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Abstract
In this paper, we first introduce a new class of mappings called asymptotically
nonspreading mappings and establish weak and strong convergence theorems of
the iterative sequences generated by these mappings in a real Banach space. We
modify Halpern’s iterations for finding a fixed point of an asymptotically nonspreading
mapping and provide an affirmative answer to an open problem posed by Kurokawa
and Takahashi in their final remark of (Kurokawa and Takahashi in Nonlinear Anal.
73:1562-1568, 2010) for nonspreading mappings. Furthermore, we investigate the
approximation of common fixed points of asymptotically nonspreading mappings
and nonexpansive mappings and derive a strong convergence theorem by a new
hybrid method for these mappings. Our results improve and generalize many known
results in the current literature.
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1 Introduction
Throughout this paper, we denote the set of real numbers and the set of positive integers
byR andN, respectively. Let E be a Banach space with the norm ‖·‖ and the dual space E∗.
The modulus δ of convexity of E is denoted by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . Let SE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if
for each x, y ∈ SE , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, E is called smooth. If the limit (.) is attained uniformly in x, y ∈ SE , then
E is called uniformly smooth. The Banach space E is said to be strictly convex if ‖ x+y

 ‖ < 
whenever x, y ∈ SE and x �= y. It is well known that E is uniformly convex if and only if E∗ is
uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and only
if E∗ is smooth; formore details, see [].When {xn}n∈N is a sequence in the Banach space E,
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we denote the strong convergence of {xn}n∈N to x ∈ E by xn → x and the weak convergence
by xn ⇀ x. For any sequence {x∗

n}n∈N in E∗, we denote the strong convergence of {x∗
n}n∈N

to x∗ ∈ E∗ by x∗
n → x∗, the weak convergence by x∗

n ⇀ x∗ and the weak-star convergence
by x∗

n ⇀∗ x∗. The normalized duality mapping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖,‖x‖ = ‖f ‖}, ∀x ∈ E.

Now,we define amapping ρ : [,∞)→ [,∞), themodulus of smoothness ofE, as follows:

ρ(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ E,‖x‖ = ,‖y‖ = t

}
.

It is well known that E is uniformly smooth if and only if limt→
ρ(t)
t = . Let q ∈ R be such

that  < q ≤ . Then a Banach space E is said to be q-uniformly smooth if there exists a
constant cq >  such that ρ(t)≤ cqtq for all t > . If a Banach space E admits a sequentially
continuous duality mapping J from weak topology to weak-star topology, then J is single-
valued and also E is smooth; see [] for more details. In this case, the normalized duality
mapping J is said to be weakly sequentially continuous, i.e., if {xn}n∈N ⊂ E is a sequence
with xn ⇀ x ∈ E, then J(xn) ⇀∗ J(x) []. A Banach space E is said to satisfy the Opial
property [] if for any weakly convergent sequence {xn}n∈N in E with weak limit x,

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y ∈ Ewith y �= x. It is well known that all Hilbert spaces, all finite dimensional Banach
spaces and the Banach spaces lp ( ≤ p < ∞) satisfy the Opial property; see, for example,
[, ]. It is also known that if E admits a weakly sequentially continuous duality mapping,
then E is smooth and enjoys the Opial property; see [] for more details.
Let C be a nonempty subset of a real Banach space E, and let T : C → E be a mapping.

We denote by F(T) the set of fixed points of T , i.e., F(T) = {x ∈ C : Tx = x}. A mapping
T : C → E is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. A mapping
T : C → E is said to be quasi-nonexpansive if F(T) �= ∅ and ‖Tx– y‖ ≤ ‖x– y‖ for all x ∈ C
and y ∈ F(T). Let C be a nonempty, closed and convex subset of a Hilbert space H and
x ∈ H . Then there exists a unique nearest point z ∈ C such that ‖x – z‖ = infy∈C ‖x – y‖.
We denote such a correspondence by z = PCx. The mapping PC is calledmetric projection
of H onto C.
The concept of nonexpansivity plays an important role in the study of Mann-type it-

eration for finding fixed points of a mapping T : C → C, where C is a closed and convex
subset of a Banach space E. Recall that theMann-type iteration [] is given by the following
formula

xn+ = ( – βn)xn + βnTxn, x ∈ C. (.)

