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1 Introduction

Throughout this paper, we denote the set of real numbers and the set of positive integers
by R and N, respectively. Let E be a Banach space with the norm || - || and the dual space E*.
The modulus § of convexity of E is denoted by

5(e) = inf{l— @

Al <Lyl <1 llx -yl = 6}

for every € with 0 < € < 2. A Banach space E is said to be uniformly convex if 5(¢) > 0 for
every € > 0. Let Sg = {x € E : ||x|| =1}. The norm of E is said to be Gdteaux differentiable if
for each x,y € S, the limit

x+tyl| - ||x
i 1+ 21— Il

lim ; (1.1)

exists. In this case, E is called smooth. If the limit (1.1) is attained uniformly in x, y € Sg, then
E is called uniformly smooth. The Banach space E is said to be strictly convex if || % <1
whenever x,y € Sg and x #y. It is well known that E is uniformly convex if and only if E* is
uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and only
if E* is smooth; for more details, see [1]. When {x,,},cn is a sequence in the Banach space E,
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we denote the strong convergence of {x,},cn to x € E by x,, — x and the weak convergence
by x,, — x. For any sequence {x}},en in E*, we denote the strong convergence of {x}},en
to x* € E* by x} — x*, the weak convergence by x}, — x* and the weak-star convergence
by x}; —* x*. The normalized duality mapping J : E — 2F" is defined by

J@) = {f € E*: (o f) = %1% Ixll = If I}, Vx€E.

Now, we define a mapping p : [0, 00) — [0, 00), the modulus of smoothness of E, as follows:

1
p(f) = Sup{i(llx +yl+llx—yll) - 1:0y € E llx =1, |yl = t}-

It is well known that E is uniformly smooth if and only if lim,_,¢ @ =0.Letg € Rbesuch
that 1 < g < 2. Then a Banach space E is said to be g-uniformly smooth if there exists a
constant ¢, > 0 such that p(f) < c,¢7 for all £ > 0. If a Banach space E admits a sequentially
continuous duality mapping J from weak topology to weak-star topology, then J is single-
valued and also E is smooth; see [2] for more details. In this case, the normalized duality
mapping / is said to be weakly sequentially continuous, i.e., if {x,},en C E is a sequence
with x, — x € E, then J(x,) —* J(x) [2]. A Banach space E is said to satisfy the Opial
property [3] if for any weakly convergent sequence {x,},cn in E with weak limit x,

limsup ||x, — x| <limsup ||x, — ||
71— 00 n—00
for all y € E with y # x. It is well known that all Hilbert spaces, all finite dimensional Banach
spaces and the Banach spaces # (1 < p < 00) satisfy the Opial property; see, for example,
[2, 3]. It is also known that if E admits a weakly sequentially continuous duality mapping,
then E is smooth and enjoys the Opial property; see [2] for more details.

Let C be a nonempty subset of a real Banach space E, and let T : C — E be a mapping.
We denote by F(T) the set of fixed points of T, i.e., F(T) = {x € C: Tx = x}. A mapping
T :C — E is said to be nonexpansive if | Tx — Ty|| < ||x — y|| for all x,y € C. A mapping
T : C — Eis said to be quasi-nonexpansive if F(T) # ¥ and || Tx — y|| < |[x —y| forallx € C
and y € F(T). Let C be a nonempty, closed and convex subset of a Hilbert space H and
x € H. Then there exists a unique nearest point z € C such that |lx — z|| = inf,ec [[x - y||.
We denote such a correspondence by z = Pcx. The mapping Pc is called metric projection
of H onto C.

The concept of nonexpansivity plays an important role in the study of Mann-type it-
eration for finding fixed points of a mapping T : C — C, where C is a closed and convex
subset of a Banach space E. Recall that the Mann-type iteration [4] is given by the following

formula
Xne1 = (L= B)xn + BuTxn, x1€C. (12)

Here, {B,},cn is a sequence of real numbers in [0,1] satisfying some appropriate condi-
tions. A more general iteration scheme is the Halpern iteration, given by

u €k, x1 € C  chosen arbitrarily,
Y= (1= Bu)xn + BuTxy, (1.3)

Xn+l = Opld + (1 - an)ynr
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where the sequences {8, },cn and {&,},cn satisfy some appropriate conditions. In particu-
lar, when all o, = 0, the Halpern iteration (1.3) becomes the standard Mann iteration (1.2).
The construction of fixed points of nonexpansive mappings via Halpern’s algorithm [5]
has been extensively investigated recently in the current literature (see, for example, [6]
and the references therein). Numerous results have been proved on Mann and Halpern’s
iterations for nonexpansive mappings in Hilbert and Banach spaces (see, e.g., [6—14]).

