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Abstract
In this paper, we introduce an iterative scheme by the modification of Mann’s
iteration process for finding a common element of the set of solutions of a finite
family of variational inequality problems and the set of fixed points of an η-strictly
pseudo-contractive mapping and a nonexpansive mapping. Moreover, we prove a
strong convergence theorem for finding a common element of the set of fixed points
of a finite family of ηi-strictly pseudo-contractive mappings for every i = 1, 2, . . . ,N in
uniformly convex and 2-uniformly smooth Banach spaces.
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1 Introduction
Let E be a Banach space with its dual space E* and let C be a nonempty closed convex sub-
set of E. Throughout this paper, we denote the norm of E and E* by the same symbol ‖ · ‖.
We use the symbol → to denote the strong convergence. Recall the following definition.

Definition . A Banach space E is said to be uniformly convex iff for any ε,  < ε ≤ , the
inequalities ‖x‖ ≤ , ‖y‖ ≤  and ‖x – y‖ ≥ ε imply there exists a δ >  such that ‖ x+y

 ‖ ≤
 – δ.

Definition . Let E be a Banach space. Then a function ρE : R+ → R
+ is said to be the

modulus of smoothness of E if

ρE(t) = sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ = t
}
.

A Banach space E is said to be uniformly smooth if

lim
t→

ρE(t)
t

= .
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Let q > . A Banach space E is said to be q-uniformly smooth if there exists a fixed constant
c >  such that ρE(t) ≤ ctq. It is easy to see that if E is q-uniformly smooth, then q ≤  and
E is uniformly smooth.

Definition . A mapping J from E onto E* satisfying the condition

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ and ‖f ‖ = ‖x‖}

is called the normalized duality mapping of E. The duality pair 〈x, f 〉 represents f (x) for
f ∈ E* and x ∈ E.

Definition . Let C be a nonempty subset of a Banach space E and T : C → C be a
self-mapping. T is called a nonexpansive mapping if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.
T is called an η-strictly pseudo-contractive mapping if there exists a constant η ∈ (, )

such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – η
∥∥(I – T)x – (I – T)y

∥∥ (.)

for every x, y ∈ C and for some j(x – y) ∈ J(x – y). It is clear that (.) is equivalent to the
following:

〈
(I – T)x – (I – T)y, j(x – y)

〉 ≥ η
∥∥(I – T)x – (I – T)y

∥∥ (.)

for every x, y ∈ C and for some j(x – y) ∈ J(x – y).

Let C and D be nonempty subsets of a Banach space E such that C is nonempty closed
convex andD ⊂ C, then amapping P : C →D is sunny [] provided P(x+ t(x–P(x))) = P(x)
for all x ∈ C and t ≥ , whenever x + t(x – P(x)) ∈ C. The mapping P : C → D is called a
retraction if Px = x for all x ∈D. Furthermore, P is a sunny nonexpansive retraction fromC
ontoD if P is a retraction fromC ontoDwhich is also sunny and nonexpansive. The subset
D of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D.
An operator A of C into E is said to be accretive if there exists j(x– y) ∈ J(x– y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ , ∀x, y ∈ C.

A mapping A : C → E is said to be α-inverse strongly accretive if there exists j(x – y) ∈
J(x – y) and α >  such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

Remark . From (.) and (.), if T is an η-strictly pseudo-contractive mapping, then
I – T is η-inverse strongly accretive.
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The variational inequality problem in a Banach space is to find a point x* ∈ C such that
for some j(x – x*) ∈ J(x – x*),

〈
Ax*, j

(
x – x*

)〉 ≥ , ∀x ∈ C. (.)

This problem was considered by Aoyama et al. []. The set of solutions of the variational
inequality in a Banach space is denoted by S(C,A), that is,

S(C,A) =
{
u ∈ C :

〈
Au, J(v – u)

〉 ≥ ,∀v ∈ C
}
. (.)

Numerous problems in physics, optimization, variational inequalities, minimax problems,
the Nash equilibrium problem in noncooperative games reduce to find an element of (.);
see [, ].
Recall that the normal Mann’s iterative process was introduced by Mann [] in .

The normal Mann’s iterative process generates a sequence {xn} in the following manner:

⎧⎨
⎩
x ∈ C,

xn+ = ( – αn)xn + αnTxn, ∀n≥ ,
(.)

where the sequence {αn} ⊂ (, ). If T is a nonexpansive mapping with a fixed point and
the control sequence {αn} is chosen so that

∑∞
n= αn( – αn) = ∞, then the sequence {xn}

generated by normal Mann’s iterative process (.) converges weakly to a fixed point of T .
In , Cho et al. [] modified the normal Mann’s iterative process and proved strong

convergence for a finite family of nonexpansive mappings in the framework of Banach
spaces without any commutative assumption as follows.

Theorem . Let C be a closed convex subset of a uniformly smooth and strictly convex
Banach space E. Let {Ti} be a nonexpansive mapping from C into itself for i = , , . . . ,N .
Assume that F =

⋂N
i= F(Ti) �= ∅.Given a point u ∈ C and given sequences {αn}, {βn} ∈ (, ),

the following conditions are satisfied:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) lim
n→∞|γni – γn–i| =  for all i = , , . . . ,N ,

(iii)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Let {xn} be a sequence generated by u,x = x ∈ C and

⎧⎨
⎩
yn = βnxn + ( – βn)Wnxn,

xn+ = αnu + ( – αn)yn, n≥ ,
(.)

where Wn is the W-mapping generated by T,T, . . . ,TN and γn,γn, . . . ,γnN . Then {xn}
converges strongly to x* ∈ F , where x* =Q(u) and Q : C → F is the unique sunny nonexpan-
sive retraction from C onto F .

http://www.fixedpointtheoryandapplications.com/content/2013/1/23


Kangtunyakarn Fixed Point Theory and Applications 2013, 2013:23 Page 4 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/23

In , Zhou [] proved a strong convergence theorem for the modification of normal
Mann’s iteration algorithm generated by a strict pseudo-contraction in a real -uniformly
smooth Banach space as follows.

