2013:218 Page 10 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/218

Thus,

d
(
x,x∗) ≤ d(x,x) + d

(
x,x∗)

≤ d(x,x) + qA(I – qA)–d(x,x)

=
[
I + qA(I – qA)–

]
d(x,x)

=
[
I + qA

(
I + qA + · · · + (qA)n + · · · )]d(x,x)

= (I – qA)–d(x,x).

Letting q ↘ , we get that d(x,x∗)≤ (I –A)–d(x,x). �

For the following notions see Rus et al. [] and A. Petruşel [].

Definition . Let (X,d) be a generalized metric space, and let F : X → Pcl(X) be a mul-
tivalued operator. By definition, F is a multivalued weakly Picard (briefly MWP) operator
if for each (x, y) ∈ Graph(F), there exists a sequence (xn)n∈N such that

(i) x = x, x = y;
(ii) xn+ ∈ F(xn), for each n ∈N;
(iii) the sequence (xn)n∈N is convergent, and its limit is a fixed point of F .

Remark . A sequence (xn)n∈N satisfying the condition (i) and (ii) in the defini-
tion above is called a sequence of successive approximations of F starting from (x, y) ∈
Graph(F).

If F : X → P(X) is an MWP operator, then we define F∞ : Graph(F) → P(Fix(F)) by the
formula F∞(x, y) := {z ∈ Fix(F)| there exists a sequence of successive approximations of F
starting from (x, y) that converges to z}.

Definition . Let (X,d) be a generalizedmetric space, and let F : X → P(X) be anMWP
operator. Then, F is called aψ-multivalued weakly Picard operator (brieflyψ-MWP oper-
ator) if and only ifψ :Rm

+ →Rm
+ is an increasing operator, continuous inOwithψ(O) =O,

and there exists a selection f ∞ of F∞ such that

d
(
x, f ∞(x, y)

) ≤ ψ
(
d(x, y)

)
, for all (x, y) ∈Graph(F).

Example . Let (X,d) be a generalized complete metric space, and let F : X → Pcl(X)
be a multivalued almost contraction with matrices A and B. Then, by Theorem . (see
(i) and (ii)), we get that F is a (I –A)–-MWP operator.

Two important stability concepts are given now.

Definition . Let (X,d) be a generalized metric space, and let F : X → P(X) be a mul-
tivalued operator. The fixed point inclusion

x ∈ F(x), x ∈ X ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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is called generalized Ulam-Hyers stable if and only if there exists ψ : Rm
+ → R

m
+ increas-

ing, continuous in O with ψ(O) = O such that for each ε := (ε, . . . , εm) (with εi >  for
i ∈ {, . . . ,m}) and for each ε-solution y∗ ∈ X of (), i.e.,

D
(
y∗,F

(
y∗)) ≤ ε, ()

there exists a solution x∗ of the fixed point inclusion () such that

d
(
y∗,x∗) ≤ ψ(ε).

In particular, if ψ(t) = C · t for each t ∈ R
m
+ (where C ∈ Mmm(R+)), then the fixed point

inclusion () is said to be Ulam-Hyers stable.

Definition . Let (X,d) be a generalized metric space, and let F : X → P(X) be a mul-
tivalued operator. Then, the multivalued operator F is said to have the limit shadowing
property if for each sequence (yn)n∈N in X such that D(yn+,F(yn))→ O as n→ +∞, there
exists a sequence (xn)n∈N of successive approximations of F such that d(xn, yn) → O as
n→ +∞.

An auxiliary result is as follows.

Cauchy-type lemma Let A ∈Mmm(R+) be amatrix convergent toward zero and (Bn)n∈N ∈
R

m
+ be a sequence such that limn→+∞ Bn =O. Then

lim
n→+∞

( n∑
k=

An–kBk

)
=O.

We can prove now the Ulam-Hyers stability of the fixed point inclusion () for the case
of amultivalued contraction, which has at least one strict fixed point. The limit shadowing
property is also established.

Theorem. Let (X,d) be a generalized complete metric space, and let F : X → Pcl(X) be
amultivalued A-contraction, i.e., there exists amatrix A ∈Mmm(R+) such that A converges
to zero and

H
(
F(x),F(y)

) ≤ Ad(x, y), for all x, y ∈ X.

