
Paknazar et al. Fixed Point Theory and Applications 2013, 2013:239
http://www.fixedpointtheoryandapplications.com/content/2013/1/239

RESEARCH Open Access

A Pata-type fixed point theorem in modular
spaces with application
Mohadeseh Paknazar1*, Madjid Eshaghi2, Yeol Je Cho3 and Seyed Mansour Vaezpour4

*Correspondence:
m.paknazar@yahoo.com
1Department of Mathematics,
Science and Research Branch,
Islamic Azad University, Tehran, Iran
Full list of author information is
available at the end of the article

Abstract
In this paper, we present a Pata-type fixed point theorem in modular spaces which
generalizes and improves some old results. As an application, we study the existence
of solutions of integral equations in modular function spaces.
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1 Introduction and preliminaries
In  Nakano [] introduced the theory of modular spaces in connection with the the-
ory of ordered spaces. Musielak and Orlicz [] in  redefined and generalized it to
obtain a generalization of the classical function spaces Lp. Khamsi et al. [] investigated
the fixed point results in modular function spaces. There exists an extensive literature on
the topic of the fixed point theory in modular spaces (see, for instance, [–]) and the
papers referenced there.
Recently, Pata [] improved the Banach principle. Using the idea of Pata, we prove a

fixed point theorem inmodular spaces. Thenwe showhowour results generalize old ones.
Also, we prepare an application of ourmain results to the existence of solutions of integral
equations in Musielak-Orlicz spaces.
In the first place, we recall some basic notions and facts about modular spaces.

Definition . Let X be an arbitrary vector space over K (=R or C).
(a) A function ρ : X → [, +∞] is called a modular if

(i) ρ(x) =  if and only if x = ;
(ii) ρ(αx) = ρ(x) for every scalar α with |α| = ;
(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β =  and α ≥ , β ≥ 
for all x, y ∈ X .

(b) If (iii) is replaced by
(iv) ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β =  and α ≥ , β ≥ ,
we say that ρ is convex modular.

(c) Amodular ρ defines a correspondingmodular space, i.e., the vector spaceXρ given by

Xρ =
{
x ∈ X : ρ(λx)→  as λ → 

}
.

Example . Let (X,‖ · ‖) be a norm space, then ‖ · ‖ is a convex modular on X. But the
converse is not true.
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In general the modular ρ does not behave as a norm or a distance because it is not
subadditive. But one can associate to a modular the F-norm (see []).

Definition . The modular space Xρ can be equipped with the F-norm defined by

|x|ρ = inf

{
α > ;ρ

(
x
α

)
≤ α

}
.

Namely, if ρ is convex, then the functional

‖x‖ρ = inf

{
α > ;ρ

(
x
α

)
≤ 

}
,

is a norm called the Luxemburg norm in Xρ which is equivalent to the F-norm | · |ρ .

Definition . Let Xρ be a modular space.
(a) A sequence {xn}n∈N in Xρ is said to be:

(i) ρ-convergent to x if ρ(xn – x) →  as n→ ∞.
(ii) ρ-Cauchy if ρ(xn – xm) →  as n,m → ∞.

(b) Xρ is ρ-complete if every ρ-Cauchy sequence is ρ-convergent.
(c) A subset B ⊆ Xρ is said to be ρ-closed if {xn}n∈N ⊂ B with xn → x, then x ∈ B.
(d) A subset B ⊆ Xρ is called ρ-bounded if

δρ(B) = sup
{
ρ(x – y) : x, y ∈ B

}
< ∞,

where δρ(B) is called the ρ-diameter of B.
(e) We say that ρ has the Fatou property if

ρ(x – y) ≤ lim infρ(xn – yn),

whenever ρ(xn – x)→ , ρ(yn – y) →  as n→ ∞.
(f ) ρ is said to satisfy the 
-condition if

ρ(xn)→  ⇒ ρ(xn) →  (as n → ∞).

It is easy to check that for every modular ρ and x, y ∈ Xρ ,
() ρ(αx)≤ ρ(βx) for each α,β ∈R

+ with α ≤ β ,
() ρ(x + y) ≤ ρ(x) + ρ(y).