Here, {βn}n∈N is a sequence of real numbers in [, ] satisfying some appropriate condi-
tions. A more general iteration scheme is the Halpern iteration, given by

⎧⎪⎪⎨
⎪⎪⎩
u ∈ E, x ∈ C chosen arbitrarily,

yn = ( – βn)xn + βnTxn,

xn+ = αnu + ( – αn)yn,

(.)
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where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. In particu-
lar, when all αn = , the Halpern iteration (.) becomes the standardMann iteration (.).
The construction of fixed points of nonexpansive mappings via Halpern’s algorithm []
has been extensively investigated recently in the current literature (see, for example, []
and the references therein). Numerous results have been proved on Mann and Halpern’s
iterations for nonexpansive mappings in Hilbert and Banach spaces (see, e.g., [–]).
Let E be a smooth, strictly convex and reflexive Banach space, and let J be the normalized

dualitymapping of E. LetC be a nonempty, closed and convex subset of E. The generalized
projection �C from E onto C is denoted by

�C(x) = argmin
y∈C

φ(y,x)

for all x ∈ E, where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ E.
Following Kohsaka and Takahashi [, ] (see also [–]), a mapping T : C → C is

said to be nonspreading if

φ(Tx,Ty) + φ(Ty,Tx) ≤ φ(Tx, y) + φ(Ty,x)

for all x, y ∈ C, where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. Observe that if E is a real
Hilbert space, then J is the identity mapping and φ(x, y) = ‖x‖ – 〈x, y〉 + ‖y‖ = ‖x – y‖.
Recently, Kurakawa and Takahashi [] proved the following fixed point theorem for

nonspreading mappings in a Hilbert space.

Theorem . [] Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let T : C → C be a nonspreading mapping with F(T) �= ∅. Suppose that {xn}n∈N is a se-
quence generated by x = x ∈ C, u ∈ C and

xn+ = γnu + ( – γn)

n

n–∑
k=

Tkxn, ∀n ∈N,

where  ≤ γn ≤ , limn→∞ γn =  and
∑∞

n= γn = ∞. Then {xn}n∈N converges strongly to
PF(T)u, where PF(T) is the metric projection of H onto F(T).

Kurokawa and Takahashi studied strong convergence theorems for nonspreading map-
pings and posed the following open problem in their final remark of [].

Question . Is there any strong convergence theorem of Halpern type for nonspreading
mappings in a Hilbert space H?

By using the iterative schemes proposed byMoudafi [], Iemoto andTakahashi [] stud-
ied the approximation of common fixed points of nonexpansivemappings and nonspread-
ing mappings in a Hilbert space and proved the following strong convergence theorem.

Theorem . Let C be a nonempty, closed and convex subset of a Hilbert space H . Let
S : C → C be a nonspreading mapping, and let T : C → C be a nonexpansive mapping

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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such that F := F(S)∩ F(T) �= ∅. Define a sequence {xn}n∈N as follows:

⎧⎨
⎩
x ∈ C chosen arbitrarily,

xn+ = ( – αn)xn + αn(βnSxn + ( – βn)Txn)

for all n ∈N, where {αn}n∈N, {βn}n∈N ⊂ [, ]. Then the following hold:
(i) If limn→∞ αn( – αn) >  and

∑∞
n=( – βn) < ∞, then {xn}n∈N converges weakly to

v ∈ F(S);
(ii) If

∑∞
n= αn( –αn) = ∞ and

∑∞
n= βn < ∞, then {xn}n∈N converges weakly to v ∈ F(T);

(iii) If limn→∞ αn( – αn) >  and limn→∞ βn( – βn) > , then {xn}n∈N converges weakly
to v ∈ F(S)∩ F(T).

Now, we are in a position to introduce the following new class of nonspreading-type
mappings in a Banach space.

Definition . Let E be a real Banach space. A mapping T : D(T) ⊂ E → E is said to be
asymptotically nonspreading (for short ANS) if

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + 

〈
x – Tnx, J

(
y – Tny

)〉

for all x, y ∈ D(T) and n ∈N. The mapping T is called nonspreading if

‖Tx – Ty‖ ≤ ‖x – y‖ + 
〈
x – Tx, J(y – Ty)

〉

for all x, y ∈D(T), whereD(T) is the domain of T and J is the normalized duality mapping
of E.

Example . Let T : [, ]→ [, ] be defined by

Tx =

⎧⎨
⎩
 if x ∈ [, ),

 if x = .

Then T is an asymptotically nonspreading mapping with F(T) = {}. Indeed, for any x ∈
[, ) and y = , we have Tx = , Ty = , Tnx = Tny =  for all n≥ . We define the function
f :R →R by

f (x) = (x – ) + x, ∀x ∈R.

Then we have

f ′(x) = (x – ) +  =  �⇒ x = ,

where f ′(x) is the derivative of f at x. This implies that

 = f () ≤ f (x), ∀x ∈R.

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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Observe now that

|Tx – Ty| = | – | ≤ |x – | + x = (x – ) + x.

On the other hand, for any n≥ , we have

∣∣Tnx – Tny
∣∣ = ≤ |x – | + x = (x – ) + x.

The other cases can be verified similarly. It is worth mentioning that T is neither nonex-
pansive nor continuous.

In this paper, we first introduce a new class of asymptotically nonspreading mappings
and establish weak and strong convergence theorems of the iterative sequences generated
by these mappings in a real Banach space. We modify Mann and Halpern’s iterations for
finding a fixed point of an asymptotically nonspreading mapping and provide an affirma-
tive answer to Question .. Furthermore, we study the approximation of common fixed
points of asymptotically nonspreading mappings and nonexpansive mappings and derive
a strong convergence theorem by a new hybrid method for these mappings. Our results
improve and generalizemany known results in the current literature; see, for example, [].

