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Abstract
Stability of general equilibrium is usually depicted by a dynamic process of price
adjustment which makes the flow of prices eventually come to rest at certain prices,
so that the supply and demand of every commodity tend to equal each other. Here
we construct a dynamical system of a competitive economy and find that the strict
diagonal dominance of the Jacobian matrix of the excess demand function at its
equilibrium guarantees the asymptotic stability.
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Economists look for conditions that make the equilibrium under consideration stable. For
example, in [], Arrow, Block and Hurwicz establish the stability on the assumption that
the underlying excess demand function encoding the dynamics satisfies some gross substi-
tute conditions; in [], Uzawa also supposes that a gross substitute condition prevails and
that the stability is guaranteed by using Lyapunov’s stability theorem; in [], Bear finds the
equivalence of the stability of ‘lagged’ systems and ‘first-order aggregation’ of lagged sys-
tems. Our condition is that the excess demand function has a strictly diagonally dominant
Jacobianmatrix at its equilibrium. Conditions of this sort can also be found in [, ], where
Hadar assumes the excess demand function to have a strictly diagonally dominant Jaco-
bian matrix at not only a single point, but everywhere. By using a contraction technique,
Hadar is able to show that the dynamical system has a unique equilibrium which is glob-
ally stable. In spite of the stronger conclusion, the assumption made in [, ] imposes too
strong restriction on the excess demand function as stated by Hadar. Here we construct a
dynamical system of a competitive economy and find that the strict diagonal dominance
of the Jacobian matrix of the excess demand function at its equilibrium guarantees the
asymptotic stability. Our analysis is based on the estimation of the range of eigenvalues
and solving recurrences and concludes the local stability of the general equilibrium.
We begin with a mathematical formation of the relations between supply, demand, and

prices in an economy. Consider an economy with commodities , . . . ,n. Each commodity
has its own price pi ∈ R+ = {x ∈ R;x ≥ }. The vector p = (p, . . . ,pn) is called a price sys-
tem. While we say vectors d = (d, . . . ,dn) ∈ R

n
+ and s = (s, . . . , sn) ∈ R

n
+ are demand and

supply, respectively, the components di and si represent, respectively, the demand and
supply of commodity i, i = , . . . ,n. A vector z = (z, . . . , zn) ∈ R

n is called an excess de-
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mand, while we think z = d – s for some demand d ∈R
n
+ and some supply s ∈R

n
+. Suppose

that a price system p is given. Each consumer or producer in the economy will make con-
sumption or produce commodities according to the price system p, resulting in a demand
D(p) = (d(p), . . . ,dn(p)) ∈Rn

+ and a supply S(p) = (s(p), . . . , sn(p)) ∈Rn
+ corresponding to p.

The excess demand function is defined by F = (f, . . . , fn) = D – S. If there is a price system
p∗ ∈ R

n
+ such that F(p∗) = , meaning that the demand in each market is equal to the

supply, then the state (p∗,F(p∗)) = (p∗, ) of prices and excess demand is called a general
equilibrium of the economy.
The evolutionary process of the prices and excess demand is generated by the following

method of price adjustment. Suppose that the economy has an excess demand z ∈R
n and

a price system p ∈ R
n
+ at some time step. Then the price system at the next time step is

given by

p + LR(z),

where R = diag(r, . . . , rn) is an n × n diagonal matrix with ri >  for all i = , . . . ,n, and
LR(z) = (rz, . . . , rnzn). It can be seen from a direct computation that the price of a certain
commodity increases (decreases) if the demand of the commodity is larger (less) than its
supply, which is sensible. From the computation we also see that each ri represents the
scale of how much the price of commodity i should be adjusted. Thus ri is considered as
the adjustment speed of the price of commodity i. Now combining the excess demand
function and the price adjustment gives the following discrete dynamical system of the
economy:

x(t + ) = F
(
x(t)

)
, t = , , , . . . , ()

where F :Rn
+ ×R

n →R
n
+ ×R

n is defined by

F (p, z) =
(
p + LR(z),F(p)

)
, p ∈R

n
+, z ∈R

n.