Theorem . Let C be a closed convex subset of a real -uniformly smooth Banach space
E and let T : C → C be a λ-strict pseudo-contraction such that F(T) �= ∅. Given u,x ∈ C
and the sequences {αn}, {βn}, {γn} and {δn} in (, ), the following control conditions are
satisfied:

(i) a ≤ αn ≤ λ

K for some a >  and for all n ≥ ,

(ii) βn + γn + δn =  for all n ≥ ,

(iii) lim
n→∞βn =  and

∞∑
n=

βn = ∞,

(iv) αn+ – αn →  as n→ ∞,

(v)  < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < .

Let a sequence {xn} be generated by

⎧⎨
⎩
yn = αnTxn + ( – αn)xn,

xn+ = βnu + γnxn + δnyn, n≥ .
(.)

Then {xn} converges strongly to x* ∈ F(T), where x* =QF(T)(u) and QF(T) : C → F(T) is the
unique sunny nonexpansive retraction from C onto F(T).

In , Aoyama et al. [] proved a weak convergence theorem for finding a solution of
problem (.) as follows.

Theorem . Let E be a uniformly convex and -uniformly smooth Banach space and let
C be a nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from
E onto C, let α >  and let A be an α-inverse strongly accretive operator of C into E with
S(C,A) �= ∅. Suppose x = x ∈ C and {xn} is given by

xn+ = αnxn + ( – αn)QC(xn – λnAxn)

for every n = , , . . . ,where {λn} is a sequence of positive real numbers and {αn} is a sequence
in [, ]. If {λn} and {αn} are chosen so that λn ∈ [a, α

K ] for some a >  and αn ∈ [b, c] for
some b, c with  < b < c < , then {xn} converges weakly to some element z of S(C,A), where
K is the -uniformly smoothness constant of E.

In this paper, motivated by Theorems ., . and ., we prove a strong convergence
theorem for finding a common element of the set of solutions of a finite family of vari-
ational inequality problems and the set of fixed points of a nonexpansive mapping and
an η-strictly pseudo-contractive mapping in uniformly convex and -uniformly smooth
spaces. Moreover, by using our main result, we prove a strong convergence theorem for
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finding a common element of the set of fixed points of a finite family of ηi-strictly pseudo-
contractivemappings for every i = , , . . . ,N in uniformly convex and -uniformly smooth
Banach spaces.

2 Preliminaries
In this section, we collect and prove the following lemmas to use in our main result.

Lemma. (See []) Let E be a real -uniformly smoothBanach spacewith the best smooth
constant K . Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ ‖Ky‖

for any x, y ∈ E.

Definition . (See []) Let C be a nonempty convex subset of a real Banach space. Let
{Ti}Ni= be a finite family of nonexpanxive mappings of C into itself and let λ, . . . ,λN be
real numbers such that  ≤ λi ≤  for every i = , . . . ,N . Define a mapping K : C → C as
follows:

U = λT + ( – λ)I,

U = λTU + ( – λ)U,

U = λTU + ( – λ)U,

...

UN– = λN–TN–UN– + ( – λN–)UN–,

K =UN = λNTNUN– + ( – λN )UN–.

(.)

Such a mapping K is called the K-mapping generated by T, . . . ,TN and λ, . . . ,λN .

Lemma . (See []) Let C be a nonempty closed convex subset of a strictly convex
Banach space. Let {Ti}Ni= be a finite family of nonexpanxive mappings of C into itself with⋂N

i= F(Ti) �= ∅ and let λ, . . . ,λN be real numbers such that  < λi <  for every i = , . . . ,N –
and  < λN ≤ . Let K be the K-mapping generated by T, . . . ,TN and λ, . . . ,λN . Then
F(K) =

⋂N
i= F(Ti).

Remark . From Lemma ., it is easy to see that the K mapping is a nonexpansive
mapping.

Lemma . (See []) Let {xn} and {zn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose

xn+ = βnxn + ( – βn)zn

for all integer n ≥  and

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖xn – zn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/23
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Lemma . (See []) Let X be a uniformly convex Banach space and Br = {x ∈ X : ‖x‖ ≤
r}, r > .Then there exists a continuous, strictly increasing and convex function g : [,∞] →
[,∞], g() =  such that

‖αx + βy + γ z‖ ≤ α‖x‖ + β‖y‖ + γ ‖z‖ – αβg
(‖x – y‖)

for all x, y, z ∈ Br and all α,β ,γ ∈ [, ] with α + β + γ = .

Lemma . (See []) Let C be a nonempty closed convex subset of a smooth Banach
space E. Let QC be a sunny nonexpansive retraction from E onto C and let A be an ac-
cretive operator of C into E. Then for all λ > ,

S(C,A) = F
(
QC(I – λA)

)
.