2 Preliminaries
In this section, we collect some lemmas which will be used in the proofs for the main
results in the next sections.
Let C and D be nonempty subsets of a real Banach space E with D ⊂ C. A mapping

QD : C →D is said to be sunny if

QD
(
QDx + t(x –QDx)

)
=QDx

for each x ∈ E and t ≥ . A mapping QD : C → D is said to be a retraction if QDx = x for
each x ∈ C.

Lemma . [] Let C and D be nonempty subsets of a real Banach space E with D ⊂ C,
and let QD : C → D be a retraction from C into D. Then QD is sunny and nonexpansive if
and only if

〈
z –QD(z), J

(
y –QD(z)

)〉 ≤ 

for all z ∈ C and y ∈D, where J is the normalized duality mapping of E.

Lemma . [] Let E be a real Banach space and J be the normalized duality mapping
of E. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉

for all x, y ∈ E.

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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Proposition . [] Let C be a nonempty, closed and convex subset of a real Hilbert space
H , and let T : C → C be a nonspreading mapping. If F(T) �= ∅, then it is closed and convex.

Let C be a nonempty, closed and convex subset of a Banach space E, and let {xn}n∈N be
a bounded sequence in E. For any x ∈ E, we set

r
(
x, {xn}n∈N

)
= lim sup

n→∞
‖x – xn‖.

The asymptotic radius of {xn}n∈N relative to C is defined by

r
(
C, {xn}n∈N

)
= inf

{
r
(
x, {xn}n∈N

)
: x ∈ C

}
.

The asymptotic center of {xn}n∈N relative to C is the set

A
(
C, {xn}n∈N

)
=

{
x ∈ C : r

(
x, {xn}n∈N

)
= r

(
C, {xn}n∈N

)}
.

It is well known that, in a uniformly convex Banach space E, A(C, {xn}n∈N) consists of ex-
actly one point; see [, ].

Lemma . [] Let {sn}n∈N be a sequence of nonnegative real numbers satisfying the in-
equality

sn+ ≤ ( – γn)sn + γnδn, ∀n≥ ,

where {γn}n∈N and {δn}n∈N satisfy the conditions:

(i) {γn}n∈N ⊂ [, ] and
∑∞

n= γn = ∞ or, equivalently,
∏∞

n=( – γn) = ;
(ii) lim supn→∞ δn ≤ , or
(ii′)

∑∞
n= γnδn <∞.

Then limn→∞ sn = .

Lemma . [] Let {an}n∈N be a sequence of real numbers such that there exists a subse-
quence {ni}i∈N of {n}n∈N such that ani < ani+ for all i ∈ N. Then there exists a subsequence
{mk}k∈N ⊂ N such thatmk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk+ and ak ≤ amk+.

In fact,mk =max{j ≤ k : aj < aj+}.

Lemma . [, ] Let E be a uniformly convex Banach space and Br := {x ∈ E : ‖x‖ ≤ r},
r > . Then there exists a continuous, strictly increasing and convex function g : [,∞) →
[,∞) with g() =  such that

‖λx + βy + γ z‖ ≤ λ‖x‖ + β‖y‖ + γ ‖z‖ – λβg
(‖x – y‖)

for all x, y, z ∈ Br and all λ,β ,γ ∈ [, ] with λ + β + γ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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3 Fixed point theorems
In the following, we present the existence theorems of fixed points of asymptotically non-
spreading mappings in a Banach space.

Theorem. Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an asymptotically nonspreading mapping. Then the following
assertions are equivalent.
() The fixed point set F(T) �= ∅.
() There exists a bounded sequence {xn}n∈N in C such that lim infn→∞ ‖xn – Txn‖ = .

Proof The implication () �⇒ () is obvious. For the converse implication, suppose that
there exists a bounded sequence {xn}n∈N in C such that lim infn→∞ ‖xn –Txn‖ = . Conse-
quently, there is a bounded subsequence {Txnk }k∈N of {Txn}n∈N such that limk→∞ ‖Txnk –
xnk‖ = . Suppose A(C, {xnk }k∈N) = {z}. LetM = sup{‖xnk‖,‖Txnk‖,‖z‖,‖Tz‖ : k ∈ N} < ∞.
Since T is an asymptotically nonspreading mapping, we obtain

‖xnk – Tz‖ ≤ ‖xnk – Txnk‖ + ‖Txnk – Tz‖ + ‖xnk – Txnk‖‖Txnk – Tz‖
≤ ‖xnk – Txnk‖ + ‖Txnk – Tz‖ + M‖xnk – Txnk‖
≤ ‖xnk – Txnk‖ + ‖xnk – z‖

+ 
〈
xnk – Txnk , J(z – Tz)

〉
+ M‖xnk – Txnk‖

≤ ‖xnk – Txnk‖ + ‖xnk – z‖ + M‖xnk – Txnk‖.