Now we recall some basic concepts about modular function spaces as formulated by
Kozlowski [].
Let � be a nonempty set and let � be a nontrivial σ -algebra of subsets of �. Let P be a

δ-ring of subsets of � such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that
there is an increasing sequence of sets Kn ∈P such that � =

⋃
Kn.

In other words, the family P plays the role of δ-ring of subsets of finite measure. By E
we denote the linear space of all simple functions with supports from P .
ByM we denote the space of all measurable functions, i.e., all functions f : � →R such

that there exists a sequence {gn} ∈ E , |gn| ≤ |f | and gn(w) → f (w) for all w ∈ �. By A we
denote the characteristic function of the set A.
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Definition . A function ρ : E × � → [, +∞] is called a function modular if
(i) ρ(,E) =  for any E ∈ �;
(ii) ρ(f ,E)≤ ρ(g,E) whenever |f (w)| ≤ |g(w)| for any w ∈ �, f , g ∈ E and E ∈ �;
(iii) ρ(f , ·) :� → [, +∞] is a σ -sub-additive measure for every f ∈ E ;
(iv) ρ(α,A)→  as α decreases to  for every A ∈P , where ρ(α,A) = ρ(αA,A);
(v) for any α > , ρ(α, ·) is order continuous on P , that is, ρ(α,An) →  if {An} ∈P and

decreases to φ.

The definition of ρ is then extended to f ∈M by

ρ(f ,E) = sup
{
ρ(g,E); g ∈ E ,

∣∣g(w)∣∣ ≤ ∣∣f (w)∣∣,w ∈ �
}
.

For simplicity, we write ρ(f ) instead of ρ(f ,�).
One can verify that the functional ρ :M→ [, +∞] is a modular in the sense of Defini-

tion .. The modular space determined by ρ will be called a modular function space and
will be denoted by Lρ . Recall that

Lρ =
{
f ∈M : lim

α→
ρ(αf ) = 

}
.

Example . () The Orlicz modular is defined for every measurable real function f by
the formula

ρ(f ) =
∫
R

ϕ
(∣∣f (t)∣∣)dμ(t),

where μ denotes the Lebesgue measure in R and ϕ : R → [,∞) is continuous. We also
assume that ϕ(u) =  if and only if u =  and ϕ(t)→ ∞ as t → ∞.
The modular space induced by the Orlicz modular, is a modular function space and is

called the Orlicz space. () The Musielak-Orlicz modular spaces (see []).
Let

ρ(f ) =
∫

�

ϕ
(
ω,

∣∣f (ω)∣∣)dμ(ω),

where μ is a σ -finite measure on � and ϕ :� ×R → [,∞) satisfy the following:
(i) ϕ(ω,u) is a continuous even function of u, which is non-decreasing for u > , such

that ϕ(ω, ) = , ϕ(ω,u) >  for u =  and ϕ(ω,u) → ∞ as u → ∞;
(ii) ϕ(ω,u) is a measurable function of ω for each u ∈R;
(iii) ϕ(ω,u) is a convex function of u for each ω ∈ �.

It is easy to check that ρ is a convex modular function and the corresponding modular
space is called the Musielak-Orlicz space and is denoted by Lϕ .

In the following we give some notions which will be used in the next sections.

Definition . (Khamsi []) LetC be a subset of amodular function space Lρ . Amapping
T : C → C is called ρ-strict contraction if there exists λ <  such that

ρ(Tf – Tg) ≤ λρ(f – g)

for all f , g ∈ C.
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Theorem . (Khamsi []) Let C be a ρ-complete, ρ-bounded subset of Lρ and let T :
C → C be a ρ-strict contraction. Then T has a unique fixed point z ∈ C.Moreover, z is the
ρ-limit of the iterate of any point in C under the action of T .

Definition . (Taleb and Hanebaly []) The function u : I → Lϕ , where I = [,A] for all
A > , is said to be continuous at t ∈ I if for tn ∈ I and tn → t, then ρ(u(tn) –u(t)) →  as
n→ ∞.