Lemma . (See []) Let C be a closed convex subset of a strictly convex Banach space X.
Let {Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose

⋂∞
n= F(Tn) �= ∅ is

nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = . Then a mapping
S on C defined by Sx =

∑∞
n= λnTnx for x ∈ C is well defined, non-expansive and F(S) =⋂∞

n= F(Tn) holds.

Lemma . (See []) Let r > . If E is uniformly convex, then there exists a continuous,
strictly increasing and convex function g : [,∞) → [,∞), g() =  such that for all x, y ∈
Br() = {x ∈ E : ‖x‖ ≤ r} and for any α ∈ [, ], we have ‖αx + ( – α)y‖ ≤ α‖x‖ + ( –
α)‖y‖ – α( – α)g(‖x – y‖).

Lemma . (See []) Let X be a uniformly smooth Banach space, C be a closed convex
subset of X, T : C → C be a nonexpansive mapping with F(T) �= ∅ and let f ∈ ∏

C where∏
C is to denote the collection of all contractions on C. Then the sequence {xt} defined by

xt = tf (xt) + ( – t)Txt converses strongly to a point in F(T). If we define a mapping Q :∏
C → F(T) by Q(f ) = limt→ xt for all f ∈ ∏

C , then Q(f ) solves the following variational
inequality:

〈
(I – f )Q(f ), j

(
Q(f ) – p

)〉 ≤ 

for all f ∈ ∏
C , p ∈ F(T).

Lemma . (See []) In a Banach space E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma . (See []) Let {sn} be a sequence of nonnegative real number satisfying

sn+ = ( – αn)sn + αnβn, ∀n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/23
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where {αn}, {βn} satisfy the conditions

() {αn} ⊂ [, ],
∞∑
n=

αn = ∞;

() lim sup
n→∞

βn ≤  or
∞∑
n=

|αnβn| < ∞.

Then limn→∞ sn = .

Lemma . Let C be a nonempty closed convex subset of a -uniformly smooth Banach
space E and let T : C → C be a nonexpansive mapping and S : C → C be an η-strictly
pseudocontractive mapping with F(S) ∩ F(T) �= ∅. Define a mapping BA : C → C by BAx =
T(( –α)I +αS)x for all x ∈ C and α ∈ (, η

K ), where K is the -uniformly smooth constant
of E. Then F(BA) = F(S)∩ F(T).

Proof It is easy to see that F(T) ∩ F(S) ⊆ F(BA). Let x ∈ F(BA) and x* ∈ F(T) ∩ F(S), we
have

∥∥x – x*
∥∥ =

∥∥T(
( – α)x + αSx

)
– x*

∥∥

≤ ∥∥( – α)x + αSx – x*
∥∥

=
∥∥x – x* + α(Sx – x)

∥∥

≤ ∥∥x – x*
∥∥ + α

〈
Sx – x, j

(
x – x*

)〉
+ Kα‖Sx – x‖

=
∥∥x – x*

∥∥ + α
〈
Sx – x*, j

(
x – x*

)〉
+ α

〈
x* – x, j

(
x – x*

)〉
+ Kα‖Sx – x‖

=
∥∥x – x*

∥∥ + α
〈
Sx – x*, j

(
x – x*

)〉
– α

∥∥x – x*
∥∥ + Kα‖Sx – x‖

≤ ∥∥x – x*
∥∥ + α

(∥∥x – x*
∥∥ – η

∥∥(I – S)x
∥∥) – α

∥∥x – x*
∥∥

+ Kα‖Sx – x‖

=
∥∥x – x*

∥∥ – αη‖x – Sx‖ + Kα‖Sx – x‖

=
∥∥x – x*

∥∥ – α
(
η –Kα

)‖x – Sx‖. (.)

(.) implies that

α
(
η –Kα

)‖x – Sx‖ ≤ ∥∥x – x*
∥∥ –

∥∥x – x*
∥∥ = .

Then we have Sx = x, that is, x ∈ F(S).
Since x ∈ F(BA), from the definition of BA, we have

x = BAx = T
(
( – α)x + αSx

)
= Tx.

Then we have x ∈ F(T). Therefore, x ∈ F(T)∩ F(S). It follows that F(BA) ⊆ F(T)∩ F(S).
Hence, F(BA) = F(T)∩ F(S). �

Remark . Applying (.), we have that the mapping BA is nonexpansive.
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3 Main results
Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Ai : C → E be an αi-inverse strongly accretive mapping.
Define a mapping Gi : C → C by QC(I – λiAi)x =Gix for all x ∈ C and i = , , . . . ,N , where
λi ∈ (, αi

K ), K is the -uniformly smooth constant of E. Let B : C → C be the K-mapping
generated by G,G, . . . ,GN and ρ,ρ, . . . ,ρN ,where ρi ∈ (, ), ∀i = , , . . . ,N – and ρN ∈
(, ]. Let T : C → C be a nonexpansive mapping and S : C → C be an η-strictly pseudo-
contractive mapping with F = F(S)∩ F(T)∩⋂N

i= S(C,Ai) �= ∅.Define a mapping BA : C →
C by T(( –α)I +αS)x = BAx, ∀x ∈ C and α ∈ (, η

K ). Let {xn} be the sequence generated by
x ∈ C and

xn+ = αnf (xn) + βnxn + γnBxn + δnBAxn, ∀n≥ , (.)

where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn =  and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .

Proof First, we will show that Gi is a nonexpansive mapping for every i = , , . . . ,N .
Let x, y ∈ C. From nonexpansiveness of QC , we have

‖Gix –Giy‖ =
∥∥QC(I – λiAi)x –QC(I – λiAi)y

∥∥

≤ ∥∥(I – λiAi)x – (I – λiAi)y
∥∥

=
∥∥x – y – λi(Aix –Aiy)

∥∥

≤ ‖x – y‖ – λi
〈
Aix –Aiy, j(x – y)

〉
+ Kλ

i ‖Aix –Aiy‖

≤ ‖x – y‖ – λiαi‖Aix –Aiy‖ + Kλ
i ‖Aix –Aiy‖

= ‖x – y‖ – λi
(
αi –Kλi

)‖Aix –Aiy‖

≤ ‖x – y‖.

Then we haveGi is a nonexpansive mapping for every i = , , . . . ,N . Since B : C → C is the
K-mapping generated byG,G, . . . ,GN and ρ,ρ, . . . ,ρN andLemma., we can conclude

http://www.fixedpointtheoryandapplications.com/content/2013/1/23
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that F(B) =
⋂N

i= F(Gi). From Lemma . and the definition of Gi, we have F(Gi) = S(C,Ai)
for every i = , , . . . ,N . Hence, we have

F(B) =
N⋂
i=

F(Gi) =
N⋂
i=

S(C,Ai). (.)

Next, we will show that the sequence {xn} is bounded.
Let z ∈F ; from the definition of xn, we have

‖xn+ – z‖ ≤ αn
∥∥f (xn) – z

∥∥ + βn‖xn – z‖ + γn‖Bxn – z‖ + δn‖BAxn – z‖
≤ αn

∥∥f (xn) – z
∥∥ + ( – αn)‖xn – z‖

≤ αn
∥∥f (xn) – f (z)

∥∥ + αn
∥∥f (z) – z

∥∥ + ( – αn)‖xn – z‖
≤ αna‖xn – z‖ + αn

∥∥f (z) – z
∥∥ + ( – αn)‖xn – z‖

=
(
 – αn( – a)

)‖xn – z‖ + αn
∥∥f (z) – z

∥∥
≤ max

{
‖x – z‖, ‖f (z) – z‖

 – a

}
.

By induction, we can conclude that the sequence {xn} is bounded and so are {f (xn)}, {Bxn},
{BAxn}.
Next, we will show that

lim
n→∞‖xn+ – xn‖ = . (.)

From the definition of xn, we can rewrite xn by

xn+ = βnxn + ( – βn)zn, (.)

where zn = αnf (xn)+γnBxn+δnBAxn
–βn

.
Since

‖zn+ – zn‖ =
∥∥∥∥αn+f (xn+) + γn+Bxn+ + δn+BAxn+

 – βn+

–
(

αnf (xn) + γnBxn + δnBAxn
 – βn

)∥∥∥∥
=

∥∥∥∥xn+ – βn+xn+
 – βn+

–
xn+ – βnxn

 – βn

∥∥∥∥
=

∥∥∥∥xn+ – βn+xn+
 – βn+

–
xn+ – βnxn
 – βn+

+
xn+ – βnxn
 – βn+

–
xn+ – βnxn

 – βn

∥∥∥∥
≤

∥∥∥∥xn+ – βn+xn+
 – βn+

–
xn+ – βnxn
 – βn+

∥∥∥∥ +
∥∥∥∥xn+ – βnxn

 – βn+
–
xn+ – βnxn

 – βn

∥∥∥∥
=


 – βn+

∥∥xn+ – βn+xn+ – (xn+ – βnxn)
∥∥

+
∣∣∣∣ 
 – βn+

–


 – βn

∣∣∣∣‖xn+ – βnxn‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/23
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=


 – βn+

∥∥xn+ – βn+xn+ – (xn+ – βnxn)
∥∥

+
|βn+ – βn|

( – βn)( – βn+)
‖xn+ – βnxn‖

=


 – βn+

∥∥αn+f (xn+) + γn+Bxn+ + δn+BAxn+

–
(
αnf (xn) + γnBxn + δnBAxn

)∥∥ +
|βn+ – βn|

( – βn)( – βn+)
‖xn+ – βnxn‖

=


 – βn+

(∥∥αn+f (xn+) – αnf (xn)
∥∥ + γn+‖Bxn+ – Bxn‖

+ δn+‖BAxn+ – BAxn‖ + |γn+ – γn|‖Bxn‖ + |δn+ – δn|‖BAxn‖
)

+
|βn+ – βn|

( – βn)( – βn+)
‖xn+ – βnxn‖

≤ 
 – βn+

(
αn+

∥∥f (xn+)∥∥ + αn
∥∥f (xn)∥∥ + (γn+ + δn+)‖xn+ – xn‖

+ |γn+ – γn|‖Bxn‖ + |δn+ – δn|‖BAxn‖
)

+
|βn+ – βn|

( – βn)( – βn+)
‖xn+ – βnxn‖

=
αn+

 – βn+

∥∥f (xn+)∥∥ +
αn

 – βn+

∥∥f (xn)∥∥ +
γn+ + δn+

 – βn+
‖xn+ – xn‖

+
|γn+ – γn|
 – βn+

‖Bxn‖ + |δn+ – δn|
 – βn+

‖BAxn‖

+
|βn+ – βn|

( – βn)( – βn+)
‖xn+ – βnxn‖

≤ αn+

 – βn+

∥∥f (xn+)∥∥ +
αn

 – βn+

∥∥f (xn)∥∥ + ‖xn+ – xn‖ + |γn+ – γn|
 – βn+

‖Bxn‖

+
|δn+ – δn|
 – βn+

‖BAxn‖ + |βn+ – βn|
( – βn)( – βn+)

‖xn+ – βnxn‖. (.)