This implies that

lim sup
k→∞

‖xnk – Tz‖ ≤ lim sup
k→∞

‖xnk – Txnk‖ + lim sup
k→∞

‖xnk – z‖

+ M lim sup
k→∞

‖xnk – Txnk‖.

Thus we have

r
(
Tz, {xnk }k∈N

)
= lim sup

k→∞
‖xnk – Tz‖ ≤ lim sup

k→∞
‖xnk – z‖ = r

(
z, {xnk }k∈N

)
.

This means that Tz ∈ A(C, {xnk }k∈N). By the uniform convexity of E, we conclude that Tz =
z, which completes the proof. �

The following result is an immediate consequence of Theorem ..

Proposition . (Demiclosedness principle) Let C be a nonempty, closed and convex sub-
set of a real uniformly convex Banach space E. Suppose that T : C → E is an asymptotically
nonspreading mapping with F(T) �= ∅. If {xn}n∈N is a sequence in C that converges weakly
to x and if {(I – T)xn}n∈N converges strongly to , then x ∈ F(T).

Theorem. Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E. Let T : C → C be an asymptotically nonspreading mapping which is uniformly
asymptotically regular, i.e., limn→∞ ‖Tnx – Tn+x‖ =  for all x ∈ C. Then the following
assertions are equivalent.

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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() The fixed point set F(T) �= ∅.
() There exists x ∈ C such that the sequence {Tnx}n∈N is bounded.

Proof The implication () �⇒ () is obvious. For the converse implication, suppose that
there exists x ∈ C such that the sequence {Tnx}n∈N is bounded. Setting un = Tnx for all
n ∈N, the uniformly asymptotical regularity of T assures that

lim
n→∞‖Tun – un‖ = lim

n→∞
∥∥Tn+x – Tnx

∥∥ = .

Since {un}n∈N is bounded, in view of Theorem ., we conclude that F(T) �= ∅, which com-
pletes the proof. �

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C → C be a nonspreading mapping. Then the following assertions are equivalent.
() The fixed point set F(T) �= ∅.
() There exists x ∈ C such that the sequence {Tnx}n∈N is bounded.

Proof It is obvious that () implies (). Now, suppose that there exists x ∈ C such that the
sequence {Tnx}n∈N is bounded. Put xn+ = Tnx = Txn and zn = 

n
∑n

k=Tk–x = 
n
∑n

k= xk for
all n ∈N. Continuing the same process as in the proof of Theorem . in [], we conclude
that zn ⇀ z ∈ F(T) as n → ∞, which completes the proof. �

4 Weak and strong convergence theorems
In this section, we prove weak and strong convergence theorems for asymptotically non-
spreading mappings in a Banach space.

Lemma . Let C be a nonempty, closed and convex subset of a real Banach space E. Let
T : C → C be an asymptotically nonspreading mapping. Let {xn}n∈N be a sequence in C
such that ‖xn – xn+‖ →  and ‖xn –Tnxn‖ →  as n → ∞. Then limn→∞ ‖xn –Tmxn‖ = 
for all m ∈N.

Proof We divide the proof into several steps.
Step . We claim that the following statements hold:
(a) limn→∞ ‖Tn+xn – Tn+xn+‖ = ;
(b) limn→∞ ‖xn – Tn+xn‖ = ;
(c) limn→∞ ‖Tnxn – Tn+xn‖ = .

Since T is an asymptotically nonspreading mapping, we obtain

∥∥Tn+xn – Tn+xn+
∥∥ ≤ ‖xn – xn+‖ + 

〈
xn – Tn+xn, J

(
xn+ – Tn+xn+

)〉
≤ ‖xn – xn+‖ + 

∥∥xn – Tn+xn
∥∥∥∥xn+ – Tn+xn+

∥∥.
Due to the boundedness of {xn}n∈N, we deduce that

lim
n→∞

∥∥Tn+xn – Tn+xn+
∥∥ = .

Observe now that

∥∥xn – Tn+xn
∥∥ ≤ ‖xn – xn+‖ +

∥∥xn+ – Tn+xn+
∥∥ +

∥∥Tn+xn+ – Tn+xn
∥∥.

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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Thus we have

lim
n→∞

∥∥xn – Tn+xn
∥∥ = .

This implies that

∥∥Tnxn – Tn+xn
∥∥ ≤ ∥∥Tnxn – xn

∥∥ +
∥∥xn – Tn+xn

∥∥ → 

as n→ ∞.
Step . We prove the following assertions:
(d) limn→∞ ‖Tn+xn – Txn‖ = ;
(e) limn→∞ ‖xn – Txn‖ = .

Since T is an asymptotically nonspreading mapping, we get

∥∥Tn+xn – Txn
∥∥ =

∥∥T(
Tnxn

)
– Txn

∥∥

≤ ∥∥Tnxn – xn
∥∥ + 

〈
Tnxn – Tn+xn, J(xn – Txn)

〉
≤ ∥∥Tnxn – xn

∥∥ + 
∥∥Tnxn – Tn+xn

∥∥‖xn – Txn‖.

