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Abstract
In this paper, we introduce a general iterative algorithm for finding a common
element of the set of common fixed points of infinite family of asymptotically
quasi-φ-nonexpansive mappings and of the set of solutions for finite equilibrium
problems in a real Banach space. Our results are the generalization of the results
(Shehu in Comput. Math. Appl. 63:1089-1103, 2012; Kim in Fixed Point Theory Appl.,
2011, doi:10.1186/1687-1812-2011-10) and (Kim and Buong in Fixed Point Theory
Appl., 2011, doi:10.1155/2011/780764), and improvement of the result (Yang et al. in
Appl. Math. Comput. 218:6072-6082, 2012).
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1 Introduction
Let C be a nonempty, closed and convex subset of a real Banach space E. A mapping T :
C → C is called to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

A mapping T : C → C is called to be quasi-nonexpansive if

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥, ∀x ∈ C,x∗ ∈ F(T).

Let F be a bifunction of C × C into R. The equilibrium problem is to find x ∈ C such
that

F(x, y) ≥ , ∀y ∈ C. (.)

The set of solutions to equilibrium problem (.) is denoted by EP(F). That is,

EP(F) :=
{
x ∈ C : F(x, y)≥ ,∀y ∈ C

}
.
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Recently, Yang et al. [] proved strong convergence theorems for approximation of com-
mon fixed points of countably infinite family of asymptotically quasi-φ-nonexpansive
mappings in a uniformly smooth and strictly convex real Banach space, which has the
Kadec-Klee property. More precisely, they proved the following theorem.

Theorem . Let E be a uniformly smooth and strictly convex Banach space, which has
the Kadec-Klee property, and let C be a nonempty closed convex subset of E. Let G be a
bifunction from C × C to R satisfying (A)-(A), and let Ti : C → C, ∀i ∈ N be an infinite
family of closed and asymptotically quasi-φ-nonexpansive mapping with {kni} ⊂ [,∞),
kni →  as n → ∞, where T = I . Assume that Ti, ∀i ∈ N is asymptotically regular on C
and � =

⋂∞
i= F(Ti) ∩ EP(G) is nonempty and bounded. Let {xn} be a sequence, generated

by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = �Cx,

yn = J–{∑∞
i= αniJTn

i xn},
un ∈ C such that G(un, y) + 

rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn) + (kn – )Mn},
xn+ = �Cn+x,

where J is the duality mapping on E, Mn = sup{φ(z,xn) : z ∈ �} for each n ≥ , kn =
supi≥{kni}, {rn} is real sequence in [a,∞), where a is some positive real number, {αni}
is a real sequence in [, ] satisfying the following conditions: (a)

∑∞
i= αni = , ∀n ≥ ,

(b) lim infn→∞ αnαni > , ∀i ∈ N. Then the sequence {xn} converges strongly to ��x.

In [], Shehu introduced the following hybrid iterative scheme for approximating a com-
mon element of the set of fixed points of relatively quasi-nonexpansive mappings and the
set of solutions to an equilibrium problem in a uniformly smooth and uniformly convex
real Banach space: x ∈ C, C = C, x = �

f
C
x,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = J–(αnJxn + ( – αn)JTnxn), n≥ ,

un = TFm
rm,nT

Fm–
rm–,n · · ·TF

r,nT
F
r,nyn,

Cn+ = {w ∈ Cn :G(w, Jun)≤ G(w, Jxn)}, n≥ ,

xn+ = �
f
Cn+

x, n≥ .

Motivated by the facts above, the purpose of this paper is to prove a strong convergence
theorem for finding a common element of the set of fixed points of asymptotically quasi-
φ-nonexpansive mappings and the set of solutions to a system of equilibrium problems in
a uniformly smooth and uniformly convex real Banach space, which has the Kadec-Klee
property.
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2 Preliminaries
Let E be a real Banach space, and let E∗ be the dual space of E. The duality mapping
J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}. (.)

By Hahn-Banach theorem, J(x) is nonempty.
The modulus of smoothness of E is the function ρE : [,∞)→ [,∞) defined by

ρE(τ ) := sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ τ

}
. (.)

E is said to be uniformly smooth if limτ→
ρE(τ )

τ
= .