Let E be a smooth, strictly convex and reflexive Banach space, and let / be the normalized
duality mapping of E. Let C be a nonempty, closed and convex subset of E. The generalized
projection I1¢ from E onto C is denoted by

[¢(x) = argmin ¢ (y, x)
yeC

for all x € E, where ¢(x,y) = ||x]|? — 2(x, Jy) + ||ly||® for all x,y € E.
Following Kohsaka and Takahashi [15, 16] (see also [16-21]), a mapping T : C — C is

said to be nonspreading if

&(Tx, Ty) + ¢(Ty, Tx) < ¢(Tx,y) + p(Ty, %)

for all x,y € C, where ¢(x,9) = ||x]|2 — 2(x, Jy) + |[y||?, ¥x,y € E. Observe that if E is a real
Hilbert space, then J is the identity mapping and ¢ (x, ) = ||lx|% = 2{x, %) + |I¥1* = lx — y||%.
Recently, Kurakawa and Takahashi [17] proved the following fixed point theorem for

nonspreading mappings in a Hilbert space.

Theorem 1.1 [17] Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let T : C — C be a nonspreading mapping with F(T) # (). Suppose that {x,},en is a se-
quence generated by x, =x € C,u € C and

n-1

1
St = vt (L= ) = 3 T, Ve,
n k=0

where 0 <y, <1, lim,_ o ¥, = 0 and Ziil Yu = 00. Then {x,},en converges strongly to
Prryu, where Pr(ry is the metric projection of H onto F(T).

Kurokawa and Takahashi studied strong convergence theorems for nonspreading map-
pings and posed the following open problem in their final remark of [17].

Question 1.1 Is there any strong convergence theorem of Halpern type for nonspreading
mappings in a Hilbert space H?

By using the iterative schemes proposed by Moudafi [8], lemoto and Takahashi [18] stud-
ied the approximation of common fixed points of nonexpansive mappings and nonspread-

ing mappings in a Hilbert space and proved the following strong convergence theorem.

Theorem 1.2 Let C be a nonempty, closed and convex subset of a Hilbert space H. Let
S : C — C be a nonspreading mapping, and let T : C — C be a nonexpansive mapping
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such that F := F(S) N F(T) # (. Define a sequence {x,},cn as_follows:

x1€ C chosen arbitrarily,
Xn+l = (1 - an)xn + an(lgnsxn + (1 - lgn) Txn)
forall n e N, where {a,} yen, {Bu}nen C [0,1]. Then the following hold:
(i) Iflim, 0 0, (1 — ) > 0 and Y 2, (1 = B,) < 00, then {x,}nen converges weakly to
v e F(S);
(ii) IfY o an(l—ay) =0c0andy o) Bu < 00, then {x,},en converges weakly to v € F(T);
(iti) Iflim,— oo @y(1 —oty) > 0 and lim,, o B,(1 — B,) > 0, then {x,},en converges weakly

tove F(SYNF(T).

Now, we are in a position to introduce the following new class of nonspreading-type
mappings in a Banach space.

Definition 1.1 Let E be a real Banach space. A mapping 7 : D(T) C E — E is said to be
asymptotically nonspreading (for short ANS) if

n n 2 n n
|77 = T"y|” < llx = yII* + 2(x = T"x,J (y = T"y))
for all ¥,y € D(T) and n € N. The mapping T is called nonspreading if
ITx = TylI> < llx - g1 + 2(x - Tx, ] (y — T9))

for all x,y € D(T), where D(T) is the domain of T and J is the normalized duality mapping
of E.

Example 1.1 Let T:[0,2] — [0,2] be defined by

0 ifxel0,2),
1 ifx=2.

Tx =

Then T is an asymptotically nonspreading mapping with F(T') = {0}. Indeed, for any x €
[0,2) and y =2, wehave Tx =0, Ty =1, T"x = T"y = 0 for all n > 2. We define the function
f:R— Rby

fx)=(x-2)2+2x, VxeR.
Then we have

fx)=2x-2)+2=0 = x=1,

where f'(x) is the derivative of f at x. This implies that

3=f1) <f(x), VxeR.


http://www.fixedpointtheoryandapplications.com/content/2013/1/228

Naraghirad Fixed Point Theory and Applications 2013, 2013:228 Page 5 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/228

Observe now that

|Tx — Ty> = 1- 01> < |x— 2> + 2x = (x — 2)* + 2.
On the other hand, for any # > 2, we have

[T - T"y|" = 0 < | — 2 + doc = (x — 2)° + 4ox.