From (.) and the conditions (i)-(iv), we have

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ . (.)

From Lemma . and (.), we have

lim
n→∞‖zn – xn‖ = . (.)

From (.), we have

‖xn+ – xn‖ = ( – βn)‖zn – xn‖,

and from the condition (iv) and (.), we have

lim
n→∞‖xn+ – xn‖ = .
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Next, we will show that

lim
n→∞‖Bxn – xn‖ =  and lim

n→∞‖BAxn – xn‖ = .

From the definition of xn, we can rewrite xn+ by

xn+ = αnf (xn) + βnxn + γnBxn + δnBAxn

= αnf (xn) + βnxn + (γn + δn)
(γnBxn + δnBAxn)

γn + δn

= αnf (xn) + βnxn + enz′
n, (.)

where en = γn + δn and z′
n =

(γnBxn+δnBAxn)
γn+δn

.
From Lemma . and (.), we have

‖xn+ – z‖ =
∥∥αn

(
f (xn) – z

)
+ βn(xn – z) + en

(
z′
n – z

)∥∥

≤ αn
∥∥f (xn) – z

∥∥ + βn‖xn – z‖ + en
∥∥z′

n – z
∥∥ – βneng

(∥∥z′
n – xn

∥∥)
= αn

∥∥f (xn) – z
∥∥ + βn‖xn – z‖ – βneng

(∥∥z′
n – xn

∥∥)

+ en
∥∥∥∥ (γnBxn + δnBAxn)

γn + δn
– z

∥∥∥∥


= αn
∥∥f (xn) – z

∥∥ + βn‖xn – z‖ – βneng
(∥∥z′

n – xn
∥∥)

+ en
∥∥∥∥
(
 –

δn

γn + δn

)
(Bxn – z) +

δn

γn + δn
(BAxn – z)

∥∥∥∥


≤ αn
∥∥f (xn) – z

∥∥ + βn‖xn – z‖ – βneng
(∥∥z′

n – xn
∥∥)

+ en
((

 –
δn

γn + δn

)
‖Bxn – z‖ + δn

γn + δn
‖BAxn – z‖

)

≤ αn
∥∥f (xn) – z

∥∥ + βn‖xn – z‖ – βneng
(∥∥z′

n – xn
∥∥)

+ en‖xn – z‖

≤ αn
∥∥f (xn) – z

∥∥ + ‖xn – z‖ – βneng
(∥∥z′

n – xn
∥∥)
,

which implies that

βneng
(∥∥z′

n – xn
∥∥) ≤ αn

∥∥f (xn) – z
∥∥ + ‖xn – z‖ – ‖xn+ – z‖

≤ αn
∥∥f (xn) – z

∥∥ +
(‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖. (.)

From the conditions (i), (ii), (iv) and (.), we have

lim
n→∞ g

(∥∥z′
n – xn

∥∥)
= .

From the properties of g, we have

lim
n→∞

∥∥z′
n – xn

∥∥ = . (.)
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From Lemma . and the definition of z′
n, we have

∥∥z′
n – z

∥∥ =
∥∥∥∥ (γnBxn + δnBAxn)

γn + δn
– z

∥∥∥∥


=
∥∥∥∥
(
 –

δn

δn + γn

)
(Bxn – z) +

δn

δn + γn
(BAxn – z)

∥∥∥∥


≤
(
 –

δn

δn + γn

)
‖Bxn – z‖ + δn

δn + γn
‖BAxn – z‖

–
(
 –

δn

δn + γn

)
δn

δn + γn
g

(‖Bxn – BAxn‖
)

≤ ‖xn – z‖ –
(
 –

δn

δn + γn

)
δn

δn + γn
g

(‖Bxn – BAxn‖
)
,

which implies that
(
 –

δn

δn + γn

)
δn

δn + γn
g

(‖Bxn – BAxn‖
) ≤ ‖xn – z‖ – ∥∥z′

n – z
∥∥

≤ (‖xn – z‖ + ∥∥z′
n – z

∥∥)∥∥z′
n – xn

∥∥.
From the condition (iii) and (.), we have

lim
n→∞ g

(‖Bxn – BAxn‖
)
= .

From the properties of g, we have

lim
n→∞‖Bxn – BAxn‖ = . (.)

From the definition of xn, we can rewrite xn+ by

xn+ = αnf (xn) + βnxn + γnBxn + δnBAxn

= βnxn + γnBxn + (αn + δn)
αnf (xn) + δnBAxn

αn + δn

= βnxn + γnBxn + dnz′′
n, (.)

where dn = αn + δn and z′′
n =

αnf (xn)+δnBAxn
αn+δn

.
From Lemma . and the convexity of ‖ · ‖, we have

‖xn+ – z‖ =
∥∥βn(xn – z) + γn(Bxn – z) + dn

(
z′′
n – z

)∥∥

≤ βn‖xn – z‖ + γn‖Bxn – z‖ + dn
∥∥z′′

n – z
∥∥ – βnγng

(‖xn – Bxn‖
)

= βn‖xn – z‖ + γn‖Bxn – z‖ + dn
∥∥∥∥αnf (xn) + δnBAxn

αn + δn
– z

∥∥∥∥


– βnγng
(‖xn – Bxn‖

)