Let dimE ≥ . The modulus of convexity of E is the function δE : (, ] → [, ] defined
by

δE(ε) := inf

{
 –

∥∥∥∥x – y


∥∥∥∥ : ‖x‖ = ‖y‖ = ; ε = ‖x – y‖
}
. (.)

E is said to be uniformly convex if ∀ε ∈ (, ], there exists a δ = δ(ε) >  such that for x, y ∈ E
with ‖x‖ ≤ , ‖y‖ ≤  and ‖x – y‖ ≥ ε, then ‖ x+y

 ‖ ≤  – δ. Equivalently, E is uniformly
convex if and only if δE(ε) > , ∀ε ∈ (, ]. E is strictly convex if for all x, y ∈ E, x �= y, ‖x‖ =
‖y‖ = , we have ‖λx + ( – λ)y‖ < , ∀λ ∈ (, ).
It is well known that if E is uniformly smooth, then J is norm-to-norm uniformly con-

tinuous on each bounded subset of E. If E is smooth, then J is single-valued.
Recall that a Banach space E has the Kadec-Klee property if for any sequence {xn} ⊂ E

and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn – x‖ → , as n → ∞. It is well known
that if E is a uniformly convex Banach space, then E has the Kadec-Klee property.
We denoted by φ the Lyapunov function from E × E to R defined by

φ(x, y) := ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

It follows from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈ E. (.)

Let E be a reflexive strictly convex and smooth Banach space. Then for x, y ∈ E, φ(x, y) = 
if and only if x = y (see [, ]).

Definition . Let C be a nonempty closed convex subset of E, and let T be a mapping
from C into itself. A point p ∈ C is said to be an asymptotic fixed point of T if C con-
tains a sequence {xn}, which converges weakly to p and limn→∞ ‖xn –Txn‖ = . The set of
asymptotic fixed points of T is denoted by F̃(T).
We say that T is a relatively nonexpansive mapping [–] if the following conditions are

satisfied:
(R) F(T) �= ∅;
(R) φ(p,Tx) ≤ φ(p,x), ∀x ∈ C, p ∈ F(T);

http://www.fixedpointtheoryandapplications.com/content/2013/1/221
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(R) F(T) = F̃(T).
If T satisfies (R) and (R), then T is said to be relatively quasi-nonexpansive [–].

Definition . We say that T is an asymptotically φ-nonexpansive mapping if there ex-
ists a sequence {kn} ⊂ [,∞) with kn →  as n → ∞ such that φ(Tnx,Tny) ≤ knφ(x, y),
∀x, y ∈ C. We say that T is an asymptotically quasi-φ-nonexpansive [, ] mapping if
F(T) �= ∅ and there exists a sequence {kn} ⊂ [,∞) as n → ∞ such that φ(p,Tnx) ≤
knφ(p,x), ∀x ∈ C, p ∈ F(T).

It is easy to see that the class of relatively quasi-nonexpansive mappings and asymptot-
ically quasi-φ-nonexpansive mappings contains the class of relatively nonexpansive map-
pings. The class of asymptotically quasi-φ-nonexpansive mappings is more general than
the class of relatively quasi-nonexpansive mappings.
Following Alber [], the generalized projection �C : E → C is defined by

�C(x) =
{
u ∈ C : φ(u,x) =min

y∈C φ(y,x)
}
, ∀x ∈ E.

The existence and uniqueness of the operator �C follows from the properties of the func-
tion φ(y,x) and strict monotonicity of mapping J (see, for example, [, , , ]). If E is
a Hilbert space, then φ(y,x) = ‖y – x‖, x, y ∈ E and �C is the metric projection PC of E
onto C.
Next, we recall the concept and properties of generalized f -projector operator. Let G :

C × E∗ →R∪ {+∞} be a function defined as follows:

G(ξ ,ϕ) = ‖ξ‖ – 〈ξ ,ϕ〉 + ‖ϕ‖ + ρf (ξ ),

where ξ ∈ C, ϕ ∈ E∗, ρ is a positive number, and f : C → R ∪ {+∞} is proper, convex and
lower semi-continuous. From the definitions ofG and f , it is easy to see that the following
properties hold:

(i) G(ξ ,ϕ) is convex and continuous with respect to ϕ when ξ is fixed;
(ii) G(ξ ,ϕ) is convex and lower semi-continuous with respect to ξ when ϕ is fixed.