Due to the boundedness of {xn}n∈N and in view of Step (c), we deduce that

lim
n→∞

∥∥Tn+xn – Txn
∥∥ = .

Observe now that

‖xn – Txn‖ ≤ ∥∥xn – Tn+xn
∥∥ +

∥∥Tn+xn – Txn
∥∥ → 

as n→ ∞.
Step . We show that limn→∞ ‖Tm–xn – Tmxn‖ =  for allm ∈N.
To this end, we apply the principle of mathematical induction. In view of Step (e), for

m = , we deduce that limn→∞ ‖xn – Txn‖ = . Now, suppose that form ∈N,

lim
n→∞

∥∥Tm–xn – Tmxn
∥∥ = .

We prove that

lim
n→∞

∥∥Tmxn – Tm+xn
∥∥ = .

Since T is an asymptotically nonspreading mapping, we have

∥∥Tmxn – Tm+xn
∥∥ =

∥∥T(
Tm–xn

)
– T

(
Tmxn

)∥∥

≤ ∥∥Tm–xn – Tmxn
∥∥ + 

〈
Tm–xn – Tmxn, J

(
Tmxn – Tm+xn

)〉
≤ ∥∥Tm–xn – Tmxn

∥∥ + 
∥∥Tm–xn – Tmxn

∥∥∥∥Tmxn – Tm+xn
∥∥.

Thus we have limn→∞ ‖Tm–xn – Tmxn‖ =  for allm ∈N.

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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By the triangle inequality, we see that for anym ∈N,

∥∥xn – Tmxn
∥∥ ≤ ‖xn – Txn‖ +

∥∥Txn – Txn
∥∥ + · · · + ∥∥Tm–xn – Tmxn

∥∥.
In view of Steps  and , we conclude that limn→∞ ‖xn – Tmxn‖ =  for all m ∈ N. This
completes the proof. �

Theorem . Let C be a nonempty, closed and convex subset of a uniformly convex Ba-
nach space E with Opial property, and let T : C → C be an asymptotically nonspread-
ing mapping such that F(T) �= ∅. Assume that {αn}n∈N is a sequence in (, ) such that
 < δ ≤ αn ≤  – δ < . Let {xn}n∈N be a sequence in C generated by the modified Mann
iteration process

xn+ = ( – αn)xn + αnTnxn, ∀n ∈N. (.)

Then the sequence {xn}n∈N generated by algorithm (.) converges weakly to an element of
F(T).

Proof Take any p ∈ F(T) arbitrarily chosen. In view of Lemma ., there exists a continu-
ous, strictly increasing and convex function g : [,∞)→ [,∞) with g() =  such that

‖xn+ – p‖ = ∥∥( – αn)(xn – p) + αn
(
Tnxn – p

)∥∥

≤ ( – αn)‖xn – p‖ + αn
∥∥Tnxn – p

∥∥ – αn( – αn)g
(∥∥xn – Tnxn

∥∥)
≤ ( – αn)‖xn – p‖ + αn‖xn – p‖ – αn( – αn)g

(∥∥xn – Tnxn
∥∥)

= ‖xn – p‖ – αn( – αn)g
(∥∥xn – Tnxn

∥∥)
≤ ‖xn – p‖ – δg

(∥∥xn – Tnxn
∥∥)
. (.)

Since δ > , we have from (.) that

‖xn+ – p‖ ≤ ‖xn – p‖, ∀n ∈N.

This implies that limn→∞ ‖xn – p‖ exists and hence {xn}n∈N is bounded. Setting

lim
n→∞‖xn – p‖ = d,

it follows from (.) that

δg
(∥∥xn – Tnxn

∥∥) ≤ ‖xn – p‖ – ‖xn+ – p‖,

which yields that limn→∞ ‖xn – Tnxn‖ = . In view of (.), we see that

‖xn+ – xn‖ = αn
∥∥xn – Tnxn

∥∥ ≤ ( – δ)
∥∥xn – Tnxn

∥∥, ∀n ∈ N.

Thus we have limn→∞ ‖xn – xn+‖ = . Employing Proposition . and Lemma ., we con-
clude that there exists x ∈ F(T) such that xn ⇀ x as n → ∞, which completes the proof.

�
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Theorem . Let E be a real uniformly convex Banach space which admits the weakly
sequentially continuous duality mapping J , and let C be a nonempty, closed and convex
subset of E. Let T : C → C be an asymptotically nonspreading mapping such that F :=
F(T) �= ∅. Let {αn}n∈N and {βn}n∈N be two sequences in [, ] satisfying the following control
conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn = ∞;

(c) lim infn→∞ βn( – βn) > .
Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
u ∈ C, x ∈ C chosen arbitrarily,

yn = ( – βn)xn + βnTnxn,

xn+ = αnu + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to QFu,where QF is the sunny
nonexpansive retraction from E onto F .