The other cases can be verified similarly. It is worth mentioning that 7 is neither nonex-

pansive nor continuous.

In this paper, we first introduce a new class of asymptotically nonspreading mappings
and establish weak and strong convergence theorems of the iterative sequences generated
by these mappings in a real Banach space. We modify Mann and Halpern’s iterations for
finding a fixed point of an asymptotically nonspreading mapping and provide an affirma-
tive answer to Question 1.1. Furthermore, we study the approximation of common fixed
points of asymptotically nonspreading mappings and nonexpansive mappings and derive
a strong convergence theorem by a new hybrid method for these mappings. Our results

improve and generalize many known results in the current literature; see, for example, [17].

2 Preliminaries
In this section, we collect some lemmas which will be used in the proofs for the main
results in the next sections.

Let C and D be nonempty subsets of a real Banach space E with D C C. A mapping
Qp : C — D is said to be sunny if

Qp(Qpx + t(x — Qpx)) = Qpx

for each x € E and ¢ > 0. A mapping Qp : C — D is said to be a retraction if Qpx = x for
eachx e C.

Lemma 2.1 [22] Let C and D be nonempty subsets of a real Banach space E with D C C,

and let Qp : C — D be a retraction from C into D. Then Qp is sunny and nonexpansive if
and only if

(z-Qp(2),J(y- Qpl2))) <0
forall ze Cand y € D, where ] is the normalized duality mapping of E.

Lemma 2.2 [22] Let E be a real Banach space and ] be the normalized duality mapping
of E. Then

ll -+ 711> < llxl1® + 2{y, ) (x + )

forallx,y € E.
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Proposition 2.1 [19] Let C be a nonempty, closed and convex subset of a real Hilbert space
H,andlet T : C — C be a nonspreading mapping. If F(T) # 0, then it is closed and convex.

Let C be a nonempty, closed and convex subset of a Banach space E, and let {x,,},cy be
a bounded sequence in E. For any x € E, we set

7 (%, {n}nen) = limsup [lx — x|
n—00

The asymptotic radius of {x,},cn relative to C is defined by
r(C {%n}nen) = inf{r(x, {Xn}nen) 1 x € C}.

The asymptotic center of {x,},cn relative to C is the set
A(C, {xndnen) = {x € Cir(, {xlnen) = (C, {ndnen) |-

It is well known that, in a uniformly convex Banach space E, A(C, {x,},cn) consists of ex-
actly one point; see [3, 22].

Lemma 2.3 [23] Let {s,},en be a sequence of nonnegative real numbers satisfying the in-
equality

Sua1 < (1 - Vn)sn + Vb, Vn>1,

where {Yu}uen and {8,}nen satisfy the conditions:

(D) {Yulnen C[0,1] and Y2, yu = 00 or, equivalently, [152,(1 = yu) = 0;
(i) limsup,_ . 8, <0,or

(il') D02y Yubn < 00.

Then lim,_,» S, = 0.

Lemma 2.4 [24] Let {a,}.en be a sequence of real numbers such that there exists a subse-
quence {n;}ien of {n}yen such that a,, < a,,., for all i € N. Then there exists a subsequence
{mi}ken C Nsuch that my — oo and the following properties are satisfied by all (sufficiently
large) numbers k € N:

Ay < Ayl ANA - g < Ay 1.
In fact, my = max{j < k:a; < aj.1}.
Lemma 2.5 [25,26] Let E be a uniformly convex Banach space and B, .= {x € E : ||x|| < r},
r > 0. Then there exists a continuous, strictly increasing and convex function g : [0,00) —

[0, 00) with g(0) = 0 such that

ax + By + yzll> < Allxll* + Bliyll> + v 21 - ABg(llx - yl)

forallx,y,z€ B, and all ), B,y € [0,1]] withA+ B +y =1.
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3 Fixed point theorems
In the following, we present the existence theorems of fixed points of asymptotically non-
spreading mappings in a Banach space.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E. Let T : C — C be an asymptotically nonspreading mapping. Then the following
assertions are equivalent.

(1) The fixed point set F(T) # .

(2) There exists a bounded sequence {x,},en in C such that liminf,_, » ||x, — Tx,|| = 0.