Definition . [] Let E be a real Banach space with its dual E∗. Let C be a nonempty
closed convex subset of E.We say that�f

C : E∗ → C is a generalized f -projection operator
if

�
f
Cϕ =

{
u ∈ C :G(u,ϕ) = inf

ξ∈CG(ξ ,ϕ)
}
, ∀ϕ ∈ E∗.

Lemma . [] Let E be a reflexive Banach space with its dual E∗. Let C be a nonempty
closed convex subset of E. Then the following statements hold:

(i) �
f
Cϕ is a nonempty closed convex subset of C for all ϕ ∈ E∗;

(ii) If E is smooth, then for all ϕ ∈ E∗, x ∈ �
f
Cϕ if and only if

〈x – y,ϕ – Jx〉 + ρf (y) – ρf (x) ≥ , ∀y ∈ C;

(iii) [] If E is strictly convex, then �
f
C is a single-valued mapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/221
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Recall that J is a single-valued mapping when E is a smooth Banach space. There exists
a unique element ϕ ∈ E∗ such that ϕ = Jx for each x ∈ E. This substitution in (.) gives

G(ξ , Jx) = ‖ξ‖ – 〈ξ , Jx〉 + ‖x‖ + ρf (ξ ).

Now, we consider the second generalized f -projection operator in Banach space.

Definition . Let E be a real Banach space and C be a nonempty closed convex subset
of E. We say that �

f
C : E → C is a generalized f -projection operator if

�
f
Cx =

{
u ∈ C :G(u, Jx) = inf

ξ∈CG(ξ , Jx)
}
, ∀x ∈ E.

Obviously, the definition of relatively quasi-nonexpansive mapping T is equivalent to

(R′) F(T) �= ∅;
(R′) G(p, JTx) ≤ G(p, Jx), ∀x ∈ C, p ∈ F(T).

Lemma . [] Let C be a nonempty, closed and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(i) �
f
Cx is a nonempty closed convex subset of C for all x ∈ E;

(ii) For all x ∈ E, x̂ ∈ �
f
Cx if and only if

〈x̂ – y, Jx – Jx̂〉 + ρf (y) – ρf (x̂) ≥ , ∀y ∈ C;

(iii) [] If E is strictly convex, then �
f
Cx is a single-valued mapping.

Lemma . [] Let E be a Banach space, and f : E → R ∪ {+∞} is convex and lower
semi-continuous. Then there exists x∗ ∈ E∗ and α ∈R such that

f (x)≥ 〈
x,x∗〉 + α, ∀x ∈ E.

Lemma . [] Let C be a nonempty closed convex subset of a smooth and reflexive Ba-
nach space E. Let x ∈ E and x̂ ∈ �

f
Cx. Then

φ(y, x̂) +G(x̂, Jx) ≤ G(y, Jx), ∀y ∈ C.

Lemma . [, ] Let E be a uniformly smooth and strictly convex Banach space, which
has the Kadec-Klee property, and let C be a nonempty closed convex subset of E. Let T be
a closed and asymptotically quasi-φ-nonexpansive mapping. Then F(T) is a closed and
convex subset of C.

Lemma . [] Let E be a uniformly convex real Banach space. For arbitrary r > , let
Br() := {x ∈ E : ‖x‖ ≤ r}. Then, for any given sequence {xn}∞n= ⊂ Br() and for any given
sequence {λn}∞n= of positive numbers such that

∑∞
i= λi = , there exists a continuous strictly

increasing convex function g : [, r] → R, g() =  such that for any positive integers i, j
with i < j, the following inequality holds∥∥∥∥∥

∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλjg
(‖xi – xj‖

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/221
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Lemma . [] Let E be a Banach space and y ∈ E. Let f : E → R ∪ {+∞} be a proper,
convex and lower semi-continuous mapping with convex domain D(f ). If {xn} is a sequence
in D(f ) such that xn ⇀ x ∈ int(D(f )) and limn→∞ G(xn, Jy) = G(x, Jy), then limn→∞ ‖xn‖ =
‖x‖.