Suppose also that SFix(F) �= ∅, i.e., there exists x∗ ∈ X such that {x∗} = F(x∗). Then
(a) the fixed point inclusion () is Ulam-Hyers stable;
(b) the multivalued operator F has the limit shadowing property.

Proof (a) Let ε := (ε, . . . , εm) (with εi >  for i ∈ {, . . . ,m}), and let y∗ ∈ X be an ε-solution
of (), i.e., D(y∗,F(y∗))≤ ε. Let x∗ ∈ X be such that {x∗} = F(x∗). Then

d
(
y∗,x∗) ≤ D

(
y∗,F

(
y∗)) +H

(
F
(
y∗),F(

x∗)) ≤ ε +Ad
(
y∗,x∗).

Thus d(y∗,x∗) ≤ (I –A)–ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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(b) Let (yn)n∈N be a sequence in X such that D(yn+,F(yn)) → O as n → ∞. We shall
prove first that d(yn,x∗)→ O as n→ +∞. We successively have

d
(
x∗, yn+

) ≤ H
(
x∗,F(yn)

)
+D

(
yn+,F(yn)

) ≤ Ad
(
x∗, yn

)
+D

(
yn+,F(yn)

)
≤ A

[
Ad

(
x∗, yn–

)
+D

(
yn,F(yn–)

)]
+D

(
yn+,F(yn)

) ≤ · · ·
≤ An+d

(
x∗, y

)
+AnD

(
y,F(y)

)
+ · · · +AD

(
yn,F(yn–)

)
+D

(
yn+,F(yn)

)
.

By Cauchy’s lemma, the right hand side tends to O as n → +∞. Thus d(x∗, yn+) → O as
n→ +∞.
On the other hand, by Theorem .(i)-(ii), we know that there exists a sequence (xn)n∈N

of successive approximations for F starting from arbitrary (x,x) ∈Graph(F), which con-
verge to a fixed point x∗ ∈ X of the operator F . Since, the fixed point is unique, we get that
d(xn,x∗) →O as n→ +∞. Hence, for such a sequence (xn)n∈N, we have

d(yn,xn) ≤ d
(
yn,x∗) + d

(
x∗,xn

) →O as n→ +∞. �

We also have the following abstract results concerning the Ulam-Hyers stability of the
fixed point inclusion () for multivalued operators.

Theorem . Let (X,d) be a generalized metric space, and let F : X → Pcl(X) be a multi-
valued ψ-weakly Picard operator. Suppose also that there exists a matrix C ∈ Mmm(R+)
such that for any ε := (ε, . . . , εm) (with εi >  for i ∈ {, . . . ,m}) and any z ∈ X with
D(z,F(z)) ≤ ε there exists u ∈ F(z) such that d(z,u) ≤ Cε. Then, the fixed point inclusion
() is generalized Ulam-Hyers stable.

Proof Let ε := (ε, . . . , εm) (with εi >  for i ∈ {, . . . ,m}) and y∗ ∈ X be a ε-solution of (),
i.e., D(y∗,F(y∗)) ≤ ε. Since F is a multivalued ψ-weakly Picard operator, for each (x, y) ∈
Graph(F), we have

d
(
x, f ∞(x, y)

) ≤ ψ
(
d(x, y)

)
.

Now, by our additional assumption, for y∗ ∈ X there exists u∗ ∈ F(y∗) such that d(y∗,
u∗) ≤ Cε. Thus, define x∗ := f ∞(y∗,u∗) ∈ Fix(F), and we get

d
(
y∗,x∗) ≤ ψ

(
d
(
y∗,u∗)) ≤ ψ(Cε). �

As an exemplification of the previous theorem, we have the following result.
Let us recall first an important notion. A subset U of a (generalized) metric space (X,d)

is called proximinal if for each x ∈ X there exists u ∈U such that d(x, y) =D(x,U).
As a consequence of Theorem . and of the abstract result above, we obtain the fol-

lowing theorem.

Corollary . Let (X,d) be a generalized complete metric space, and let F : X → Pcl(X)
be a multivalued A-contraction with proximinal values. Then the fixed point inclusion ()
is Ulam-Hyers stable.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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Proof Let ε := (ε, . . . , εm) (with εi >  for i ∈ {, . . . ,m}), and let y∗ ∈ X be a ε-solution of (),
i.e., D(y∗,F(y∗)) ≤ ε. Since F is an (I – A)–-MWP operator, for each (x, y) ∈ Graph(F), we
have

d
(
x, f ∞(x, y)

) ≤ (I –A)–d(x, y).