In this dynamical system, a state variable x ∈ R
n
+ × R

n represents a state of the economy
with the first n components of x standing for the price system and the remaining ones
standing for the excess demand.
Suppose p∗ ∈ R

n
+, F(p∗) = , and F is differentiable at p∗. Then (p∗, ) is a fixed point

of F (i.e., F (p∗, ) = (p∗, )) and is also a general equilibrium of the economy. Recall that
the equilibrium (p∗, ) of system () is Lyapunov stable if all sufficiently small disturbances
away from it damp out in time. Recall also that the equilibrium (p∗, ) of system () is
attracting if all trajectories x(t) that start near (p∗, ) approach it as t → ∞. Furthermore,
the equilibrium (p∗, ) of system () is asymptotically stable if it is both Lyapunov stable
and attracting. To show the stability of (p∗, ), we make the following assumptions:

(i) every component of p∗ is not zero;
(ii) the Jacobian matrix ( ∂fi

∂pj
(p∗)) is strictly diagonally dominant, i.e.,

∑
j �=i

∣∣∣∣ ∂fi
∂pj

(
p∗)∣∣∣∣ <

∣∣∣∣ ∂fi
∂pi

(
p∗)∣∣∣∣, i = , . . . ,n;

(iii) ∂fi
∂pi

(p∗) <  for all i = , . . . ,n.
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Assumption (i)means that none of the commodities has a zero equilibriumprice. Assump-
tion (ii) means that each ‘own-good’ price effect dominates the sum of the effects of the
respective price on all other markets. Assumption (iii) means that a price raise (decrease)
of some commodity should reduce (increase) its excess demand. As demonstrated by the
following theorem, (p∗, ) will be asymptotically stable while the adjustment speeds of the
prices lie in a suitable range.

Theorem There is a K >  such that the equilibrium (p∗, ) of system () is asymptotically
stable whenever maxi ri ∈ (,K).

To show this, let us introduce the following simple result.

Lemma  Suppose that A is a k× k complex Jordan canonical form. If A is invertible, then
there exists a k × k upper triangular matrix B such that B = A.

Proof Without lost of generality, we may assume that A is a Jordan block with diagonals
c for some nonzero complex number c. Let x = c, x = 

x
, and xk = – 

x

∑k–
i= xixk–i+ for

all k = ,, . . . ,n. Define B = (bij), where

bij =

⎧⎨
⎩, if i > j,

xj–i+, if i ≤ j.

Then a computation shows that B = A. �

For a square complex matrix A, the notation σ (A) denotes the collection of all eigenval-
ues of A.

Proof of Theorem  Let us first consider the dynamical system

y(t + ) = G
(
y(t)

)
, t = , , , . . . , ()

where G :Rn
+ → R

n
+ is defined by

G(p,p) =
(
p,p + LR

(
F(p)

))
, p ∈R

n
+,p ∈R

n
+.

Then (p∗,p∗) is an equilibrium of system () and the Jacobian matrix of G at (p∗,p∗) is

M =

(
O I
RA I

)
,

where I , O, and A = (aij) are the n × n identity matrix, the zero matrix, and the Jacobian
matrix ( ∂fi

∂pj
(p∗)), respectively. Since aii = ∂fi

∂pi
(p∗) <  and ri >  for all i = , . . . ,n, there is a

positive number K such that if maxi ri < K , then

–


< riaii < , i = , . . . ,n.
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Now suppose maxi ri ∈ (,K). Let c =mini riaii ∈ (– 
 , ). If |z – riaii| < |riaii| for some i =

, . . . ,n, then

|z – c| ≤ |z – riaii| + |riaii – c| < |riaii| + riaii – c = –c. ()

Since A = ( ∂fi
∂pj

(p∗)) is strictly diagonally dominant, so is RA. Hence, by Gersgorin theorem
[] and (), for any eigenvalue α of RA we have

α ∈
n⋃
i=

{
z ∈C; |z – riaii| < |riaii|

} ⊂ {
z ∈ C; |z – c| < –c

}
. ()

Suppose α = r(cos θ + i sin θ ) + c, where r ≥  and  < θ ≤ π . Then by () we have

r =
∣∣r(cos θ + i sin θ )

∣∣ = ∣∣r(cos θ + i sin θ ) + c – c
∣∣ = |α – c| < –c.

Hence c < r cos θ < –c. Now – 
 < c <  implies – 

 < r cos θ + c < , i.e.,

–


< Re(α) < , α ∈ σ (RA), ()

where Re(α) denotes the real part of α. Suppose J is a Jordan canonical form of RA. Then
by () we have

 < Re(α) <


, α ∈ σ

(
J +



I
)
.

Therefore, α �=  for all α ∈ σ (J + 
 I), and hence there is an n× n upper triangular matrix

B such that B = J + 
 I by the lemma. For any β ∈ σ (B),

β –



∈ σ (J) = σ (RA).

Thus by () we have

∣∣∣∣β –


– c

∣∣∣∣ < –c.

Therefore,

|β| = ∣∣β∣∣ = ∣∣∣∣β –
(


+ c

)
+

(


+ c

)∣∣∣∣
≤

∣∣∣∣β –
(


+ c

)∣∣∣∣ +
∣∣∣∣  + c

∣∣∣∣
< –c +



+ c =



.