For solving the equilibrium problem for a bifunction F : C ×C → R, let us assume that
F satisfies the following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y)≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma . [] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E, and let F be a bifunction of C×C intoR satisfying (A)-(A).
Let r >  and x ∈ E. Then, there exists z ∈ C such that

F(z, y) +

r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Lemma . [, ] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E, and let F be a bifunction of C×C intoR satisfying (A)-(A).
Let r >  and x ∈ E. Define a mapping TF

r : E → C as follows:

TF
r (x) =

{
z ∈ C : F(z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
for all z ∈ E. Then, the following hold:
. TF

r is single-valued;
. TF

r is firmly nonexpansive mapping, i.e., for any x, y ∈ E,

〈
TF
r x – TF

r y, JT
F
r x – JTF

r y
〉 ≤ 〈

TF
r x – TF

r y, Jx – Jy
〉
;

. F(TF
r ) = EP(F);

. TF
r x is relatively quasi-nonexpansive;

. EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E, and let F be a bifunction of C×C intoR satisfying (A)-(A).
Let r > . Then for each x ∈ E and q ∈ F(TF

r ),

φ
(
q,TF

r x
)
+ φ

(
TF
r x,x

) ≤ φ(q,x).

An operator T in a Banach space E is said to be closed if xn → x and Txn → y, then
Tx = y.

3 Main result
Theorem . Let E be a uniformly smooth and strictly convex Banach space, which has
the Kadec-Klee property, and let C be a nonempty closed convex subset of E. For each k =

http://www.fixedpointtheoryandapplications.com/content/2013/1/221
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, , . . . ,m, let Fk be a bifunction from C × C satisfying (A)-(A), and let {Ti}∞i= : C → C,
∀i ∈ N be an infinite family of closed and asymptotically quasi-φ-nonexpansive mappings
with sequence {kni} ⊂ [,∞), kni →  as n → ∞, where T = I . Assume that Ti, ∀i ∈ N

is asymptotically regular on C and  = (
⋂∞

i= F(Ti)) ∩ (
⋂m

k= EP(Fk)) is nonempty and
bounded. Let f : E →R be a convex and lower semicontinuousmapping with C ⊂ int(D(f )),
and suppose that {xn}∞n= is a sequence generated by x ∈ C, C = C, x = �

f
C
x,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = J–{∑∞
i= αniJTn

i xn},
un = TFm

rm,nT
Fm–
rm–,n · · ·TF

r,nT
F
r,nyn,

Cn+ = {z ∈ Cn :G(z, Jun) ≤ G(z, Jxn) + (kn – )Mn},
xn+ = �

f
Cn+

x,

(.)

where J is the duality mapping on E, Mn = sup{φ(z,xn) : z ∈ } for each n ≥ , kn =
supi≥{kni}, {αni} is a real sequence in [,] and {rk,n}∞n= ⊂ (,∞), k = , , . . . ,m, satisfy-
ing the following conditions:

(a)
∞∑
i=

αni = , ∀n≥ ;

(b) lim inf
n→∞ αnαni > , ∀i ∈ N;

(c) lim inf
n→∞ rk,n > .

Then the sequence {xn} converges strongly to �
f
x.

Proof Step . We first show that Cn, ∀n≥  is nonempty, closed and convex.
Now, we show that Cn, ∀n ≥  is closed and convex. It is obvious that C = C is closed

and convex. Suppose that Cn is closed convex for some n > . From the definition of Cn+,
we have z ∈ Cn+, which implies that G(z, Jun) ≤ G(z, Jxn) + (kn – )Mn. This is equivalent
to


(〈z, Jxn〉 – 〈z, Jun〉

) ≤ ‖xn‖ – ‖un‖ + (kn – )Mn.

This implies that Cn+ is closed convex for the same n > . Hence, Cn is closed and convex
∀n≥ .
By taking θ k

n = TFk
rk,nT

Fk–
rk–,n · · ·TF

r,nT
F
r,n , k = , , . . . ,m and θ

n = I for all n ≥ , we obtain
un = θm

n yn.
We next show that  ⊂ Cn, ∀n ≥ . From Lemma ., we have that TFk

rk,n , k = , , . . . ,m
is relatively nonexpansive mapping. For n = , we have  ⊂ C = C. Now, assume that
 ⊂ Cn for some n > . For each x∗ ∈ , we obtain

G
(
x∗, Jun

)
=G

(
x∗, Jθm

n yn
) ≤ G

(
x∗, Jyn

)
=

∥∥x∗∥∥ – 
〈
x∗, Jyn

〉
+ ‖yn‖ + ρf

(
x∗)