Proof We divide the proof into several steps.
Since T is a quasi-nonexpansive mapping, so we have F is closed and convex. Set

z =QFu.

Step . We prove that the sequences {xn}n∈N, {yn}n∈N and {Tnxn}n∈N are bounded.
We first show that {xn}n∈N is bounded.
Let p ∈ F be fixed. In view of Lemma ., there exists a continuous, strictly increasing

and convex function g : [,∞)→ [,∞) with g() =  such that

‖yn – p‖ = ∥∥( – βn)xn + βnTnxn – p
∥∥

≤ ( – βn)‖xn – p‖ + βn
∥∥Tnxn – p

∥∥ – βn( – βn)g
(∥∥xn – Tnxn

∥∥)
≤ ( – βn)‖xn – p‖ + βn‖xn – p‖ – βn( – βn)g

(∥∥xn – Tnxn
∥∥)

= ‖xn – p‖ – βn( – βn)g
(∥∥xn – Tnxn

∥∥)
≤ ‖xn – p‖. (.)

This implies that

‖xn+ – p‖ = ∥∥αnu + ( – αn)yn – p
∥∥

≤ αn‖u – p‖ + ( – αn)‖yn – p‖
≤ αn‖u – p‖ + ( – αn)‖xn – p‖
≤ max

{‖u – p‖,‖xn – p‖}.
By induction, we obtain

‖xn+ – p‖ ≤ max
{‖u – p‖,‖x – p‖}
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for all n ∈ N. This implies that the sequence {‖xn – p‖}n∈N is bounded and hence the se-
quence {xn}n∈N is bounded. This, together with (.), implies that the sequences {yn}n∈N
and {Tnxn}n∈N are bounded too.
Step . We prove that for any n ∈N,

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn
〈
u – z, J(xn+ – z)

〉
. (.)

Let us show (.). For each n ∈N, in view of (.), we obtain

‖yn – z‖ ≤ ‖xn – z‖ – βn( – βn)g
(∥∥xn – Tnxn

∥∥)
.

This implies that

‖xn+ – z‖ = ∥∥αnu + ( – αn)yn – z
∥∥

≤ αn‖u – z‖ + ( – αn)‖yn – z‖

≤ αn‖u – z‖ + ( – αn)
[‖xn – z‖ – βn( – βn)g

(∥∥xn – Tnxn
∥∥)]

. (.)

Let M := sup{|‖u – z‖ – ‖xn – z‖| + βn( – βn)g(‖xn – Tnxn‖) : n ∈ N}. It follows from
(.) that

βn( – βn)g
(∥∥xn – Tnxn

∥∥) ≤ ‖xn – z‖ – ‖xn+ – z‖ + αnM. (.)

In view of Lemma . and (.), we obtain

‖xn+ – z‖ = ∥∥αnu + ( – αn)yn – z
∥∥

=
∥∥αn(u – z) + ( – αn)(yn – z)

∥∥

≤ ∥∥( – αn)(yn – z)
∥∥ + 

〈
αn(u – z), J(xn+ – z)

〉
= ( – αn)‖yn – z‖ + 

〈
αn(u – z), J(xn+ – z)

〉
≤ ( – αn)‖yn – z‖ + 

〈
αn(u – z), J(xn+ – z)

〉
= ( – αn)‖xn – z‖ + αn

〈
u – z, J(xn+ – z)

〉
.

Step . We prove that xn → z as n→ ∞.
We discuss the following two possible cases.
Case . If {‖xn – z‖}n∈N is eventually decreasing, then there exists n ∈ N such that the

sequence {‖xn – z‖}∞n=n is decreasing. Thus, the sequence {‖xn – z‖}n∈N is convergent and
hence ‖xn – z‖ – ‖xn+ – z‖ →  as n → ∞. This, together with condition (c) and (.),
implies that

lim
n→∞ g

(∥∥xn – Tnxn
∥∥)

= .

From the properties of g , it follows that

lim
n→∞

∥∥xn – Tnxn
∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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On the other hand, we have

xn – yn = βn
(
xn – Tnxn

)
and xn+ – yn = αn(u – yn).

This implies that

lim
n→∞‖xn – yn‖ =  and lim

n→∞‖xn+ – yn‖ = . (.)

By the triangle inequality, we conclude that

‖xn+ – xn‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖.

It follows from (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

Exploiting Lemma ., (.) and (.), we obtain

lim
n→∞‖xn – Txn‖ = . (.)

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni+ ⇀

y ∈ C as i → ∞. In view of Proposition . and (.), we conclude that y ∈ F(T). This,
together with Lemma ., implies that

lim sup
n→∞

〈
u – z, J(xn+ – z)

〉
= lim

i→∞
〈
u – z, J(xni+ – z)

〉

=
〈
u – z, J(y – z)

〉
≤ . (.)

