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Abstract
In this paper, we introduce iterative schemes based on the extragradient method for
finding a common element of the set of solutions of a generalized mixed equilibrium
problem and the set of fixed points of a nonexpansive mapping, and the set of
solutions of a variational inequality problem for inverse strongly monotone mapping.
We obtain some strong convergence theorems for the sequences generated by these
processes in Hilbert spaces. The results in this paper generalize, extend and unify
some well-known convergence theorems in literature.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, and let C
be a nonempty closed convex subset of H . Let B : C → H be a nonlinear mapping and let
ϕ : C → R∪ {+∞} be a function and F be a bifunction from C ×C to R, where R is the set
of real numbers. Peng and Yao [] considered the following generalizedmixed equilibrium
problem:

Finding x ∈ C such that F(x, y) + ϕ(y) + 〈Bx, y – x〉 ≥ ϕ(x). (.)

The set of solutions of (.) is denoted byGMEP(F ,ϕ,B). It is easy to see that x is a solution
of problem (.) implying that x ∈ domϕ = {x ∈ C : ϕ(x) < +∞}.
If B = , then the generalized mixed equilibrium problem (.) becomes the following

mixed equilibrium problem:

Finding x ∈ C such that F(x, y) + ϕ(y) ≥ ϕ(x). (.)

Problem (.) was studied byCeng andYao [] and Peng and Yao [, ]. The set of solutions
of (.) is denoted byMEP(F ,ϕ).
If ϕ = , then the generalized mixed equilibrium problem (.) becomes the following

generalized equilibrium problem:

Finding x ∈ C such that F(x, y) + 〈Bx, y – x〉 ≥ . (.)
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Problem (.) was studied by Takahashi and Takahashi []. The set of solutions of (.) is
denoted by GEP(F ,B).
If ϕ =  and B = , then the generalized mixed equilibrium problem (.) becomes the

following equilibrium problem:

Finding x ∈ C such that F(x, y)≥ . (.)

The set of solutions of (.) is denoted by EP(F).
If F(x, y) =  for all x, y ∈ C, the generalized mixed equilibrium problem (.) becomes

the following generalized variational inequality problem:

Finding x ∈ C such that ϕ(y) + 〈Bx, y – x〉 ≥ ϕ(x). (.)

The set of solutions of (.) is denoted by GVI(C,ϕ,B).
If ϕ =  and F(x, y) =  for all x, y ∈ C, the generalized mixed equilibrium problem (.)

becomes the following variational inequality problem:

Finding x ∈ C such that 〈Bx, y – x〉 ≥ . (.)

The set of solutions of (.) is denoted by VI(C,B).
If B =  and F(x, y) =  for all x, y ∈ C, the generalized mixed equilibrium problem (.)

becomes the following minimization problem:

Finding x ∈ C such that ϕ(y) ≥ ϕ(x). (.)

Problem (.) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities,minimax problems,Nash equilibriumproblems in non-
cooperative games and others, see for instance, [–].
For solving the variational inequality problem in the finite-dimensional Euclidean

spaces, in , Korpelevich [] introduced the following so-called extragradient method:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C,

yn = PC(xn – λBxn),

xn+ = PC(xn – λByn)

(.)

for every n = , , , . . . , λ ∈ (, k ), where C is a closed convex subset of Rn, B : C → Rn is
a monotone and k-Lipschitz continuous mapping, and PC is the metric projection of Rn