= βn‖xn – z‖ + γn‖Bxn – z‖ + dn
∥∥∥∥ αn

αn + δn

(
f (xn) – z

)

+
(
 –

αn

αn + δn

)
(BAxn – z)

∥∥∥∥


– βnγng
(‖xn – Bxn‖

)
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≤ βn‖xn – z‖ + γn‖Bxn – z‖ + dn
(

αn

αn + δn

∥∥f (xn) – z
∥∥ 

+
(
 –

αn

αn + δn

)
‖BAxn – z‖

)
– βnγng

(‖xn – Bxn‖
)

= βn‖xn – z‖ + γn‖Bxn – z‖ + dn
αn

αn + δn

∥∥f (xn) – z
∥∥

+ dn
(
 –

αn

αn + δn

)
‖BAxn – z‖ – βnγng

(‖xn – Bxn‖
)

≤ βn‖xn – z‖ + γn‖xn – z‖ + dn
αn

αn + δn

∥∥f (xn) – z
∥∥

+ dn‖xn – z‖ – βnγng
(‖xn – Bxn‖

)

≤ ‖xn – z‖ + dn
αn

αn + δn

∥∥f (xn) – z
∥∥ – βnγng

(‖xn – Bxn‖
)
, (.)

which implies that

βnγng
(‖xn – Bxn‖

) ≤ ‖xn – z‖ – ‖xn+ – z‖ + dn
αn

αn + δn

∥∥f (xn) – z
∥∥

≤ (‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖
+ dn

αn

αn + δn

∥∥f (xn) – z
∥∥. (.)

From the conditions (i), (ii), (iv) (.) and (.), we have

lim
n→∞ g

(‖xn – Bxn‖
)
= .

From the properties of g, we have

lim
n→∞‖xn – Bxn‖ = . (.)

From (.), (.) and

‖xn – BAxn‖ ≤ ‖xn – Bxn‖ + ‖Bxn – BAxn‖,

we have

lim
n→∞‖xn – BAxn‖ = . (.)

Define a mapping L : C → C by Lx = ( – ε)Bx + εBAx for all x ∈ C and ε ∈ (, ). From
Lemma ., . and (.), we have F(L) = F(B)∩ F(BA) =

⋂N
i= S(C,Ai)∩ F(S)∩ F(T) =F .

From (.) and (.) and

‖xn – Lxn‖ =
∥∥( – ε)(xn – Bxn) + ε(xn – BAxn)

∥∥
≤ ( – ε)‖xn – Bxn‖ + ε‖xn – BAxn‖,

we have

lim
n→∞‖xn – Lxn‖ = . (.)
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Next, we will show that

lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉 ≤ , (.)

where limt→ xt = q ∈F and xt begins the fixed point of the contraction

x �→ tf (x) + ( – t)Lx.

Then xt solves the fixed point equation xt = tf (xt) + ( – t)Lxt .
From the definition of xt , we have

‖xt – xn‖ =
∥∥t(f (xt) – xn

)
+ ( – t)(Lxt – xn)

∥∥

≤ ( – t)‖Lxt – xn‖ + t
〈
f (xt) – xn, j(xt – xn)

〉
≤ ( – t)

(‖Lxt – Lxn‖ + ‖Lxn – xn‖
) + t

〈
f (xt) – xn, j(xt – xn)

〉
≤ ( – t)

(‖xt – xn‖ + ‖Lxn – xn‖
) + t

〈
f (xt) – xn, j(xt – xn)

〉
= ( – t)

(‖xt – xn‖ + ‖xt – xn‖‖Lxn – xn‖ + ‖Lxn – xn‖
)

+ t
〈
f (xt) – xn, j(xt – xn)

〉
= ( – t)

(‖xt – xn‖ + ‖xt – xn‖‖Lxn – xn‖ + ‖Lxn – xn‖
)

+ t
〈
f (xt) – xt , j(xt – xn)

〉
+ t

〈
xt – xn, j(xt – xn)

〉
=

(
 – t + t

)‖xt – xn‖ + ( – t)
(
‖xt – xn‖‖Lxn – xn‖ + ‖Lxn – xn‖

)
+ t

〈
f (xt) – xt , j(xt – xn)

〉
+ t‖xt – xn‖

=
(
 + t

)‖xt – xn‖ + fn(t) + t
〈
f (xt) – xt , j(xt – xn)

〉
, (.)

where fn(t) = ( – t)(‖xt – xn‖‖Lxn – xn‖ + ‖Lxn – xn‖). From (.), we have

lim
n→∞ fn(t) = . (.)

(.) implies that

〈
xt – f (xt), j(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
fn(t)

≤ t

D +


t
fn(t), (.)

where D >  such that ‖xt – xn‖ ≤ D for all t ∈ (, ) and n≥ . From (.) and (.), we
have

lim sup
n→∞

〈
xt – f (xt), j(xt – xn)

〉 ≤ t

D. (.)

From (.) taking t → , we have

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), j(xt – xn)

〉 ≤ . (.)
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Since

〈
f (q) – q, j(xn – q)

〉
=

〈
f (q) – q, j(xn – q)

〉
–

〈
f (q) – q, j(xn – xt)

〉
+

〈
f (q) – q, j(xn – xt)

〉
–

〈
f (q) – xt , j(xn – xt)

〉
+

〈
f (q) – xt , j(xn – xt)

〉
–

〈
f (xt) – xt , j(xn – xt)