Since F(y∗) is a proximinal set, there exists u∗ ∈ F(y∗) such that d(y∗,u∗) = D(y∗,F(y∗)).
Thus, if we consider x∗ := f ∞(y∗,u∗) ∈ Fix(F), we get

d
(
y∗,x∗) ≤ (I –A)–d

(
y∗,u∗) ≤ (I –A)–ε. �

Remark . It is an open question to give other examples of how Theorem . can be
applied. A more general open question is to give similar results for multivalued almost
contractions with matrices A and B.

For other examples and results regarding the Ulam-Hyers stability and the limit shad-
owing property of the operatorial equations and inclusions, see Bota-Petruşel [], Petru-
Petruşel-Yao [], Petruşel-Rus [] and Rus [, ].

3 An application to coupled fixed point results for singlevalued operators
without mixedmonotone property

Let X be a nonempty set endowed with a partial order relation denoted by ≤. Then we
denote

X≤ :=
{
(x,x) ∈ X ×X : x ≤ x or x ≤ x

}
.

If f : X → X is an operator, then we denote the Cartesian product of f with itself as follows

f × f : X ×X → X ×X, given by (f × f )(x,x) :=
(
f (x), f (x)

)
.

Definition . Let X be a nonempty set. Then (X,d,≤) is called an ordered generalized
metric space if

(i) (X,d) is a generalized metric space in the sense of Perov;
(ii) (X,≤) is a partially ordered set.

The following result will be an important tool in our approach.

Theorem . Let (X,d,≤) be an ordered generalized metric space, and let f : X → X be
an operator.We suppose that
() for each (x, y) /∈ X≤ there exists z(x, y) := z ∈ X such that (x, z), (y, z) ∈ X≤;
() X≤ ∈ I(f × f );
() f : (X,d) → (X,d) is continuous;
() the metric d is complete;
() there exists x ∈ X such that (x, f (x)) ∈ X≤;
() there exists a matrix A ∈ Mmm(R+), which converges to zero such that

d
(
f (x), f (y)

) ≤ Ad(x, y) for each (x, y) ∈ X≤.

Then f : (X,d)→ (X,d) is a Picard operator.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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Proof Let x ∈ X be arbitrary. Since (x, f (x)) ∈ X≤, by () and (), we get that there exists
x∗ ∈ X such that (f n(x))n∈N → x∗ as n → +∞. By (), we get that x∗ ∈ Fix(f ).
If (x,x) ∈ X≤, then by (), we have that (f n(x), f n(x)) ∈ X≤ for each n ∈ N. Thus, by (),

we get that (f n(x))n∈N → x∗ as n → +∞.
If (x,x) /∈ X≤, then by (), it follows that there exists z(x,x) := z ∈ X≤ such that

(x, z), (x, z) ∈ X≤. By the fact that (x, z) ∈ X≤, as before, we get that (f n(z))n∈N → x∗

as n → +∞. This together with the fact that (x, z) ∈ X≤ implies that (f n(x))n∈N → x∗ as
n→ +∞.
Finally, the uniqueness of the fixed point follows by the contraction condition () using

again the assumption (). �

Remark . The conclusion of the theorem above holds if instead of hypothesis () we
put

(′) f : (X,≤)→ (X,≤) is monotone increasing

or

(′′) f : (X,≤)→ (X,≤) is monotone decreasing.

Of course, it is easy to remark that assertion () in Theorem . is more general. For
example, if we consider the ordered metric space (R,d,≤), then f : R → R

, f (x,x) :=
(g(x,x), g(x,x)) satisfies () for any g :R →R.

Remark . Condition () from the theorem above is equivalent with

(′) f has a lower or an upper fixed point in X .

Remark . For some similar results, see Theorem . and Theorem . in [].

We will apply the above result for the coupled fixed point problem generated by two
operators.
Let X be a nonempty set endowed with a partial order relation denoted by ≤. If we

consider z := (x, y), w := (u, v) two arbitrary elements of Z := X ×X, then, by definition,

z � w if and only if (x ≥ u and y ≤ v).

Notice that � is a partial order relation on Z.
We denote

Z� =
{
(z,w) :=

(
(x, y), (u, v)

) ∈ Z × Z : z � w or w� z
}
.