Thus |β| < 
 and hence

∣∣∣∣  ± β

∣∣∣∣ ≤ 

+ |β| < , β ∈ σ (B). ()
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Since B is upper triangular, it follows that all the eigenvalues of matrices 
 I ± B lie in the

open unit disc. For k = , , , . . . , put

N(k) =
(


B –



B–

)(


I + B

)k

–
(


B –



B–

)(


I – B

)k

,

N(k) =
(


I +



B–

)(


I + B

)k

+
(


I –



B–

)(


I – B

)k

.

Then by () we conclude that

lim
k→∞

N(k) = lim
k→∞

N(k) =O. ()

Since RA is similar to J , the Jacobian matrixM of G at (p∗,p∗) is similar to the matrix

N =

(
O I
J I

)
.

We claim that for k = , , , . . . ,

Nk =

(
N(k – ) N(k – )
N(k) N(k)

)
. ()

We shall proceed by induction. When k = , () follows from a direct computation. Now
suppose () holds for k = l. Then

Nl+ =NlN =

(
N(l – ) N(l – )
N(l) N(l)

)(
O I
J I

)

=

(
N(l – )J N(l – ) +N(l – )
N(l)J N(l) +N(l)

)
.

Note that the identity J = (B + 
 I)(B – 

 I) shows that

N(t – )J =N(t), t = , , . . . .

Note also that

N(t – ) +N(t – ) =N(t), t = , , . . . .

Hence () holds for k = l + , completing the induction and proving the claim.
SinceM is similar toN , () and () imply thatMk goes to the zero matrix as k goes to in-

finity, showing that every eigenvalue ofM lies in the open unit disc, so that the equilibrium
(p∗,p∗) of system () is stable and attracting.
Next we claim that the equilibrium (p∗, ) of system () is asymptotically stable. The

notations x(t) and y(t) will denote the flow of system () and (), respectively. The norm
‖ · ‖ will stand for the supremum norm on R

n. Let U be an open neighborhood of (p∗, ).
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Since every component of p∗ is not zero, there is a d >  such that p ∈ R
n
+ if ‖p – p∗‖ < d.

Without loss of generality, we may assume that U =U ×U, where

U =
{
p ∈R

n;
∥∥p – p∗∥∥ < d

}
and

U =
{
z ∈R

n;‖z‖ < d
}
.

By the continuity of F at p∗, there is a δ ∈ (,d) such that

∥∥F(p)∥∥ < d if ‖p – p∗‖ < δ. ()

Suppose y(t) = (y(t), y(t)), where y(t) ∈ R
n
+ and y(t) ∈ R

n
+ for all t = , , , . . . . By the

asymptotical stability of the equilibrium (p∗,p∗) of system (), there is a δ′ ∈ (, δ) such
that if ‖y() – p∗‖ < δ′ and ‖y() – p∗‖ < δ′, then

∥∥y(t) – p∗∥∥ < δ and
∥∥y(t) – p∗∥∥ < δ, t = , , . . . , and ()

y(t) → (
p∗,p∗) as t → ∞. ()

Suppose x(t) = (p(t), z(t)), where p(t) ∈ R
n
+ and z(t) ∈ R

n for all t = , , , . . . . Since p() =
p() + LR(z()), there is an ε ∈ (, δ′) such that

∥∥p() – p∗∥∥ < δ′ if
∥∥p() – p∗∥∥ < ε and

∥∥z()∥∥ < ε. ()

Now choose x() ∈ R
n
+ ×R

n so that ‖p() – p∗‖ < ε and ‖z()‖ < ε. Put y() = p() and
y() = p(). Then a computation shows that

y(t) =
(
y(t), y(t)

)
=

(
p(t),p(t + )

)
, t = , , , . . . .

Moreover, by () we have

∥∥y() – p∗∥∥ =
∥∥p() – p∗∥∥ < δ′.

Since ‖y() – p∗‖ = ‖p() – p∗‖ < ε < δ′ < δ, () implies

∥∥p(t) – p∗∥∥ =
∥∥y(t) – p∗∥∥ < δ < d, t = , , , . . . .

Thus () gives

∥∥z(t)∥∥ =
∥∥F(

p(t – )
)∥∥ < d, t = , , . . . .

Therefore,

x(t) =
(
p(t), z(t)

) ∈U ×U =U , t = , ,  . . . ,

meaning that the equilibrium (p∗, ) of system () is stable. By the continuity of F at p∗,
() shows that x(t) → (p∗, ) as t → ∞. This completes the proof. �
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