into C. She showed that if VI(C,B) is nonempty, then the sequences {xn} and {yn}, gen-
erated by (.), converge to the same point x ∈ VI(C,A). The idea of the extragradient
iterative process introduced by Korpelevich was successfully generalized and extended
not only in Euclidean but also in Hilbert and Banach spaces, see, e.g., the recent papers of
He et at. [], Gárciga Otero and Iuzem [], Solodov and Svaiter [], Solodov []. More-
over, Zeng and Yao [] and Nadezhkina and Takahashi [] introduced some iterative
processes based on the extragradient method for finding the common element of the set
of fixed points of nonexpansive mappings and the set of solutions of a variational inequal-
ity problem for a monotone, Lipschitz continuous mapping. Yao and Yao [] introduced
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an iterative process based on the extragradient method for finding the common element
of the set of fixed points of nonexpansivemappings and the set of solutions of a variational
inequality problem for a k-inverse strongly monotone mapping. Plubtieng and Punpaeng
[] introduced an iterative process, based on the extragradient method, for finding the
common element of the set of fixed points of nonexpansive mappings, the set of solutions
of an equilibrium problem and the set of solutions of a variational inequality problem for
α-inverse strongly monotone mappings.
In , Takahashi and Toyoda [], introduced the following iterative scheme:

xn+ = αnxn + ( – αn)SPC(xn – λnTxn), (.)

where {αn} is a sequence in (, ), and {λn} is a sequence in (, α). They proved that if
F(S) ∩ VI(A) �= ∅, then the sequence {xn} generated by (.) converges weakly to some
z ∈ F(S)∩VI(A). Recently, Zeng and Yao [] introduced the following iterative scheme:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C,

yn = PC(xn – λnxn),

xn+ = αnx + ( – αn)SPC(xn – λnAyn),

(.)

where {λn} and {αn} satisfy the following conditions: (i) λnk ⊂ (,  – δ) for some δ ∈ (, )
and (ii) αn ⊂ (, ),

∑∞
n= αn = ∞, limn→∞ αn = . They proved that the sequence {xn} and

{yn} generated by (.) converges strongly to the same point PF(S)∩VI(C,A)x provided that
limn→∞ ‖xn+ – xn‖ = .
In , Nadezhkina and Takahashi [] also considered the extragradient method (.)

for finding a common element of a fixed point of nonexpansive mapping and a set of solu-
tions of variational inequalities, but the convergence result was still the weak convergence.
The question posed by Takahashi and Toyoda [] on whether the strong convergence re-
sult can be proved by the same iteration scheme Algorithm (.) remains open.
In , with the techniques adopted by Noor and Rassias [], Huang, Noor and Al-

Said [] set the projected residual function by

Rλ(x) = x – PC(x – λAx), (.)

it is well known that x ∈ C is a solution of variational inequality (.) if and only if x ∈ C is
a zero of the projected residual function (.). They proved the strong convergence result
of the iteration scheme (.) using the error analysis technique.
In this paper, inspired and motivated by the above researches and Huang, Noor and

Al-Said [], we introduce a new iterative scheme based on the extragradient method for
finding a common element of the set of solutions of a generalizedmixed equilibrium prob-
lem, the set of fixed points of nonexpansivemappings and the set of solutions of an inverse
strongly monotone mapping, as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = x ∈ C,

F(un, y) + 〈Bxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

xn+ = αnxn + ( – αn)S[βnxn + ( – βn)PC(yn – λnAyn)],
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where {αn}, {βn}, {rn}, {λn} satisfy some parameters controlling conditions. We will obtain
some strong convergence theorems using the error analysis technique as in []. The re-
sults in this paper generalize, extend and unify some well-known convergence theorems
in the literature.

2 Preliminaries
Let C be a closed convex subset of a Hilbert space H for every point x ∈H . There exists a
unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖

for every x, y ∈ H . Moreover, PCx is characterized by the following properties: PCx ∈ C
and

〈x – PCx, y – PCy〉 ≤ ,

‖x – y‖ ≥ ‖x – PCx‖ + ‖y – PCx‖
(.)

for all x ∈H , y ∈ C.
A mapping A of C into H is called monotone if

〈Ax –Ay,x – y〉 ≥ 

for all x, y ∈ C. Amapping A of C intoH is called inverse strongly monotone with amodu-
lus α (in short, α-inverse strongly monotone) if there exists a positive real number α such
that

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C.
Recall that a mapping S of C into itself is nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖ for all x, y ∈ C.