Let T : Z → Z be an operator defined by

T(x, y) :=

(
T(x, y)
T(x, y)

)
=

(
T(x, y),T(x, y)

)
. ()

The Cartesian product of T and T will be denoted by T × T , and it is defined in the
following way

T × T : Z × Z → Z × Z, (T × T)(z,w) :=
(
T(z),T(w)

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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The first main result of this section is the following theorem.

Theorem . Let (X,d,≤) be an ordered and complete metric space, and let T,T : X ×
X → X be two operators.We suppose that

(i) for each z = (x, y), w = (u, v) ∈ X ×X , which are not comparable with respect to the
partial ordering � on X ×X , there exists t := (t, t) ∈ X ×X (which may depend on
(x, y) and (u, v)) such that t is comparable (with respect to the partial ordering �)
with both z and w, i.e.,

(
(x≥ t and y ≤ t) or (x ≤ t and y≥ t)

)
and(

(u≥ t and v≤ t) or (u≤ t and v≥ t)
)
;

(ii) for all (x≥ u and y≤ v) or (u≥ x and v ≤ y), we have

⎧⎨⎩T(x, y) ≥ T(u, v),

T(x, y)≤ T(u, v)
or

⎧⎨⎩T(u, v) ≥ T(x, y),

T(u, v)≤ T(x, y);

(iii) T,T : X ×X → X are continuous;
(iv) there exists z := (z, z) ∈ X ×X such that

⎧⎨⎩z ≥ T(z, z),

z ≤ T(z, z)
or

⎧⎨⎩T(z, z) ≥ z,

T(z, z) ≤ z;

(v) there exists a matrix A =
( k k
k k

) ∈M(R+) convergent toward zero such that

d
(
T(x, y),T(u, v)

) ≤ kd(x,u) + kd(y, v),

d
(
T(x, y),T(u, v)

) ≤ kd(x,u) + kd(y, v)

for all (x≥ u and y≤ v) or (u≥ x and v ≤ y).
Then there exists a unique element (x∗, y∗) ∈ X ×X such that

x∗ = T
(
x∗, y∗) and y∗ = T

(
x∗, y∗),

and the sequence of the successive approximations (Tn
 (w

,w
),Tn

 (w
,w

)) converges to
(x∗, y∗) as n→ ∞ for all w = (w

,w
) ∈ X ×X.

Proof Denote Z := X × X. We show that Theorem . is applicable for the operator T :
Z → Z defined by

T(x, y) :=
(
T(x, y),T(x, y)

)
.

Notice first that by (i), we get that if (z := (x, y),w := (u, v)) /∈ Z�, there exists t ∈ Z such
that (z, t), (w, t) ∈ Z�. Thus, the first assumption of Theorem . holds.
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Petruşel et al. Fixed Point Theory and Applications 2013, 2013:218 Page 16 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/218

In order to prove () from Theorem ., let z = (x, y), w = (u, v) be arbitrary elements of
Z� (where (x≥ u and y≤ v) or (u≥ x and v≤ y)) such that⎧⎨⎩T(x, y) ≥ T(u, v),

T(x, y)≤ T(u, v)
or

⎧⎨⎩T(u, v)≥ T(x, y),

T(u, v) ≤ T(x, y).

From
{
T(x, y)≥ T(u, v),
T(x, y)≤ T(u, v),

we get that (T(x, y),T(x, y)) � (T(u, v),T(u, v)), that is

T(z) � T(w). ()

By a similar approach, we alternatively have that

T(w) � T(z). ()

Using () and (), we get that

(
T(z),T(w)

) ∈ Z� for all (z,w) ∈ Z�.

Thus, we get (T × T)(Z�) ⊆ Z�, which implies that

Z� ∈ I(T × T). ()

In order to obtain () from Theorem ., notice first that since there exists (z, z) ∈
X ×X such that⎧⎨⎩z ≥ T(z, z),

z ≤ T(z, z)
or

⎧⎨⎩T(z, z) ≥ z,

T(z, z) ≤ z,
()

we obtain that

(
z, z



) � (

T
(
z, z



)
,T

(
z, z



))
. ()

Thus, we have z � T(z). By a similar approach, we alternatively obtain that T(z) � z.
Thus, (z,T(z)) ∈ Z�.
Finally, in order to prove hypotheses () and () from Theorem ., we define the map-

ping d̃ : Z × Z →R

+ by

d̃
(
(x, y), (u, v)

)
:=

(
d(x,u)
d(y, v)

)
.