≤ ∥∥x∗∥∥ – 
∞∑
i=

αni
〈
x∗, JTn

i xn
〉
+

∞∑
i=

αni
∥∥Tn

i xn
∥∥ + ρf

(
x∗)

http://www.fixedpointtheoryandapplications.com/content/2013/1/221
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=
∞∑
i=

αniφ
(
x∗,Tn

i xn
)
+ ρf

(
x∗)

≤
∞∑
i=

αnikniφ
(
x∗,xn

)
+ ρf

(
x∗)

=
∞∑
i=

αni
(
 + (kni – )

)
φ
(
x∗,xn

)
+ ρf

(
x∗)

=G
(
x∗, Jxn

)
+

∞∑
i=

αni(kni – )φ
(
x∗,xn

)
≤ G

(
x∗, Jxn

)
+ (kn – )Mn. (.)

So, x∗ ∈ Cn+. It implies that  ⊂ Cn, ∀n ≥ , and the sequence {xn}∞n= generated by (.)
is well defined.
Step . We show that limn→∞ G(xn, Jx) exists.
Since f : E → R is a convex and lower semi-continuous, applying Lemma ., we see

that there exist u∗ ∈ E∗ and α ∈R such that

f (y) ≥ 〈
y,u∗〉 + α, ∀y ∈ E.

It follows that

G(xn, Jx) = ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

≥ ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρ
〈
xn,u∗〉 + ρα

= ‖xn‖ – 
〈
xn, Jx – ρu∗〉 + ‖x‖ + ρα

≥ ‖xn‖ – ‖xn‖
∥∥Jx – ρu∗∥∥ + ‖x‖ + ρα

=
(‖xn‖ – ∥∥Jx – ρu∗∥∥) + ‖x‖ –

∥∥Jx – ρu∗∥∥ + ρα. (.)

Since xn = �
f
Cnx, it follows from (.) that

G
(
x∗, Jx

) ≥ G(xn, Jx) ≥
(‖xn‖ – ∥∥Jx – ρu∗∥∥) + ‖x‖ –

∥∥Jx – ρu∗∥∥ + ρα

for each x∗ ∈ F(T). This implies that {xn}∞n= is bounded and so is {G(xn, Jx)}∞n=. By the
construction of Cn, we have that Cn+ ⊂ Cn and xn+ = �

f
Cn+

x ∈ Cn. It follows from
Lemma . that

φ(xn+,xn) +G(xn, Jx) ≤ G(xn+, Jx). (.)

It is obvious that

φ(xn+,xn) ≥
(‖xn+‖ – ‖xn‖

) ≥ ,

and so, {G(xn, Jx)}∞n= is nondecreasing. It follows that the limit of {G(xn, Jx)}∞n= exists.
Step . We prove that limn→∞ ‖Jxn – JTn

j xn‖ = , ∀j ∈ N.

http://www.fixedpointtheoryandapplications.com/content/2013/1/221
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Now, since {xn}∞n= is bounded in C, and E is reflexive, we may assume that xn ⇀ p, and
since Cn is closed and convex for each n ≥ , it is easy to see that p ∈ Cn for each n ≥ .
Again, since xn = �

f
Cnx, we obtain

G(xn, Jx)≤ G(p, Jx), ∀n≥ .

Since

lim inf
n→∞ G(xn, Jx) = lim inf

n→∞
{‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

}
≥ ‖p‖ – 〈p, Jx〉 + ‖x‖ + ρf (p) =G(p, Jx).

Then, we obtain

G(p, Jx) ≤ lim inf
n→∞ G(xn, Jx)≤ lim sup

n→∞
G(xn, Jx)≤ G(p, Jx).

This implies that

lim
n→∞G(xn, Jx) =G(p, Jx).

By Lemma ., we obtain that limn→∞ ‖xn‖ = ‖p‖. In view of Kadec-Klee property of E,
we have that limn→∞ xn = p.
By the construction of Cn, we have that Cn+ ⊂ Cn and xn+ = �

f
Cn+

x ∈ Cn+. It follows
that

φ(xn+,un) ≤ φ(xn+,xn) + (kn – )Mn.

Now, (.) implies that

φ(xn+,un) ≤ φ(xn+,xn) + (kn – )Mn ≤ G(xn+, Jx) –G(xn, Jx) + (kn – )Mn. (.)