A mapping T of C into itself is pseudocontractive if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖

for all x, y ∈ C. Obviously, the class of pseudocontractive mappings is more general than
the class of nonexpansive mappings.
LetA be amonotonemapping fromC intoH . In the context of the variational inequality

problem, the characterization of projection (.) implies the following:

u ∈ VI(A,C) ⇐⇒ u = PC(u – λAu), λ > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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It is also known that H satisfies Opial’s condition; for any sequence {xn} with xn ⇀ x, the
inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x.
For solving the generalized mixed equilibrium problem, let us give the following as-

sumptions for the bifunction F , the function ϕ and the set C:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for any x, y ∈ C;
(A) for each y ∈ C, x � F(x, y) is weakly upper semicontinuous;
(A) for each x ∈ C, y � F(x, y) is convex;
(A) for each x ∈ C, y � F(x, y) is lower semicontinuous;
(B) for each x ∈H and r > , there exist a bounded subset D(x)⊂ C and

yx ∈ C ∩ dom(ϕ) such that for any z ∈ C –Dx,

F(z, yx) + ϕ(yx) + 〈Bz, yx – z〉 + 
r
〈yx – z, z – x〉 ≤ ϕ(z);

(B) C is a bounded set.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H . Let F be
a bifunction from C × C to R satisfying (A)-(A) and let ϕ : C → R ∪ {+∞} be a proper
lower semicontinuous and convex function. Assume that either (B) or (B) holds. For r > 
and x ∈H , define a mapping Tr :H → C as follows:

Tr =
{
z ∈ C : F(z, y) + ϕ(y) + 〈Bz, y – z〉 + 

r
〈y – z, z – x〉 ≤ ϕ(z),∀y ∈ C

}

for all x ∈ H . Then the following conclusions hold:
() For each x ∈H , Tr(x) �= ∅;
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

∥∥Tr(x) – Tr(y)
∥∥ ≤ 〈

Tr(x) – Tr(y),x – y
〉
;

() Fix(Tr(I – rB)) =GMEP(F ,ϕ,B);
() GMEP(F ,ϕ,B) is closed and convex.

Lemma . [] For any x∗ ∈ VI(C,A), if A : C →H is α-inverse strongly monotone, then
Rλ(x) is ( – λ

α
)-inverse strongly monotone for any λ ∈ [, α] and

〈
x – x∗,Rλ(x)

〉 ≥
(
 –

λ

α

)∥∥Rλ(x)
∥∥,

where Rλ(x) = x – PC(x – λAx).

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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Lemma . [] For all x ∈H and λ′ ≥ λ > , it holds that

∥∥Rλ′ (x)
∥∥ ≥ ∥∥Rλ(x)

∥∥,
where Rλ(x) = x – PC(x – λAx).

Lemma . [] Let {an} and {bn} be two sequences of non-negative numbers, such that
an+ ≤ an+bn for all n ∈N . If

∑∞
n= bn < +∞, and if {an} has a subsequence {ank } converging

to , then limn→∞ an = .

Lemma . [] Let H be a real Hilbert space, and let C be a nonempty, closed and convex
subset of H . Let {xn} be a sequence in H . Suppose that, for any x∗ ∈ C,

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ (n ∈N).

Then limn→∞ PC(xn) = z for some z ∈ C.