Notice now that if (X,d,≤) is an ordered metric space, then (Z, d̃,�) is an ordered gen-
eralized metric space. The completeness of d̃ follows from the completeness of d. Notice
also that the continuity of T follows by (iii). For hypothesis (), we successively have

d̃
(
T(x, y),T(u, v)

)
= d̃

((
T(x, y),T(x, y)

)
,
(
T(u, v),T(u, v)

))
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=
(
d(T(x, y),T(u, v))
d(T(x, y),T(u, v))

)
≤

(
kd(x,u) + kd(y, v)
kd(x,u) + kd(y, v)

)

=

(
k k
k k

)(
d(x,u)
d(y, v)

)
= Ad̃

(
(x, y), (u, v)

)
.

Hence

d̃
(
T(z),T(w)

) ≤ Ad̃(z,w) for all z,w ∈ Z�. ()

Thus, the triple (Z, d̃,�) and the operator T : Z → Z satisfy all the hypothesis of Theo-
rem .. Hence, T is a Picard operator, and so, the equation z = T(z) has a unique solution
z∗ ∈ X × X, and the sequence of successive approximations of the operator T , starting
from any w ∈ X × X converges to z∗. Thus, the unique element z∗ = (x∗, y∗) satisfies the
system⎧⎨⎩x∗ = T(x∗, y∗),

y∗ = T(x∗, y∗)

and Tn(w) → z∗ as n→ ∞, where Tn(w) = (Tn
 (w),Tn

 (w)) and

Tn
 (w) = Tn–


(
T(w),T(w)

)
,

Tn
 (w) = Tn–


(
T(w),T(w)

) ()

for all n ∈N, n≥ . �

For the particular case of classical coupled fixed point problems (i.e., T(x, y) := S(x, y)
and T(x, y) := S(y,x), where S : X × X → X is a given operator) we get (by Theorem .)
the following generalization of the Gnana Bhaskar-Lakshmikantham theorem in [].

Theorem. Let (X,d,≤) be an ordered and completemetric space, and let S : X×X → X
be an operator.We suppose that

(i) for each z = (x, y),w = (u, v) ∈ X ×X , which are not comparable with respect to the
partial ordering � on X ×X , there exists t := (t, t) ∈ X ×X (which may depend on
(x, y) and (u, v)) such that t is comparable (with respect to the partial ordering �)
with both z and w;

(ii) for all (x≥ u and y≤ v) or (u≥ x and v ≤ y), we have⎧⎨⎩S(x, y)≥ S(u, v),

S(y,x)≤ S(v,u)
or

⎧⎨⎩S(u, v)≥ S(x, y),

S(v,u)≤ S(y,x);

(iii) S : X ×X → X is continuous;
(iv) there exists z := (z, z) ∈ X ×X such that⎧⎨⎩z ≥ S(z, z),

z ≤ S(z, z)
or

⎧⎨⎩S(z, z) ≥ z,

S(z, z) ≤ z;
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(v) there exist k,k ∈ R+ with k + k <  such that

d
(
S(x, y),S(u, v)

) ≤ kd(x,u) + kd(y, v)

for all (x≥ u and y≤ v) or (u≥ x and v ≤ y).
Then there exists a unique element (x∗, y∗) ∈ X ×X such that

x∗ = S
(
x∗, y∗) and y∗ = S

(
y∗,x∗)

and the sequence of the successive approximations (Sn(w
,w

),Sn(w
,w

)) converges to
(x∗, y∗) as n→ ∞ for all w = (w

,w
) ∈ X ×X.

As an application of the previous theorem, we get now an existence and uniqueness
result for a system of functional-integral equations, which appears in some traffic flow
models.⎧⎨⎩x(t) = f (t,x(t),

∫ T
 k(t, s,x(s), y(s))ds),

y(t) = f (t, y(t),
∫ T
 k(t, s,x(s), y(s))ds).

()

By a solution of the previous system, we understand a couple (x, y) ∈ C[,T]× C[,T],
which satisfies the system for all t ∈ [,T].
As before, we consider on X := C[,T] the following partial ordering relation

x ≤C y if and only if x(t)≤ y(t) for all t ∈ [,T]

and the supremum norm

‖x‖C := max
t∈[,T]

∣∣x(t)∣∣.
Notice that, as before, the partial ordering relation ≤C generates on X ×X a partial order-
ing �C .
If we define

S : X×X → X, (x, y) �−→ S(x, y), where S(x, y)(t) := f
(
t,x(t),

∫ T


k
(
t, s,x(s), y(s)

)
ds

)
,

then, the above system can be represented as a coupled fixed point problem

⎧⎨⎩x = S(x, y),

y = S(y,x).