Proof The implication (1) = (2) is obvious. For the converse implication, suppose that
there exists a bounded sequence {x,},cn in C such that liminf,_, o, ||x, — T%,| = 0. Conse-
quently, there is a bounded subsequence {Tx,, }en of {Tx,},en such that limy_, o || Tx,, —
%, || = 0. Suppose A(C, {x, Jxen) = (2). Let M = sup{ |y, I, | T |l 1211, | T21| - k € N} < 0.
Since T is an asymptotically nonspreading mapping, we obtain

1%, — T2l1* < 1%, — Tt I” + 1| Tt — T2l|” + 2112, — Tt ||| T, — T2l
< Wt = Ton I” + | T, — T2l* + 2M || %, — Tt |
< Nt = T I + N, — 211
+ Z(xnk — T, J(z - Tz)) + 2M 1%, — T, |l

2 2
< WX = T 17 + 1% — 207 + 6Mll%, — T .
This implies that

limsup [lx,,, — Tz[|* < limsup [|x,, — T, [|* + limsup ||, —z|*
k—o0 k—o0 k—o0

+6M; limsup [|x,, — Txy, |
k— o0

Thus we have

7(Tz, {%n, Jken) = limsup ||, — Tz < limsup ||x,,, — 2|l = r(z, {%p, }ken)-
k— 00 k—o00
This means that 7z € A(C, {x, }xen). By the uniform convexity of E, we conclude that 7z =
z, which completes the proof. g

The following result is an immediate consequence of Theorem 3.1.

Proposition 3.1 (Demiclosedness principle) Let C be a nonempty, closed and convex sub-
set of a real uniformly convex Banach space E. Suppose that T : C — E is an asymptotically
nonspreading mapping with F(T) # 0. If {x}uen is a sequence in C that converges weakly
to x and if {(I — T)x,},en converges strongly to 0, then x € F(T).

Theorem 3.2 Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E. Let T : C — C be an asymptotically nonspreading mapping which is uniformly
asymptotically regular, i.e., lim, .o | T"x — T"*'x| = 0 for all x € C. Then the following
assertions are equivalent.
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(1) The fixed point set F(T) # .
(2) There exists x € C such that the sequence {T"x},eN is bounded.

Proof The implication (1) = (2) is obvious. For the converse implication, suppose that
there exists x € C such that the sequence {7"x},cy is bounded. Setting u, = T"x for all
n € N, the uniformly asymptotical regularity of T assures that

lim || Tuy — |l = lim || T"'% = T"x| = 0.
n—00 n—00

Since {u,},en is bounded, in view of Theorem 3.1, we conclude that F(T') # ¢, which com-
pletes the proof. d

Theorem 3.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C — C be a nonspreading mapping. Then the following assertions are equivalent.

(1) The fixed point set F(T) # .

(2) There exists x € C such that the sequence {T"x},eN is bounded.

Proof It is obvious that (1) implies (2). Now, suppose that there exists x € C such that the
sequence {T"x},cy isbounded. Put x,,,; = T"x = Tx, and z,, = % S T = % Y iy xi for
all #n € N. Continuing the same process as in the proof of Theorem 3.1 in [17], we conclude
that z,, — z € F(T) as n — 00, which completes the proof. O

4 Weak and strong convergence theorems
In this section, we prove weak and strong convergence theorems for asymptotically non-
spreading mappings in a Banach space.

Lemma 4.1 Let C be a nonempty, closed and convex subset of a real Banach space E. Let
T : C — C be an asymptotically nonspreading mapping. Let {x,},cn be a sequence in C
such that ||x, — xp.1|| = 0 and ||x,, — T"x,|| — 0 as n — oo. Then lim,,_, o ||, — T"x,| = 0
forallmeN.

Proof We divide the proof into several steps.
Step 1. We claim that the following statements hold:
(@) limy o0 |75, = T" %0 || = 05
(b) 1im,, o0 |, = T"*'x,]| = 0;
() limy— o0 | T"x, — T" x|l = 0.
Since T is an asymptotically nonspreading mapping, we obtain

” T}Hlxn - Tn+lxn+1 ”2 < %n = %Xpa ”2 + 2(xn - Tn+1xn’](xn+1 - Tn+lxn+1))
< "xn — Xn+l ”2 + ZHxn - Tn+1xn H ||xn+1 - Tn+lxn+1 || .
Due to the boundedness of {x,},cn, we deduce that
HILHOlOH Tn+1xn _ Tn+1anrl ” =0.

Observe now that

“xn - Tn+1xn ” = ”xn _xn+l|| + ||xn+1 - Tn+1xn+1 || + H Tn+1xn+l - Tn+1xn H
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Thus we have

lim ||x, — 7", | = 0.
n—00

This implies that
|| T"x, — T"'x, || < || T"x, — %y || + ||xn — Ty, || -0

as n — oo.
Step 2. We prove the following assertions:
(d) limy o0 |77+ %, = Tl = 0;
(e) limy— o0 |2, — Txy|| = 0.