Taking the limit as n→ ∞ in (.), we obtain

lim
n→∞φ(xn+,xn) = .

Therefore,

lim
n→∞φ(xn+,un) = .

It then yields that limn→∞(‖xn+‖ – ‖un‖) = . Since limn→∞ ‖xn+‖ = ‖p‖, we have

lim
n→∞‖un‖ = ‖p‖. (.)

Hence,

lim
n→∞‖Jun‖ = ‖Jp‖.

This implies that {‖Jun‖}∞n= is bounded in E∗. Since E is reflexive, and so E∗ is reflexive,
we can then assume that Jun ⇀ f ∈ E∗. In view of reflexivity of E, we see that J(E) = E∗.
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Hence, there exists x ∈ E such that Jx = f. Since

φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖ = ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖.

Taking lim infn→∞ for both sides of the equality above, yields that

 ≥ ‖p‖ – 〈p, f〉 + ‖f‖ = ‖p‖ – 〈p, Jx〉 + ‖Jx‖ = ‖p‖ – 〈p, Jx〉 + ‖x‖ = φ(p,x).

That is, p = x. This implies that f = Jp, and so, Jun ⇀ Jp. It follows from limn→∞ ‖Jun‖ =
‖Jp‖ and Kadec-Klee property of E∗ (this is because E∗ is uniformly convex) that

Jun → Jp.

Note that J– : E∗ → E is hemi-continuous (this is because E is a uniformly smooth and
strictly convex Banach space with a strictly convex dual E∗), it follows that un ⇀ p. Since
(.) and E have the Kadec-Klee property, we obtain that

lim
n→∞un = p. (.)

It follows that

lim
n→∞‖xn – un‖ = . (.)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞‖Jxn – Jun‖ = . (.)

Let r := supn,i≥{‖Tn
i xn‖}. Since E is uniformly smooth, we know that E∗ is uniformly con-

vex. Then from Lemma ., we have

G
(
x∗, Jun

)
=G

(
x∗, Jθm

n yn
)

≤ G
(
x∗, Jyn

)
=

∥∥x∗∥∥ – 

〈
x∗,

∞∑
i=

αniJTn
i xn

〉
+

∥∥∥∥∥
∞∑
i=

αniJTn
i xn

∥∥∥∥∥


+ ρf
(
x∗)

≤ ∥∥x∗∥∥ – 
∞∑
i=

αni
〈
x∗, JTn

i xn
〉
+

∞∑
i=

αni
∥∥JTn

i xn
∥∥

– αnkαnjg
(∥∥JTn

k xn – JTn
j xn

∥∥)
+ ρf

(
x∗)

=
∞∑
i=

αniφ
(
x∗,Tn

i xn
)
+ ρf

(
x∗) – αnkαnjg

(∥∥JTn
k xn – JTn

j xn
∥∥)

≤
∞∑
i=

αnikniφ
(
x∗,xn

)
+ ρf

(
x∗) – αnkαnjg

(∥∥JTn
k xn – JTn

j xn
∥∥)

≤ G
(
x∗, Jxn

)
+ (kn – )Mn – αnkαnjg

(∥∥JTn
k xn – JTn

j xn
∥∥)
. (.)
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Taking k =  and for any j in (.), we have

αnαnjg
(∥∥Jxn – JTn

j xn
∥∥) ≤G

(
x∗, Jxn

)
–G

(
x∗, Jun

)
+ (kn – )Mn → .

It follows from the property of g that

lim
n→∞

∥∥Jxn – JTn
j xn

∥∥ = . (.)

Step . Now we prove that p ∈ .
(a) First, we prove that p ∈ ⋂∞

i= F(Ti).
Since xn → p and J is uniformly norm-to-norm continuous on bounded sets, we see that

lim
n→∞‖Jxn – Jp‖ = . (.)

We observe from (.) and (.) that

∥∥JTn
j xn – Jp

∥∥ ≤ ∥∥Jxn – JTn
j xn

∥∥ + ‖Jxn – Jp‖ → , n→ ∞.

Since J– is hemi-continuous, it follows that Tn
j xn ⇀ p. On the other hand, since

∣∣∥∥Tn
j xn

∥∥ – ‖p‖∣∣ = ∣∣∥∥JTn
j xn

∥∥ – ‖Jp‖∣∣ ≤ ∥∥JTn
j xn – Jp

∥∥,
and this implies that ‖Tn

j xn‖ → ‖p‖ as n → ∞. Since E enjoys the Kadec-Klee property,
we obtain that

lim
n→∞

∥∥Tn
j xn – p

∥∥ = .