3 Main results
Theorem . Let C be a closed and convex subset of a real Hilbert space H . Let F be a
bifunction from C × C → R satisfying (A)-(A) and ϕ : C → R∪ {+∞} be a proper lower
semicontinuous and convex function. Let A be an α-inverse strongly monotone mapping
from C into H and B be an β-inverse strongly monotone mapping from C into H . Let S be a
nonexpansivemapping of C into itself, such that� = Fix(S)∩VI(C,A)∩GMEP(F ,ϕ,B) �= ∅.
Assume that either (B) or (B) holds. Let {xn}, {yn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = x ∈ C,

F(un, y) + 〈Bxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

xn+ = αnxn + ( – αn)S[βnxn + ( – βn)PC(yn – λnAyn)]

(.)

for every n = , , . . . , where {λn}, {rn}, {αn}, {βn} satisfy the following conditions: (i)  <
rn < β , {λn} ⊂ [a,b] for some a,b ∈ (, α) and (ii) {αn} ⊂ [c,d], {βn} ⊂ [e, f ] for some
c,d, e, f ∈ (, ), then {xn} converges strongly to p∗ ∈ �, where p∗ = limn→∞ P�(xn).

Proof We divide the proof into five steps.
Step . We claim that {xn} is bounded and limn→∞ Ra(un) = limn→∞ Rλn (un) = .
Put

vn = PC(yn – λnAyn), wn = βnxn + ( – βn)vn,

Rλn (un) = un – PC(un – λnAun), Rλn (yn) = yn – PC(yn – λnAyn)

for every n = , , . . . . Take any p ∈ � and let {Trn} be a sequence of mappings defined as
in Lemma ., then p = PC(p – λnAp) = Trn (p – rnBp). From un = Trn (xn – rnBxn) ∈ C, the
β-inverse strongly monotonicity of B and  < rn < β , we have

‖un – p‖ = ∥∥Trn (xn – rnBxn) – Trn (p – rnBp)
∥∥

≤ ∥∥xn – rnBxn – (p – rnBp)
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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≤ ‖xn – p‖ – rn〈xn – p,Bxn – Bp〉 + rn‖Bxn – Bp‖

≤ ‖xn – p‖ – rnβ‖Bxn – Bp‖ + rn‖Bxn – Bp‖

= ‖xn – p‖ + rn(rn – β)‖Bxn – Bp‖

≤ ‖xn – p‖, (.)

and from Lemma ., we have

‖yn – p‖ = ∥∥un – Rλn (un) – p
∥∥

= ‖un – p‖ – 
〈
un – p,Rλn (un)

〉
+

∥∥Rλn (un)
∥∥

≤ ‖un – p‖ – 
(
 –

λn

α

)∥∥Rλn (un)
∥∥ +

∥∥Rλn (un)
∥∥

= ‖un – p‖ –
(
 –

λn

α

)∥∥Rλn (un)
∥∥, (.)

which implies from (.) that

‖yn – p‖ ≤ ‖xn – p‖ –
(
 –

λn

α

)∥∥Rλn (un)
∥∥. (.)

By the same process as in (.), we also have from (.) that

‖vn – p‖ ≤ ‖yn – p‖ –
(
 –

λn

α

)∥∥Rλn (yn)
∥∥

≤ ‖yn – p‖ –
(
 –

λn

α

)∥∥Rλn (yn)
∥∥

≤ ‖xn – p‖ –
(
 –

λn

α

)∥∥Rλn (un)
∥∥ –

(
 –

λn

α

)∥∥Rλn (yn)
∥∥. (.)

Further, from (.) and (.), we get

‖wn – p‖ = β
n‖xn – p‖ + βn( – βn)〈xn – p, vn – p〉 + ( – βn)‖vn – p‖

≤ β
n‖xn – p‖ + βn( – βn)‖xn – p‖ + ( – βn)‖xn – p‖

– ( – βn)
(
 –

λn

α

)∥∥Rλn (un)
∥∥

≤ ‖xn – p‖ – ( – βn)
(
 –

λn

α

)∥∥Rλn (un)
∥∥

– ( – βn)
(
 –

λn

α

)∥∥Rλn (yn)
∥∥. (.)