Since T is an asymptotically nonspreading mapping, we get

|77 = Do |* = | T(7") = T |
<||T"%4 -, H2 + 2T % = T %0, ] (260 — T))
< [ 7% = || + 2] T = Tt | 156 — T .
Due to the boundedness of {x,},cy and in view of Step 1(c), we deduce that
lim || 7", — T, | = 0.
n—00
Observe now that
lo6n = Tl < [[o0n = T | + || T %0 — Ty | — 0
as n — oo.
Step 3. We show that lim,,_, o || 7" 'x,, — T"x,| = O for all m € N.
To this end, we apply the principle of mathematical induction. In view of Step 2(e), for
m =1, we deduce that lim,,_,  [|x, — T%,|| = 0. Now, suppose that for m € N,
lim || 77 %, — T"x,]| = 0.
n—00
We prove that
lim || 7"%, — T"*"x,| = 0.
n—00

Since T is an asymptotically nonspreading mapping, we have

“ Ty, — Tm+1x,, ”2

|7 (T %) = T(T",)

I

IA

|| "%, — T™x, ||2 + 2<T’”_1xn - T’"x,,,](T’”xn - T’”*lxn))

< |77 Y = T || + 2| T = T, || T = T .

Thus we have lim,,_, o || 7" 'x,, — T"x,|| = 0 for all m € N.
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By the triangle inequality, we see that for any m € N,
[on = T | < 1% = Tl + | Toow = T2 || + -+ + | T o0 = T )

In view of Steps 2 and 3, we conclude that lim,,_,  ||x, — T"x,|| = 0 for all m € N. This

completes the proof. d

Theorem 4.1 Let C be a nonempty, closed and convex subset of a uniformly convex Ba-
nach space E with Opial property, and let T : C — C be an asymptotically nonspread-
ing mapping such that F(T) # (). Assume that {o,},cn is a sequence in (0,1) such that
0<8<a,<1-06<1. Let {x,}uen be a sequence in C generated by the modified Mann

iteration process
X1 = A —a)x, +a, T"x,, VYneN, (4.1)

Then the sequence {x,},cn generated by algorithm (4.1) converges weakly to an element of
F(T).

Proof Take any p € F(T) arbitrarily chosen. In view of Lemma 2.5, there exists a continu-
ous, strictly increasing and convex function g : [0, 00) — [0, 00) with g(0) = 0 such that

(196241 —P||2 = ”(1 — o) (% —P) + an(Tnxn —P) H2

< (U= o)l — pI? + 0| %5 = p||* — 0t (0~ ) (0 — T, )

< (1= o)l =PI + el =PI — ot (L~ t)g ([0 — T, )

= Il = p11% = (1 = c)g (0 — T"x4]))

< llxn —pI1? - 8% (|20 — T"x4 ). (4.2)

Since § > 0, we have from (4.2) that
%001 —pIl < l%w —pll, VneN.
This implies that lim,,_, » [|x, — p|| exists and hence {x,},cy is bounded. Setting
lim [x, - pll =4,
n—0o0
it follows from (4.2) that
8°g([|xn = T"%u ) < llxn — pII* = lni1 — I,
which yields that limy,_, [|[%, — T"%,|| = 0. In view of (4.1), we see that

”xn+1 _xn” =0y Hxn - Tnxn || = (1 - 8) ”xn - Tnxn ’ Vn e N

Thus we have lim,,_, o ||%, — %,,41]| = 0. Employing Proposition 3.1 and Lemma 4.1, we con-
clude that there exists x € F(T) such that x, — x as n — 00, which completes the proof.
O
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Theorem 4.2 Let E be a real uniformly convex Banach space which admits the weakly
sequentially continuous duality mapping J, and let C be a nonempty, closed and convex
subset of E. Let T : C — C be an asymptotically nonspreading mapping such that F :=
F(T) # 0. Let {o,} ey and {B,}nen be two sequences in [0,1] satisfying the following control
conditions:

(a) lim,_ o o, = 0;

(b) 352 @, = 003

(c¢) liminf,_ o B,(1 - B,) > 0.
Let {x,}nen be a sequence generated by

uecC, x1 € C  chosen arbitrarily,
In = (L= By + B T"xy, (4.3)

Knil = Oulh + (1 - an)yn'

Then the sequence {x,},en defined in (4.3) converges strongly to Qru, where Qg is the sunny
nonexpansive retraction from E onto F.

Proof We divide the proof into several steps.
Since T is a quasi-nonexpansive mapping, so we have F is closed and convex. Set

zZ= QFM.

Step 1. We prove that the sequences {x,},en, {Vn}nen and {T"x,},cn are bounded.

We first show that {x,},cn is bounded.