Note that

∥∥Tn+
j xn – p

∥∥ ≤ ∥∥Tn+
j xn – Tn

j xn
∥∥ +

∥∥Tn
j xn – p

∥∥. (.)

It follows from the asymptotic regularity of T and (.) that

lim
n→∞

∥∥Tn+
j xn – p

∥∥ = .

That is, TjTn
j xn – p→  as n→ ∞. It follows from the closeness of Tj that Tjp = p, ∀j ∈N,

i.e., p ∈ ⋂∞
i= F(Ti).

(b) Next, we prove that p ∈ ⋂m
k= EP(Fk).

From (.), we obtain

φ
(
x∗,un

)
= φ

(
x∗, θm

n yn
)
= φ

(
x∗,TFm

rm,nθ
m–
n yn

)
≤ φ

(
x∗, θm–

n yn
) ≤ · · · ≤ φ

(
x∗, yn

)
≤ φ

(
x∗,xn

)
+ (kn – )Mn.

Next, we show that θ k
n yn → p as n→ ∞, for each k ∈ {, , . . . ,m}.
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We have proved that k =m, θ k
n yn = un → p.

Suppose that θ k
n yn → p as n→ ∞ for some k. Since x∗ ∈ ⋂m

k= EP(Fk) =
⋂m

k= F(T
Fk
rk,n ) for

all n≥ , it follows from Lemma . that

φ
(
θ k
n yn, θ

k–
n yn

)
= φ

(
TFk
rk,nθ

k–
n yn, θ k–

n yn
)

≤ φ
(
x∗, θ k–

n yn
)
– φ

(
x∗, θ k

n yn
)

≤ φ
(
x∗,xn

)
– φ

(
x∗, θ k

n yn
)
+ (kn – )Mn.

Hence, we have

lim
n→∞φ

(
θ k
n yn, θ

k–
n yn

)
= .

From (.), we see that ‖θ k
n yn‖ – ‖θ k–

n yn‖ →  as n → ∞. From assumption, we have
θ k
n yn → p as n→ ∞, so

∥∥θ k–
n yn

∥∥ → ‖p‖ as n→ ∞.

It follows that

∥∥Jθ k–
n yn

∥∥ → ‖Jp‖ as n → ∞. (.)

This implies that {‖Jθ k–
n yn‖}∞n= is bounded in E∗. Since E is reflexive, and so E∗ is reflexive,

we can then assume that Jθ k–
n yn ⇀ fk– ∈ E∗. In view of reflexivity of E, we see that J(E) =

E∗. Hence, there exists xk– ∈ E such that Jxk– = fk–. Since

φ
(
θ k
n yn, θ

k–
n yn

)
=

∥∥θ k
n yn

∥∥ – 
〈
θ k
n yn, Jθ

k–
n yn

〉
+

∥∥θ k–
n yn

∥∥

=
∥∥θ k

n yn
∥∥ – 

〈
θ k
n yn, Jθ

k–
n yn

〉
+

∥∥Jθ k–
n yn

∥∥.

Taking lim infn→∞ for both sides of the equality above, yields that

 ≥ ‖p‖ – 〈p, fk–〉 + ‖fk–‖

= ‖p‖ – 
〈
p, Jxk–

〉
+

∥∥Jxk–∥∥

= ‖p‖ – 
〈
p, Jxk–

〉
+

∥∥xk–∥∥

= φ
(
p,xk–

)
.

That is, p = xk–. This implies that fk– = Jp and so Jθ k–
n yn ⇀ Jp. It follows from

limn→∞ ‖Jθ k–
n yn‖ = ‖Jp‖ and Kadec-Klee property of E∗ (this is because E∗ is uniformly

convex) that

Jθ k–
n yn → Jp.

Note that J– : E∗ → E is hemi-continuous (this is because E is a uniformly smooth and
strictly convex Banach space with a strictly convex dual E∗), it follows that θ k–

n yn ⇀ p.
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Since (.) and E have the Kadec-Klee property, we obtain that

lim
n→∞ θ k–

n yn = p.