Hence, from (.), the nonexpansive property of the mapping S and  < λn < α, we have

‖xn+ – p‖ = α
n‖xn – p‖ + ( – αn)‖Swn – p‖ + αn( – αn)〈Swn – Sp,xn – p〉

≤ α
n‖xn – p‖ + ( – αn)‖wn – p‖ + αn( – αn)‖xn – p‖

≤ α
n‖xn – p‖ + ( – αn)‖xn – p‖ + αn( – αn)‖xn – p‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/240


Li et al. Fixed Point Theory and Applications 2013, 2013:240 Page 8 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/240

– ( – αn)( – βn)
(
 –

λn

α

)∥∥Rλn (un)
∥∥

= ‖xn – p‖ – ( – αn)( – βn)
(
 –

λn

α

)∥∥Rλn (un)
∥∥

– ( – αn)( – βn)
(
 –

λn

α

)∥∥Rλn (yn)
∥∥

≤ ‖xn – p‖. (.)

Since the sequence {‖xn – p‖} is a bounded and nonincreasing sequence, limn→∞ ‖xn –
p‖ exists. Hence {xn} is bounded. Consequently, the sets {un}, {vn}, {wn}, {yn} are also
bounded. By (.), we have

( – αn)( – βn)
(
 –

λn

α

)∥∥Rλn (un)
∥∥ ≤ ‖xn – p‖ – ‖xn+ – p‖.

From the conditions (i) and (ii), there must exist a constantM >  such that

M
∥∥Rλn (un)

∥∥ ≤ ( – αn)( – βn)
(
 –

λn

α

)∥∥Rλn (un)
∥∥ ≤ ‖xn – p‖ – ‖xn+ – p‖,

from which it follows that

M

∞∑
n=

∥∥Rλn (un)
∥∥ ≤

∞∑
n=

[‖xn – p‖ – ‖xn+ – p‖] = ‖x – p‖ <∞.

Hence, limn→∞ Rλn (un) = limn→∞ ‖Rλn (un)‖ = . Since Rλn (un) = un – PC(un – λnAun) =
un – yn, limn→∞ ‖un – yn‖ = . Notice that λn ≥ a, then by Lemma ., ‖Ra(un)‖ ≤
‖Rλn (un)‖. Therefore,

lim
n→∞Ra(un) = lim

n→∞Rλn (un) = . (.)

By the same way, we also get that

lim
n→∞

∥∥Rλn (yn)
∥∥ = lim

n→∞‖yn – vn‖ = ,

and thus

lim
n→∞‖un – vn‖ = . (.)

Step . We show that limn→∞ ‖xn – un‖ = limn→∞ ‖Sxn – xn‖ = .
Indeed, for any p ∈ �, it follows from (.) and (.) that

‖wn – p‖ = βn‖xn – p‖ + ( – βn)‖vn – p‖ – βn( – βn)‖xn – vn‖

≤ ‖xn – p‖ – βn( – βn)‖xn – vn‖,

which implies that

‖xn+ – p‖ = αn‖xn – p‖ + ( – αn)‖wn – p‖ – αn( – αn)‖Swn – xn‖

≤ ‖xn – p‖ – αn( – αn)‖Swn – xn‖ – βn( – βn)‖xn – vn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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Thus, it follows from (.) that

αn( – αn)‖Swn – xn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖.

From the condition (ii), there exists a constantM >  such that

M‖Swn – xn‖ ≤ αn( – αn)‖Swn – xn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖,

from which it follows that

M

∞∑
n=

‖Swn – xn‖ ≤
∞∑
n=

[‖xn – p‖ – ‖xn+ – p‖] = ‖x – p‖ < ∞.

Hence

lim
n→∞‖Swn – xn‖ = . (.)

From (.), we also get that

βn( – βn)‖xn – vn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖.

By the same way, we obtain that

lim
n→∞‖xn – vn‖ = , (.)

which combining (.) implies that

lim
n→∞‖xn – un‖ = . (.)