Let p € F be fixed. In view of Lemma 2.5, there exists a continuous, strictly increasing
and convex function g : [0,00) — [0, 00) with g(0) = 0 such that

15 = 2I% = | (L = B + BaT % —
< (L= B % =PI + Bu| T2 — |~ Bl = B)g (|0 — T
< = B)ln =PI + Bulln = p1I* = Bu@ = B)g ([0 — T"xa])
= 1% = pI* = Bu@ = B)g ([0 — T"x4]])
< llx, - pl*. (4.4)

This implies that

%41 = Il = [letnte + (1 = )y — p|
< ayllu-pl + (1 -a)lly, - pll
< a,llu-pl + 1 -a,)lx, —pl

< max{|lu-pl, %, - pl}.

By induction, we obtain

%1 = pll < max{ ||z - pl|, llx1 - pll}
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for all n € N. This implies that the sequence {||x, — p||},.en is bounded and hence the se-
quence {x,},cn is bounded. This, together with (4.3), implies that the sequences {y,},en
and {T"x,},cn are bounded too.

Step 2. We prove that for any n € N,

”xn+l - Z”2 < (1 - an) ”xn - 2”2 + 20[,,<M - Z:](xn+l - Z)) (4'5)
Let us show (4.5). For each # € N, in view of (4.4), we obtain

lyn = 2lI* < lloen — 201> = B = B)g (|4 — T"%4 ).
This implies that

e =202 = e + (1 = )y — 2|
<ayllu—z|* + (1 -a)lly. -2
<oyllu- Z||2 +(1- Oln)[”xn - 2”2 - Bu(l— ﬁn)g(”xn - T"x, ”)] (4.6)

Let M, := sup{||lu — z||? = ||, — zl1%| + Bu(1 = B)g(l%, — T"x,|) : n € N}. It follows from
(4.6) that

/Sn(l - ﬁn)g(”xn - Tnxn ”) = ”xn - Z||2 - ”xnﬂ - Z||2 + anM2~ (4'7)
In view of Lemma 2.2 and (4.4), we obtain

ltaes =211 = flats + (1 = )y — 2]

= el =2+ 1= )0 - 2|
< @ = @) = 2)|* + 2{etn(t - 2), J (@1 - 2))
= (1= ) llyn — 211* + 2{tn (s — 2), ] (1 — 2))
< (- an)llyn —2l* + 2{n s — 2),J (1 — 2))
= (1= )% — 211* + 2at{tt — 2, (11 - 2)).

Step 3. We prove that x, — z as n — oo.

We discuss the following two possible cases.

Case 1. If {||x, — z||}uen is eventually decreasing, then there exists 7y € N such that the

sequence {||lx, —z[|}52

nen, 18 decreasing. Thus, the sequence {||x, —z||},en is convergent and

hence ||, — z||? = ||%n:1 — 2[|> = 0 as n — oo. This, together with condition (c) and (4.7),
implies that

Jim g ([, - 7", ) = 0.
From the properties of g, it follows that

lim ”x,, - T"x, ” =0. (4.8)

n—00
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On the other hand, we have

Xn—Yn = ﬁn(xn - Tnxn) and Xnel —Yn = a”(u _y”)’

This implies that
lim ||, =y, =0 and lim |lxy1 = yall = 0. (4.9)
n—00 n—oo

By the triangle inequality, we conclude that
”xn+1 _xn” = ||xn+1 _yn” + ||yn _xn”'
It follows from (4.9) that
lim [|%s1 — %l = O. (4.10)
n—0oQ
Exploiting Lemma 4.1, (4.8) and (4.10), we obtain
lim ||x, — Tx,| = 0. (4.11)
n—00
Since {x,},en is bounded, there exists a subsequence {x,, };ery of {%,},en such that x,,,,; —
y € C as i — o0o. In view of Proposition 3.1 and (4.11), we conclude that y € F(T). This,
together with Lemma 2.1, implies that
limsup(u — 2,/ (%11 — 2)) = lim (= 2,] (5,41 = 2))

n—00

=(u-2zJy-2)
<o0. (4.12)
Thus we have the desired result by Lemma 2.3.
Case 2. If {||x, — z||}uen is not eventually decreasing, then there exists a subsequence
{n;}ien of {n},en such that

%, = 2Il < |%n;+1 — 2]

for all i € N. In view of Lemma 2.4, there exists a nondecreasing sequence {m}xeny C N
such that m; — oo

[ =2l < %me1 —2ll - and  |lag =2l < %1 = 2]
for all k € N. This, together with (4.7), implies that