Hence, limn→∞ θ k
n yn = p and limn→∞ Jθ k

n yn = Jp, for each k ∈ {, , . . . ,m}. That is,

lim
n→∞

∥∥θ k
n yn – θ k–

n yn
∥∥ = , k = , , . . . ,m

and

lim
n→∞

∥∥Jθ k
n yn – Jθ k–

n yn
∥∥ = , k = , , . . . ,m.

Since lim infn→∞ rk,n > , k = , , . . . ,m,

lim
n→∞

‖Jθ k
n yn – Jθ k–

n yn‖
rk,n

= . (.)

By Lemma ., we have that for each k = , , . . . ,m,

Fk
(
θ k
n yn, y

)
+


rk,n

〈
y – θ k

n yn, Jθ
k
n yn – Jθ k–

n yn
〉 ≥ , ∀y ∈ C.

Furthermore, using (A), we obtain


rk,n

〈
y – θ k

n yn, Jθ
k
n yn – Jθ k–

n yn
〉 ≥ Fk

(
y, θ k

n yn
)
.

By (A), (.) and θ k
n yn → p, we have for each k = , , . . . ,m,

Fk(y,p) ≤ , ∀y ∈ C.

For fixed y ∈ C, let zt = ty + ( – t)p for all t ∈ (, ]. This implies that zt ∈ C. This yields
that Fk(zt ,p) ≤ . It follows from (A) and (A) that

 = Fk(zt , zt)≤ tFk(zt , y) + ( – t)Fk(zt ,p) ≤ tFk(zt , y),

and hence

 ≤ Fk(zt , y).

From condition (A), we obtain

Fk(p, y) ≥ , ∀y ∈ C.

This implies that p ∈ EP(Fk), k = , , . . . ,m. Thus, p ∈ ⋂m
k= EP(Fm).

Hence, we have p ∈  = (
⋂m

k= EP(Fm))∩ (
⋂∞

i= F(Ti)).
Step . Finally, we prove that p = �

f
x.
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Since  = (
⋂m

k= EP(Fm))∩ (
⋂∞

i= F(Ti)) is a closed and convex set, from Lemma ., we
know that �

f
x is single-valued and denoted ω = �

f
x. Since xn = �

f
Cnx and ω ∈  ⊂

Cn, we have

G(xn, Jx)≤ G(ω, Jx), ∀n≥ .

We know that G(ξ ,φ) is convex and lower semi-continuous with respect to ξ when φ is
fixed. This implies that

G(p, Jx) ≤ lim inf
n→∞ G(xn, Jx)≤ lim sup

n→∞
G(xn, Jx)≤ G(ω, Jx).

From the definition of �
f
x and p ∈ , we see that p = ω. This completes the proof. �

Corollary . Let E be a uniformly smooth and strictly convex Banach space, which has
the Kadec-Klee property, and let C be a nonempty closed convex subset of E. For each k =
, , . . . ,m, let Fk be a bifunction from C × C satisfying (A)-(A), and let {Ti}∞i= : C → C,
∀i ∈ N be an infinite family of closed and asymptotically quasi-φ-nonexpansive mappings
with sequence {kni} ⊂ [,∞), kni →  as n → ∞, where T = I . Assume that Ti, ∀i ∈ N

is asymptotically regular on C, and  = (
⋂∞

i= F(Ti)) ∩ (
⋂m

k= EP(Fk)) is nonempty and
bounded. Suppose that {xn}∞n= is generated by x ∈ C, C = C, x = �

f
C
x,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = J–{∑∞
i= αniJTn

i x},
un = TFm

rm,nT
Fm–
rm–,n · · ·TF

r,nT
F
r,nyn,

Cn+ = {z ∈ Cn : φ(z, Jun) ≤ φ(z, Jxn) + (kn – )Mn},
xn+ = �Cn+x,

where J is the duality mapping on E, Mn = sup{φ(z,xn) : z ∈ } for each n ≥ , kn =
supi≥{kni}, {αni} is a real sequence in [, ] and {rk,n}∞n= ⊂ (,∞), k = , , . . . ,m, satisfying
the following conditions:

(a)
∞∑
i=

αni = , ∀n≥ ;

(b) lim inf
n→∞ αnαni > , ∀i ∈ N;

(c) lim inf
n→∞ rk,n > .

Then the sequence {xn} converges strongly to �x.
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