Thus we have the desired result by Lemma ..
Case . If {‖xn – z‖}n∈N is not eventually decreasing, then there exists a subsequence

{ni}i∈N of {n}n∈N such that

‖xni – z‖ < ‖xni+ – z‖

for all i ∈ N. In view of Lemma ., there exists a nondecreasing sequence {mk}k∈N ⊂ N

such that mk → ∞

‖xmk – z‖ < ‖xmk+ – z‖ and ‖xk – z‖ ≤ ‖xmk+ – z‖

for all k ∈N. This, together with (.), implies that

βmk ( – βmk )g
(∥∥xmk – Tmkxmk

∥∥) ≤ ‖xmk – z‖ – ‖xmk+ – z‖ + αmkM ≤ αmkM

for all k ∈N. Then, by conditions (a) and (c) and the properties of g , we get

lim
k→∞

∥∥xmk – Tmkxmk

∥∥ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/228
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By the same argument, as in Case , we arrive at

lim sup
k→∞

〈
u – z, J(xmk – z)

〉
= lim sup

k→∞

〈
u – z, J(xmk+ – z)

〉 ≤ .

Next, it follows from (.) that

‖xmk+ – z‖ ≤ ( – αmk )‖xmk – z‖ + αmk

〈
u – z, J(xmk+ – z)

〉
. (.)

Since ‖xmk – z‖ ≤ ‖xmk+ – z‖, we conclude that

αmk‖xmk – z‖ ≤ ‖xmk – z‖ – ‖xmk+ – z‖ + αmk

〈
u – z, J(xmk+ – z)

〉
≤ αmk

〈
u – z, J(xmk+ – z)

〉
. (.)

In particular, since αmk > , we obtain

‖xmk – z‖ ≤ 〈
u – z, J(xmk+ – z)

〉

and hence

lim
k→∞

‖xmk – z‖ = .

This, together with (.), implies that

lim
k→∞

‖xmk+ – z‖ = .

On the other hand, we have ‖xk – z‖ ≤ ‖xmk+ – z‖ for all k ∈N, which implies that xk → z
as k → ∞. Thus, we have xn → z as n → ∞, which completes the proof. �

Let C be a nonempty, closed and convex subset of a Hilbert space H , and let T : C → C
be a nonspreading mapping such that F(T) �= ∅. For any real number β ∈ (, ), we define
a mapping Tβ : C → C by

Tβx = ( – β)Ix + βTx (x ∈ C), (.)

where I is the identitymapping onH . It is easy to verify thatTβ is a nonspreadingmapping
and F(Tβ ) = F(T). Therefore, in view of Proposition ., F(Tβ ) is closed and convex. The
following strong convergence result provides an affirmative answer to openQuestion . in
the case where the mapping T is nonspreading. It is worth mentioning that our method of
proof is different from that in [] and can be applied in uniformly convex Banach spaces.
In fact, an answer will be given for more general spaces than Hilbert spaces.

Corollary . Let E be a real uniformly convex Banach space which admits the weakly
sequentially continuous duality mapping J , and let C be a nonempty, closed and convex
subset of E. Let T : C → C be a nonspreading mapping such that F := F(T) �= ∅. Let {αn}n∈N
be a sequence in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn = ∞.
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For any real number β ∈ (, ), let {xn}n∈N be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
u ∈ C, x ∈ C chosen arbitrarily,

yn = ( – β)xn + βTxn,

xn+ = αnu + ( – αn)yn.

Then the sequence {xn}n∈N converges strongly to QFu, where QF is the sunny nonexpansive
retraction from E onto F .

Corollary . Let C be a nonempty, closed and convex subset of a Hilbert space H , and let
T : C → C be a nonspreading mapping such that F := F(T) �= ∅. Let {αn}n∈N be a sequence
in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn = ∞.

For any real number β ∈ (, ), let Tβ : C → C be defined by (.). Let {xn}n∈N be a sequence
generated by

⎧⎨
⎩
u ∈ C, x ∈ C chosen arbitrarily,

xn+ = αnu + ( – αn)Tβxn.

Then the sequence {xn}n∈N converges strongly to PFu,where PF is the metric projection from
H onto F .

Theorem . Let E be a uniformly convex Banach space which admits the weakly sequen-
tially continuous duality mapping J , and let C be a nonempty, closed and convex subset
of E. Let T : C → C be an asymptotically nonspreading mapping, and let T : C → C be a
nonexpansive mapping such that F := F(T) ∩ F(T) �= ∅. Let {αn}n∈N, {βn,}n∈N, {βn,}n∈N,
{βn,}n∈N be sequences in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn = ∞;

(c) βn, + βn, + βn, = , ∀n ∈N;
(d) lim infn→∞ βn,jβn, > , j = , .

Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
u ∈ C, x ∈ C chosen arbitrarily,

yn = βn,Txn + βn,Txn + βn,xn,

xn+ = αnu + ( – αn)yn.

(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to QFu, where QF is a sunny
nonexpansive retraction from E onto F .