If we consider theMusielak-Orlicz modular with 
-condition, then the continuity of u
at t is equivalent to

(tn → t) ⇒ ∥∥u(tn) – u(t)
∥∥

ρ
→  (as n → ∞).

Let Cϕ = C(I,Lϕ) be the space of all continuous mappings from I = [,A] into Lϕ .

Proposition . (Taleb and Hanebaly []) Suppose that the Musielak-Orlicz modular
ρ satisfies 
-condition and B ⊂ Lϕ is a ρ-closed and convex subset of Lϕ . For a ≥ , let
ρa(u) = sup{e–atρ(u(t)) : t ∈ I} for u ∈ Cϕ , then
() (Cϕ ,ρa) is a modular space, and ρa is a convex modular satisfying the Fatou property

and the 
-condition;
() Cϕ is ρa-complete;
() Cϕ

 = C(I,B) is a ρa-closed, convex subset of Cϕ .

2 Main results
Let Xρ be a modular function space, C be a nonempty, ρ-complete and ρ-bounded subset
ofXρ , x be an arbitrary point inC and letψ : [, +∞) → [, +∞) be an increasing function
vanishing with continuity at zero. Also, consider the vanishing sequence depending on
α ≥ , wn(α) = ( α

n )
α
∑n

k= ψ( α
k ). Let T : C → C be a mapping. For notational purposes, we

define Tn(x), x ∈ Xρ and n ∈ {, , , . . .} inductively by T(x) = x and Tn+(x) = T(Tn(x)).

Theorem . Let α ≥ , β >  and k ≥  be fixed constants. If the inequality

ρ(Tx – Ty) ≤ ( – ε)ρ(x – y) + εαψ(ε)
(
ρ(x – y) + k

)β (.)

is satisfied for every ε ∈ [, ] and every x, y ∈ C, then T has a unique fixed point z = T(z)
which is the ρ-lim of the iterate of x under the action of T .

Proof We first show existence. Let ε =  in (.), thus we get

ρ(Tx – Ty) ≤ ρ(x – y) (.)

for all x, y ∈ C. We construct a sequence {xn}∞n= such that xn = T(xn–) for all n ∈ N. Now
we claim {xn} is ρ-Cauchy sequence in C. By (.), (.) for allm,n ∈N, we have

ρ(xn+m – xn) ≤ ( – ε)ρ(xn+m– – xn–) + εαψ(ε)
(
ρ(xn+m– – xn–) + k

)β . (.)

LetM := (δρ(C) + k)β . Since C is ρ-bounded,M is finite and from (.) we have

ρ(xn+m+ – xn+) ≤ ( – ε)ρ(xn+m – xn) + εαψ(ε)M.

http://www.fixedpointtheoryandapplications.com/content/2013/1/239
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Letting ε =  – ( n
n+ )

α , we have ε ≤ α
n+ . Keeping in mind that ψ is an increasing function,

ρ(xn+m+ – xn+) ≤ nα

(n + )α
ρ(xn+m – xn) +

αα

(n + )α
ψ

(
α

n + 

)
M

⇒ (n + )αρ(xn+m+ – xn+) ≤ nαρ(xn+m – xn) + ααψ

(
α

n + 

)
M. (.)

Letting rn := nαρ(xn+m – xn), we have from (.)

rn+ ≤ rn + ααψ

(
α

n + 

)
M

≤ rn– + ααψ

(
α

n

)
M + ααψ

(
α

n + 

)
M

...

≤ r + ααM
n+∑
k=

ψ

(
α

k

)

= ααM
n+∑
k=

ψ

(
α

k

)
.

Therefore

ρ(xn+m – xn) ≤
(

α

n

)α

M
n∑
k=

ψ

(
α

k

)
=Mwn(α). (.)

Taking limit as n→ ∞ from both sides of (.), we get ρ(xn+m – xn) →  as n → ∞. Then
{xn} is ρ-Cauchy sequence in C. Since C is ρ-complete, there exists z ∈ C such that ρ(xn –
z) →  as n→ ∞. From (.) we get

ρ

(
Tz – z


)
≤ ρ(Tz – xn) + ρ(xn – z)

≤ ( – ε)ρ(z – xn–) + εαψ(ε)
(
ρ(z – xn–) + k

)β + ρ(xn – z).