B (1= Bun )& ([ = T % [|) < 16, =21 = 161 = 21> + o M < i M
for all k € N. Then, by conditions (a) and (c) and the properties of g, we get

klggo”xw = T % ” =0.
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By the same argument, as in Case 1, we arrive at

lim sup(u —2,]Xm;, — z)) =lim sup(u =2, ] Kmpa1 — z)) <0.

k— 00 k— 00

Next, it follows from (4.5) that
%1 = 2017 < (1= G )16y — 21> + oy (18 = 2, ] g1 — 2))- (4.13)
Since [|%, — 2| < 1%, +1 — 2ll, we conclude that

2 2 2
Oy ”xmk —z|I” < ”xmk —z|I” - ||xmk+1 —z|I” + amk<u - Z»](xmkﬂ - Z)>

=< 2amk(u - Z;](xmk+1 - Z)) (414‘)

In particular, since o, >0, we obtain

”xmk - Z||2 = (M - Z!](xmk+1 - Z))
and hence

khf& 1%, — zll = 0.
This, together with (4.13), implies that

lim 1% +1 — 2l = 0.

k— o0

On the other hand, we have |lx; — z|| < ||%,+1 — 2| for all k € N, which implies that x; — z
as k — co. Thus, we have x,, — z as n — 00, which completes the proof. O

Let C be a nonempty, closed and convex subset of a Hilbert space H, andlet 7:C — C
be a nonspreading mapping such that F(T) # §. For any real number g € (0,1), we define
a mapping Tg : C — C by

Tex=(1-B)x+BTx (xe€C), (4.15)

where I is the identity mapping on H. It is easy to verify that T is a nonspreading mapping
and F(Tg) = F(T). Therefore, in view of Proposition 2.1, F(T}) is closed and convex. The
following strong convergence result provides an affirmative answer to open Question1.1in
the case where the mapping 7 is nonspreading. It is worth mentioning that our method of
proof is different from that in [19] and can be applied in uniformly convex Banach spaces.

In fact, an answer will be given for more general spaces than Hilbert spaces.

Corollary 4.1 Let E be a real uniformly convex Banach space which admits the weakly
sequentially continuous duality mapping J, and let C be a nonempty, closed and convex
subset of E. Let T : C — C be a nonspreading mapping such that F := F(T) # (). Let {a,,}yen
be a sequence in [0,1] satisfying the following control conditions:

(a) lim,_ o, = 0;

(b) >02 oy = 00.
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For any real number B € (0,1), let {x,},cn be a sequence generated by

uecC, x1 € C chosen arbitrarily,

Yn = 1- ,B)xn + BTx,,

Xn+l = Oyld + (1 - an)yn

Then the sequence {x,},cn converges strongly to Qru, where QF is the sunny nonexpansive

retraction from E onto F.

Corollary 4.2 Let C be a nonempty, closed and convex subset of a Hilbert space H, and let
T : C — C be a nonspreading mapping such that F := F(T) # (. Let {a,,}nen be a sequence
in [0,1] satisfying the following control conditions:

(a) lim,_ o oy, = 0;

(b) Yo7 oy =00.
For any real number 8 € (0,1),let T : C — C be defined by (4.15). Let {x,,} nen be a sequence
generated by

uecC, x1 € C chosen arbitrarily,

K1 = Ut + (1 — aty) Tpxy.

Then the sequence {x,},cn converges strongly to Pru, where Pr is the metric projection from
H onto F.

Theorem 4.3 Let E be a uniformly convex Banach space which admits the weakly sequen-
tially continuous duality mapping J, and let C be a nonempty, closed and convex subset
of E. Let Ty : C — C be an asymptotically nonspreading mapping, and let T : C — C be a
nonexpansive mapping such that F := F(T1) N F(Ty) # 9. Let {aty}nens {Buitnen, {Bu2}tnen
{Bu3}uen be sequences in [0,1] satisfying the following control conditions:

(a) lim,_ o, = 0;

(b) Z;il oy = 0Q0;

© Bui+Bup+Buz=LVnel;

(d) liminf, o BjBnz >0,j=1,2.
Let {x,},ecn be a sequence generated by

uecC, x1 € C chosen arbitrarily,
In = Bui T1%n + Bu2 Taxy + Buzxn, (4.16)

Xn+l = Ol + (1 - Oln)yw

Then the sequence {x,},cn defined in (4.16) converges strongly to Qru, where Qr is a sunny

nonexpansive retraction from E onto F.

Proof We divide the proof into several steps.
Since T is a quasi-nonexpansive mapping, so we have F is closed and convex. Set

zZ= Q[:Ll.
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Step 1. We prove that the sequences {x,}nen, {Vutnen, {T1%u}nen and {Tox,},en are
bounded.