〉
+

〈
f (xt) – xt , j(xn – xt)

〉
=

〈
f (q) – q, j(xn – q) – j(xn – xt)

〉
+

〈
xt – q, j(xn – xt)

〉
+

〈
f (q) – f (xt), j(xn – xt)

〉
+

〈
f (xt) – xt , j(xn – xt)

〉
≤ 〈

f (q) – q, j(xn – q) – j(xn – xt)
〉
+ ‖xt – q‖‖xn – xt‖

+ a‖q – xt‖‖xn – xt‖ +
〈
f (xt) – xt , j(xn – xt)

〉
,

it follows that

lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉 ≤ lim sup
n→∞

〈
f (q) – q, j(xn – q) – j(xn – xt)

〉

+ ‖xt – q‖ lim sup
n→∞

‖xn – xt‖ + a‖q – xt‖ lim sup
n→∞

‖xn – xt‖

+ lim sup
n→∞

〈
f (xt) – xt , j(xn – xt)

〉
. (.)

Since j is norm-to-norm uniformly continuous on a bounded subset of C and (.), then
we have

lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉 ≤ .

Finally, we will show the sequence {xn} converses strongly to q ∈ F . From the definition
of xn, we have

‖xn+ – q‖ =
∥∥αn

(
f (xn) – q

)
+ βn(xn – q) + γn(Bxn – q) + δn(BAxn – q)

∥∥

≤ ∥∥βn(xn – q) + γn(Bxn – q) + δn(BAxn – q)
∥∥

+ αn
〈
f (xn) – q, j(xn+ – q)

〉
≤ (

βn‖xn – q‖ + γn‖Bxn – q‖ + δn‖BAxn – q‖)
+ αn

〈
f (xn) – f (q), j(xn+ – q)

〉
+ αn

〈
f (q) – q, j(xn+ – q)

〉
≤ ( – αn)‖xn – q‖ + αn

〈
f (xn) – f (q), j(xn+ – q)

〉
+ αn

〈
f (q) – q, j(xn+ – q)

〉
≤ ( – αn)‖xn – q‖ + aαn‖xn – q‖‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉
≤ ( – αn)‖xn – q‖ + aαn‖xn – q‖ + aαn‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉
=

(
 – αn + α

n
)‖xn – q‖ + aαn‖xn – q‖ + aαn‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉
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= ( – αn + aαn)‖xn – q‖ + α
n‖xn – q‖ + aαn‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉
= ( – aαn – αn + aαn)‖xn – q‖ + α

n‖xn – q‖ + aαn‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉
=

(
 – aαn – αn( – a)

)‖xn – q‖ + α
n‖xn – q‖ + aαn‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉
,

which implies that

‖xn+ – q‖ ≤
(
 –

αn( – a)
 – aαn

)
‖xn – q‖

+
αn

 – aαn

(
αn‖xn – q‖ + 

〈
f (q) – q, j(xn+ – q)

〉)

≤
(
 –

αn( – a)
 – aαn

)
‖xn – q‖

+
αn( – a)
 – aαn

· 
( – a)

(
αn‖xn – q‖ + 

〈
f (q) – q, j(xn+ – q)

〉)
.

From the condition (i) and Lemma ., we can imply that {xn} converses strongly to q ∈F .
This completes the proof. �

The following results can be obtained from Theorem .. We, therefore, omit the proof.

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let A : C → E be a ν-inverse strongly accretive mapping. Let
T : C → C be a nonexpansive mapping and S : C → C be an η-strictly pseudo-contractive
mapping with F = F(S)∩F(T)∩ S(C,A) �= ∅.Define a mapping BA : C → C by T(( –α)I +
αS)x = BAx, ∀x ∈ C and α ∈ (, η

K ), where K is the -uniformly smooth constant of E. Let
{xn} be the sequence generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnQC(I – λA)xn + δnBAxn, ∀n≥ ,

where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn = , λ ∈ (, ν

K ) and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .
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Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Ai : C → E be an αi-inverse strongly accretive mapping.
Define a mapping Gi : C → C by QC(I – λiAi)x =Gix for all x ∈ C and i = , , . . . ,N , where
λi ∈ (, αi

K ), K is the -uniformly smooth constant of E. Let B : C → C be the K-mapping
generated by G,G, . . . ,GN and ρ,ρ, . . . ,ρN ,where ρi ∈ (, ), ∀i = , , . . . ,N – and ρN ∈
(, ]. Let T : C → C be a nonexpansivemappingwithF = F(T)∩⋂N

i= S(C,Ai) �= ∅. Let {xn}
be the sequence generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnBxn + δnTxn, ∀n≥ ,

where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn =  and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Ai : C → E be an αi-inverse strongly accretive map-
ping. Define a mapping Gi : C → C by QC(I – λiAi)x =Gix for all x ∈ C and i = , , . . . ,N ,
where λi ∈ (, αi

K ), K is the -uniformly smooth constant of E. Let B : C → C be the K-
mapping generated by G,G, . . . ,GN and ρ,ρ, . . . ,ρN , where ρi ∈ (, ), ∀i = , , . . . ,N – 
and ρN ∈ (, ]. Let S : C → C be an η-strictly pseudo-contractive mapping with F =
F(S) ∩ ⋂N

i= S(C,Ai) �= ∅. Define a mapping BA : C → C by ( – α)x + αSx = BAx, ∀x ∈ C
and α ∈ (, η

K ). Let {xn} be the sequence generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnBxn + δnBAxn, ∀n≥ ,
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where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn =  and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .

4 Applications
To prove the next theorem, we needed the following lemma.

Lemma . Let C be a nonempty closed convex subset of a Banach space E and let P : C →
C be an η-strictly pseudo-contractive mapping with F(P) �= ∅. Then F(P) = S(C, I – P).

Proof It is easy to see that F(P) ⊆ S(C, I–P). PutA = I–P and z* ∈ F(P). Let z ∈ S(C, I–P),
then there exists j(x – z) ∈ J(x – z) such that

〈
(I – P)z, j(x – z)

〉 ≥ , ∀x ∈ C. (.)

Since P is an η-strictly pseudo-contractive mapping, then there exists j(z – z*) such that

〈
Pz – Pz*, j

(
z – z*

)〉
=

〈
(I –A)z – (I –A)z*, j

(
z – z*

)〉
=

〈
z – z* –

(
Az –Az*

)
, j
(
z – z*

)〉
=

〈
z – z*, j

(
z – z*

)〉
–

〈
Az –Az*, j

(
z – z*

)〉
= ‖z – z*‖ – 〈

Az, j
(
z – z*

)〉
≤ ‖z – z‖ – η

∥∥(I – P)z
∥∥. (.)

From (.), (.), we have

η‖z – Pz‖ ≤ 〈
Az, j

(
z – z*

)〉
= –

〈
Az, j

(
z* – z

)〉 ≤ .

It implies that z = Pz, that is, z ∈ F(P). Then we have S(C, I –P) ⊆ F(P). Hence, we have
S(C, I – P) = F(P). �

Remark . If C is a closed convex subset of a smooth Banach space E and QC is a sunny
nonexpansive retraction from E onto C, from Remark ., Lemma . and ., we have

F(P) = S(C, I – P) = F
(
QC

(
I – λ(I – P)

))
(.)

for all λ > .
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Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Si : C → E be an ηi-strictly pseudo-contractive mapping.
Define a mapping Gi : C → C by QC(I – λi(I – Si))x = Gix for all x ∈ C and i = , , . . . ,N ,
where λi ∈ (, ηi

K ), K is the -uniformly smooth constant of E. Let B : C → C be the K-
mapping generated by G,G, . . . ,GN and ρ,ρ, . . . ,ρN , where ρi ∈ (, ), ∀i = , , . . . ,N – 
and ρN ∈ (, ]. Let T : C → C be a nonexpansive mapping and S : C → C be an η-strictly
pseudo-contractive mapping with F = F(S) ∩ F(T) ∩ ⋂N

i= F(Si) �= ∅. Define a mapping
BA : C → C by T(( – α)I + αS)x = BAx, ∀x ∈ C and α ∈ (, η

K ). Let {xn} be the sequence
generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnBxn + δnBAxn, ∀n≥ ,

where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn =  and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .

Proof Since Si is an ηi-strictly pseudo-contractive mapping, then we have (I – Si) is an ηi-
inverse strongly accretivemapping for every i = , , . . . ,N . For every i = , , . . . ,N , putting
Ai = I –Si in Theorem ., fromRemark . and Theorem ., we can conclude the desired
results. �

Next corollaries are derived from Theorem .. We, therefore, omit the proof.

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Si : C → E be an ηi-strictly pseudo contractive mapping.
Define a mapping Gi : C → C by QC(I – λi(I – Si))x = Gix for all x ∈ C and i = , , . . . ,N ,
where λi ∈ (, ηi

K ), K is the -uniformly smooth constant of E. Let B : C → C be the K-
mapping generated by G,G, . . . ,GN and ρ,ρ, . . . ,ρN , where ρi ∈ (, ), ∀i = , , . . . ,N – 
and ρN ∈ (, ]. Let T : C → C be a nonexpansive mapping withF = F(T)∩⋂N

i= F(Si) �= ∅.
Let {xn} be the sequence generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnBxn + δnTxn, ∀n≥ ,
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where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn =  and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Si : C → E be an ηi-strictly pseudo contractive mapping.
Define a mapping Gi : C → C by QC(I – λi(I – Si))x = Gix for all x ∈ C and i = , , . . . ,N ,
where λi ∈ (, ηi

K ), K is the -uniformly smooth constant of E. Let B : C → C be the K-
mapping generated by G,G, . . . ,GN and ρ,ρ, . . . ,ρN , where ρi ∈ (, ), ∀i = , , . . . ,N – 
and ρN ∈ (, ]. S : C → C be an η-strictly pseudo contractive mapping with F = F(S) ∩⋂N

i= F(Si) �= ∅. Define a mapping BA : C → C by ( – α)x + αSx = BAx, ∀x ∈ C and α ∈
(, η

K ). Let {xn} be a sequence generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnBxn + δnBAxn, ∀n≥ ,

where f : C → C is a contractive mapping and {αn}, {βn}, {γn}, {δn} ⊆ [, ], αn + βn + γn +
δn =  and satisfy the following conditions:

(i) lim
n→∞αn =  and

∞∑
n=

αn = ∞,

(ii) {γn}, {δn} ⊆ [c,d] ⊂ (, ) for some c,d >  and ∀n≥ ,

(iii)
∞∑
n=

|βn+ – βn|,
∞∑
n=

|γn+ – γn|,
∞∑
n=

|δn+ – δn| <∞,

(iv)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converses strongly to q ∈ F , which solves the following variational
inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈F .
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