Taking limit as ε →  afterwards as n→ ∞, we get

ρ

(
Tz – z


)
≤ ρ(z – xn–) + ρ(xn – z) → .

Then Tz = z. On the other hand, by (.), we have

ρ
(
z – Tnx

)
= ρ

(
Tz – Tnx

)
= ρ(z – xn+)

= lim
m→∞ρ(xm+n+ – xn+)

≤ Mwn(α)→  (as n→ ∞).

Thus z is the ρ-lim of the iterate of x under the action of T .

http://www.fixedpointtheoryandapplications.com/content/2013/1/239
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To show uniqueness, we suppose that y is another fixed point of T . Then from (.) we
have

ρ(z – y) = ρ(Tz – Ty) ≤ ( – ε)ρ(z – y) + εαψ(ε)
(
ρ(z – y) + k

)β . (.)

Then ρ(z – y) ≤ εα–ψ(ε)(ρ(z – y) + k)β →  as ε → , therefore z = y.
If for each ε ∈ (, ] strict inequality occurs in (.), then

ε–αρ(z – y) < ψ(ε)
(
ρ(z – y) + k

)β .

Taking limit as ε → , we get contradiction unless ρ(z – y) = . �

Remark . Theorem . is stronger than Theorem .. Indeed, with the hypothesis of
Theorem ., if for each f , g ∈ C and λ ∈ (, ), we have

ρ(Tf – Tg) ≤ λρ(f – g),

then by α = β = , k =  and

ψ(ε) =
(

γ γ

( + γ )+γ ( – λ)γ

)
εγ

for arbitrary γ > , we get

ρ(Tf – Tg) ≤ ( – ε)ρ(f – g) + εψ(ε)ρ(f – g)

is satisfied for every ε ∈ [, ]. Thus from Theorem ., T has a unique fixed point z which
is the ρ-lim of Tnf for an arbitrary point f in C.

3 Application
In this section, we study the existence of solution of the following integral equation:

u(t) = e–t f +
∫ t


es–tTu(s)ds, (.)

where

(H) T : B→ B is ρ-Lipschitz, i.e.,

∃κ > , ρ(Tu – Tv) ≤ κρ(u – v) (u, v ∈ B);

(H) B is a ρ-closed, ρ-bounded, convex subset of the Musielak-Orlicz space Lϕ satisfying
the 
-condition;

(H) f ∈ B is fixed.

Theorem . Under the conditions (H)-(H), for all A > , integral equation (.) has a
solution u ∈ Cϕ = C([,A],Lϕ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/239
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Proof Define the operator S on Cϕ
 by

Su(t) = e–t f +
∫ t


es–tTu(s)ds

for all t ∈ I := [,A].
st step. First we show that S : Cϕ

 → Cϕ
 . Let u ∈ Cϕ

 and tn, t ∈ I for all n ∈ N with
tn → t as n → ∞. We know u is ρ-continuous thus ρ(u(tn) – u(t)) → . From (H) we
get ρ(Tu(tn) – Tu(t)) →  as n → ∞, thus Tu is ρ-continuous at t. By 
-condition
Tu is ‖ · ‖ρ-continuous at t, therefore Su is ‖ · ‖ρ-continuous at t and consequently is
ρ-continuous at t. Also, we have

∫ t


es–tTu(s)ds ∈

(∫ t


es–t ds

)
co

{
Tu(s);  ≤ s≤ t

} ⊆ (
 – e–t

)
coB,

where coB is a closed convex hull of B in (Lϕ ,‖ · ‖ρ).
But B is convex and ρ-closed, then coB = B ⊆ Bρ = B, hence

Su(t) ∈ e–tB +
(
 – e–t

)
B ⊆ B (∀t ∈ I).

nd step. We show that Cϕ
 is ρa-complete and ρa-bounded.