We first show that {x,,},cn is bounded.

Let p € F be fixed. In view of Lemma 2.5, there exists a continuous, strictly increasing
and convex function g : [0,00) — [0, 00) with g(0) = 0 such that

Iyn = PII* = 1 Bua Titn + Bup Ton + Buzxn — plI*
< Buall Taxu = plI* + Bu2l Taxn — pII* + Busllxn — plI?
= BujBnsg (%, — Tixull)
< Bullxn =PI + Buallxn = pI* + Busllxn — plI*
= BujBus % — Tiu)?

= lln = PI* = BujBu3g (s — Txull)
<|lx,—pl*> j=12. (4.17)

This implies that

%1 — Pl = [|etnte + (L = )y — p|
<ayllu—pll + (1 -,y —pl
<aullu—pll + (1 -a,)lx, - pl

< max{||u - pll, %, - pll }-

By induction, we obtain

%41 — pll <max{llu—pll, % - pl}
for all n € N. This implies that the sequence {||x, — p|l},.en is bounded and hence the se-
quence {x,},cn is bounded. This, together with (4.16), implies that the sequences {y,},cn;
{T1x,}uen and {Tox,},en are bounded too.

Step 2. We prove that for any n € N,

sr = 211% < (1= o) 00 = 211* + 2e0{tt ~ 2,] (601~ 2))- (4.18)
Let us show (4.18). For each n € N and j = 1,2, in view of (4.17), we obtain

1y = 21% < 160 = 21> = B Brag (I%n = Tjall).-

This implies that

2
%41 = Z||2 = ”an” + (1= an)yn - Z”
2 2
Saullu—z|” + 1@ —on)lly. -z

<aullu—z|* + @ = o) [ 1% — 211 = BujBu3g (s — Tixull)]- (4.19)
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Let Ms = sup{|[lu —zII% = 1%, = 201%] + By Busg (I — Tixall) : n € N,j = 1,2). It follows from
(4.19) that

IBn,j,Bn,Bg(”xn - T/xn”) = ”xn - Z||2 - ||xn+1 - Z”z + o, M3, ] =1,2. (4'20)
In view of Lemma 2.2 and (4.17), we obtain

st = 2% = evate + (1= )y — 2]
< [otwtt + U= )y — 2 = aut = 2)|* + 2000 (1t = 2), T (01 - 2))
= |0 = )0 = 2| + 20ttt — 2] (11— 2))
= (1= ) lyn — 2lI* + 200{1t — 2, (6001 — 2))

<A -on)lx, - Z”2 + 2an<u -2, ] (X1 — Z))

Step 3. We prove that x, — z as n — oco.

We discuss the following two possible cases.

Case 1. If {||x, — z||}uen is eventually decreasing, then there exists 7y € N such that the
sequence {||x, — z|| }Z‘ino
hence ||x, — z||? = [|%u41 — || — 0 as n — oo. This, together with condition (d) and (4.20),

is decreasing. Thus, the sequence {||x,, — z||} sen is convergent and
implies that
lim g(|lx, — Tjxall) =0, j=1,2.
n—0o0
From the properties of g, it follows that
lim |, — Tjx, || =0, j=1,2. (4.21)
n—oQ0
On the other hand, we have

Yn —%Xn = ﬂn,l(Tlxn _xn) + ,Bn,2(T2xn - xn) and Xpel —Yn = C\!n(l/l _yn)~

This implies that
lim I, =y, =0 and  Tim [x,.1 — ] = 0. (4.22)
n—00 n— 00

By the triangle inequality, we conclude that
%41 = Xnll < (1601 = Yull + 170 — %l
It follows from (4.22) that
Him {12 = = 0. (4.23)

Since {x,},en is bounded, there exists a subsequence {x,, }ien of {%,},en such that x,,,, —
y € C as i — oo. In view of Proposition 3.1 and (4.21), we conclude that y € F. This, to-
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gether with Lemma 2.1, implies that

limsup(u — 2,/ (%1 — 2)) = lim (1 — 2,/ (%41 — 2))
n—00 =00

=(u-2zJy-2)
<0. (4.24)

Thus we have the desired result by Lemma 2.3.
Case 2. By the same method, as in the proof of Theorem 4.2, we can prove that x,, — z
as n — 00. This completes the proof. g

Remark 4.1 (1) Note that [18, Theorem 4.1] is a weak convergence result and that our
Theorem 4.3 is a strong convergence result. However, it is worth pointing out that the
method of proving Theorem 4.3 is very different from the method of proving Theorem 4.1
of [18].

(2) In most cases, strong convergence is more desirable than weak convergence.
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