Proof We divide the proof into several steps.
Since T is a quasi-nonexpansive mapping, so we have F is closed and convex. Set

z =QFu.
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Step . We prove that the sequences {xn}n∈N, {yn}n∈N, {Txn}n∈N and {Txn}n∈N are
bounded.
We first show that {xn}n∈N is bounded.
Let p ∈ F be fixed. In view of Lemma ., there exists a continuous, strictly increasing

and convex function g : [,∞)→ [,∞) with g() =  such that

‖yn – p‖ = ‖βn,Txn + βn,Txn + βn,xn – p‖

≤ βn,‖Txn – p‖ + βn,‖Txn – p‖ + βn,‖xn – p‖

– βn,jβn,g
(‖xn – Tjxn‖

)
≤ βn,‖xn – p‖ + βn,‖xn – p‖ + βn,‖xn – p‖

– βn,jβn,‖xn – Tjxn‖

= ‖xn – p‖ – βn,jβn,g
(‖xn – Tjxn‖

)
≤ ‖xn – p‖, j = , . (.)

This implies that

‖xn+ – p‖ = ∥∥αnu + ( – αn)yn – p
∥∥

≤ αn‖u – p‖ + ( – αn)‖yn – p‖
≤ αn‖u – p‖ + ( – αn)‖xn – p‖
≤ max

{‖u – p‖,‖xn – p‖}.
By induction, we obtain

‖xn+ – p‖ ≤ max
{‖u – p‖,‖x – p‖}

for all n ∈ N. This implies that the sequence {‖xn – p‖}n∈N is bounded and hence the se-
quence {xn}n∈N is bounded. This, together with (.), implies that the sequences {yn}n∈N,
{Txn}n∈N and {Txn}n∈N are bounded too.
Step . We prove that for any n ∈N,

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn
〈
u – z, J(xn+ – z)

〉
. (.)

Let us show (.). For each n ∈N and j = , , in view of (.), we obtain

‖yn – z‖ ≤ ‖xn – z‖ – βn,jβn,g
(‖xn – Tjxn‖

)
.

This implies that

‖xn+ – z‖ = ∥∥αnu + ( – αn)yn – z
∥∥

≤ αn‖u – z‖ + ( – αn)‖yn – z‖

≤ αn‖u – z‖ + ( – αn)
[‖xn – z‖ – βn,jβn,g

(‖xn – Tjxn‖
)]
. (.)
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LetM := sup{|‖u– z‖ – ‖xn – z‖|+βn,jβn,g(‖xn –Tjxn‖) : n ∈N, j = , }. It follows from
(.) that

βn,jβn,g
(‖xn – Tjxn‖

) ≤ ‖xn – z‖ – ‖xn+ – z‖ + αnM, j = , . (.)

In view of Lemma . and (.), we obtain

‖xn+ – z‖ = ∥∥αnu + ( – αn)yn – z
∥∥

≤ ∥∥αnu + ( – αn)yn – z – αn(u – z)
∥∥ + 

〈
αn(u – z), J(xn+ – z)

〉
=

∥∥( – αn)(yn – z)
∥∥ + αn

〈
u – z, J(xn+ – z)

〉
= ( – αn)‖yn – z‖ + αn

〈
u – z, J(xn+ – z)

〉
≤ ( – αn)‖xn – z‖ + αn

〈
u – z, J(xn+ – z)

〉
.

Step . We prove that xn → z as n→ ∞.
We discuss the following two possible cases.
Case . If {‖xn – z‖}n∈N is eventually decreasing, then there exists n ∈ N such that the

sequence {‖xn – z‖}∞n=n is decreasing. Thus, the sequence {‖xn – z‖}n∈N is convergent and
hence ‖xn – z‖ – ‖xn+ – z‖ →  as n→ ∞. This, together with condition (d) and (.),
implies that

lim
n→∞ g

(‖xn – Tjxn‖
)
= , j = , .

From the properties of g , it follows that

lim
n→∞‖xn – Tjxn‖ = , j = , . (.)

On the other hand, we have

yn – xn = βn,(Txn – xn) + βn,(Txn – xn) and xn+ – yn = αn(u – yn).

This implies that

lim
n→∞‖xn – yn‖ =  and lim

n→∞‖xn+ – yn‖ = . (.)

By the triangle inequality, we conclude that

‖xn+ – xn‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖.

It follows from (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni+ ⇀

y ∈ C as i → ∞. In view of Proposition . and (.), we conclude that y ∈ F . This, to-
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gether with Lemma ., implies that

lim sup
n→∞

〈
u – z, J(xn+ – z)

〉
= lim

i→∞
〈
u – z, J(xni+ – z)

〉

=
〈
u – z, J(y – z)

〉
≤ . (.)

Thus we have the desired result by Lemma ..
Case . By the same method, as in the proof of Theorem ., we can prove that xn → z

as n→ ∞. This completes the proof. �

Remark . () Note that [, Theorem .] is a weak convergence result and that our
Theorem . is a strong convergence result. However, it is worth pointing out that the
method of proving Theorem . is very different from themethod of proving Theorem .
of [].
() In most cases, strong convergence is more desirable than weak convergence.
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