By Proposition ., Cϕ
 is a ρa-closed subset of ρa-complete space Cϕ , hence Cϕ

 is
ρa-complete too.
Now let u, v ∈ Cϕ

 . By st step u(t), v(t) ∈ B for all t ∈ I , then

ρa(u – v) = sup
{
e–atρ

(
u(t) – v(t)

)
; t ∈ I

} ≤ δρ(B) < ∞,

therefore

δρa

(
Cϕ

)
= sup

{
ρa(u – v);u, v ∈ Cϕ


}
< ∞.

rd step. For u, v ∈ Cϕ
 , we have

ρa(Su – Sv)≤ κ

(
 – e–(+a)A

 + a

)
ρa(u – v). (.)

Let w ∈ Cϕ and {t, t, . . . , tn} be any division of [, t].
Now suppose

sup
{|ti+ – ti|, i = , , . . . ,n – 

} → 

as n→ ∞, then
∥∥∥∥∥
n–∑
i=

(ti+ – ti)eti–tw(ti) –
∫ t


es–tw(s)ds

∥∥∥∥∥
ρ

→ .

By 
-condition,

ρ

( n–∑
i=

(ti+ – ti)eti–tw(ti) –
∫ t


es–tw(s)ds

)
→ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/239
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Using the Fatou property, we get

ρ

(∫ t


es–tw(s)ds

)
≤ lim infρ

( n–∑
i=

(ti+ – ti)eti–tw(ti)

)
. (.)

Furthermore,

n–∑
i=

(ti+ – ti)eti–t ≤
∫ t


es–t ds≤  – e–t ≤  – e–A < .

By the convexity of ρ , we have

ρ

( n–∑
i=

(ti+ – ti)eti–tw(ti)

)
≤

n–∑
i=

(ti+ – ti)eti–tρ
(
w(ti)

)

=
n–∑
i=

(ti+ – ti)eti–teati e–atiρ
(
w(ti)

)

≤
n–∑
i=

(ti+ – ti)e(+a)ti–tρa(w)

≤
(∫ t


e(+a)s–t ds

)
ρa(w).

It follows from (.) that

ρ

(∫ t


es–tw(s)ds

)
≤

(
eat – e–t

 + a

)
ρa(w). (.)

On the other hand,

ρ
(
Su(t) – Sv(t)

)
= ρ

(∫ t


es–t

(
Tu(s) – Tv(s)

))
ds.

Thus by (.), we have

ρ
(
Su(t) – Sv(t)

) ≤
(
eat – e–t

 + a

)
ρa(Tu – Tv),

since T is ρ-Lipschitz, we have

ρ
(
Su(t) – Sv(t)

) ≤
(
eat – e–t

 + a

)
sup
t∈I

e–atρ
(
Tu(t) – Tv(t)

)

≤
(
eat – e–t

 + a

)
κ sup

t∈I
e–atρ

(
u(t) – v(t)

)

=
(
eat – e–t

 + a

)
κρa(u – v).

http://www.fixedpointtheoryandapplications.com/content/2013/1/239
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Therefore

e–atρ
(
Su(t) – Sv(t)

) ≤ κ

(
 – e–(+a)t

 + a

)
ρa(u – v)

≤ κ

(
 – e–(+a)A

 + a

)
ρa(u – v)

for all t ∈ I , which implies (.).
th step. Let α = β = , k = , a >  with

e–(+a)A >
κ – ( + a)

κ
.

If we have

κ( – e–(+a)A)
 + a

≤ ( – ε) + ε+γK

for all γ > , ε ∈ [, ] and a constant K , then (.) implies that the inequality (.) is satis-
fied by ψ(ε) = Kεγ . To this end, we define

F(ε) = ( – ε) + ε+γK –
κ( – e–(+a)A)

 + a
.

Now imposing the conditions on F , which implies  ≤ F(ε) for all ε ∈ [, ], we obtain

K =
γ γ ( + a)γ

(( + a)( + γ )+

γ – κ( + γ )+


γ ( – e–(+a)A))γ

.

Therefore, from steps  to  and Theorem ., we conclude the existence of a fixed point
of S which is the solution of integral equation (.). �
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