An existence and uniqueness result for the system () is the following theorem.

Theorem . Let k : [,T]× [,T]×R
 → R and f : [,T]×R×R → R be two contin-

uous mappings.We suppose that

http://www.fixedpointtheoryandapplications.com/content/2013/1/218
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(i) there exists z := (z, z) ∈ C[,T]×C[,T] such that⎧⎨⎩z(t)≥ f (t, z(t),
∫ t
 k(t, s, z


(t), z(t))ds),

z(t)≤ f (t, z(t),
∫ t
 k(t, s, z


(t), z(t))ds)

or

⎧⎨⎩z(t)≤ f (t, z(t),
∫ t
 k(t, s, z


(t), z(t))ds),

z(t)≥ f (t, z(t),
∫ t
 k(t, s, z


(t), z(t))ds);

(ii) (a) f (t, ·, z) is increasing for all t ∈ [,T], z ∈R and k(t, s, ·, z) is increasing,
k(t, s,w, ·) is decreasing and f (t,w, ·) is increasing for all t, s ∈ [,T], w, z ∈R

or
(b) f (t, ·, z) is decreasing for all t ∈ [,T], z ∈R and k(t, s, ·, z) is decreasing,

k(t, s,w, ·) is increasing and f (t,w, ·) is decreasing for all t, s ∈ [,T], w, z ∈R;
(iii) there exist k,k ∈ R+ such that

∣∣f (t,w, z) – f (t,w, z)
∣∣ ≤ k|w –w| + k|z – z|

for all t ∈ [,T] and w,w, z, z ∈ R;
(iv) there exist α,β ∈R+ such that for all t, s ∈ [,T] and w,w, z, z ∈R, we have

∣∣k(t, s,w, z) – k(t, s,w, z)
∣∣ ≤ α|w –w| + β|z – z|;

(v) k + kT(α + β) < .
Then, there exists a unique solution (x∗, y∗) of system ().

Proof From the hypotheses, we get that all the assumptions of Theorem . are satisfied
for the operator

S : X ×X → X, (x, y) �−→ S(x, y), S(x, y)(t) := f
(
t,x(t),

∫ T


k
(
t, s,x(s), y(s)

)
ds

)
,

where X := (C[,T],≤C ,‖ · ‖C). �

We introduce now the concept ofUlam-Hyers stability for coupled fixed point problems.

Definition . Let (X,d) be a metric space, and let T,T : X ×X → X be two operators.
Then the operatorial equations system⎧⎨⎩x = T(x, y),

y = T(x, y)
()

is said to be Ulam-Hyers stable if there exist c, c, c, c >  such that for each ε, ε > 
and each pair (u∗, v∗) ∈ X ×X such that

d
(
u∗,T

(
u∗, v∗)) ≤ ε,

d
(
v∗,T

(
u∗, v∗)) ≤ ε

()
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there exists a solution (x∗, y∗) ∈ X ×X of () such that

d
(
u∗,x∗) ≤ cε + cε,

d
(
v∗, y∗) ≤ cε + cε.

()

It is an open problem to obtain Ulam-Hyers stability results for the coupled fixed point
problem in the context of ordered metric spaces. For several results on this subject, see
[, ].

Remark . The case of a system of operatorial inclusions of the form⎧⎨⎩x ∈ T(x, y),

y ∈ T(x, y)

(where T,T : X × X → P(X) are two given multivalued operators) can be treated in a
similar way.
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Cite this article as: Petruşel et al.: Vector-valued metrics, fixed points and coupled fixed points for nonlinear
operators. Fixed Point Theory and Applications 2013 2013:218.

http://www.fixedpointtheoryandapplications.com/content/2013/1/218

	Vector-valued metrics, ﬁxed points and coupled ﬁxed points for nonlinear operators
	Abstract
	MSC
	Keywords

	Introduction
	Existence, uniqueness and stability for ﬁxed point equations and inclusions
	An application to coupled ﬁxed point results for singlevalued operators without mixed monotone property
	Competing interests
	Authors' contributions
	Acknowledgements
	References