Since

‖Sxn – xn‖ ≤ ‖Sxn – Svn‖ + ‖Svn – Swn‖ + ‖Swn – xn‖
≤ ‖xn – vn‖ + ‖vn –wn‖ + ‖Swn – xn‖
≤ ‖xn – vn‖ + βn‖xn – vn‖ + ‖Swn – xn‖,

which implies from (.), (.) that

lim
n→∞‖Sxn – xn‖ = . (.)

Further, it follows from (.) and (.) that

‖xn+ – xn‖ = ( – αn)‖Swn – xn‖ ≤ ( – c)‖Swn – xn‖ →  (n→ ∞). (.)

Step . We claim that {xn} must have a convergent subsequence {xnk } such that
limk→∞ xnk = p∗ for some p∗ ∈ C. Moreover, p∗ ∈ � = Fix(S)∩VI(C,A)∩GMEP(F ,ϕ,B).

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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Since {xn} is a bounded sequence generated by Algorithm (.), then {xn} must have a
weakly convergent subsequence {xnk } such that xnk ⇀ p∗ (k → ∞), which implies from
(.) and (.) that Swnk ⇀ p∗ (k → ∞) and unk ⇀ p∗ (k → ∞). Next we will show that
p∗ ∈ � = Fix(S)∩VI(C,A)∩GMEP(F ,ϕ,B).
SinceA is inverse stronglymonotonewith the positive constant α > , soA is 

α
-Lipschitz

continuous. Indeed, it yields that ‖Ax –Ay‖ ≤ 
α
‖x – y‖ from the definition of the inverse

strongly monotonicity of A, such that

α‖Ax –Ay‖ ≤ 〈Ax –Ay,x – y〉 ≤ ‖Ax –Ay‖‖x – y‖.

From the 
α
-Lipschitz continuity of A and the continuity of PC , it follows that Ra(x) =

x – PC[x – aAx] is also continuous. Notice that ρn ≥ a, then by Lemma ., ‖Rx(xn)‖ ≤
‖Rρn (xn)‖. Then from Step ,

lim
k→∞

∥∥Rx(xnk )
∥∥ = lim

n→∞
∥∥Rρn (xnk )

∥∥ = .

Therefore from the continuity of Ra(x),

Ra
(
p∗) = lim

n→∞Ra(xnk ) = .

This shows that p∗ is a solution of the variational inequality (.), that is p∗ ∈ VI(C,A).
From (.), limn→∞ ‖xnk – p∗‖ =  and the property of the nonexpansive mapping S, it
follows that p∗ = Sp∗, that is p∗ ∈ Fix(S). Finally, by the same argument as in the proof of
[, Theorem .], we prove that p∗ ∈ GMEP(F ,ϕ,B). Thus p∗ ∈ � = Fix(S) ∩ VI(C,A) ∩
GMEP(F ,ϕ,B).
Next, we will prove that xnk → p∗ (k → ∞).
From (.), (.) and (.) we can calculate

∥∥xn+ – p∗∥∥ =
〈
αnxn + ( – αn)Swn – p∗,xn+ – p∗〉

= αn
〈
xn – p∗,xn+ – p∗〉 + ( – αn)

〈
Swn – p∗,xn+ – p∗〉

≤ αn
∥∥xn – p∗∥∥ + ( – αn)

〈
Swn – p∗,xn+ – p∗〉

≤ αn
∥∥xn – p∗∥∥ + ( – αn)

〈
Swn – p∗,xn+ – xn

〉
+ ( – αn)

〈
Swn – p∗,xn – p∗〉

≤ αn
∥∥xn – p∗∥∥ + ( – αn)

∥∥xn – p∗∥∥ + ( – αn)
〈
Swn – p∗,xn+ – xn

〉
=

∥∥xn – p∗∥∥ + ( – αn)
〈
Swn – p∗,xn+ – xn

〉
,

which implies

∥∥xn+ – p∗∥∥ –
∥∥xn – p∗∥∥ ≤ ( – αn)

〈
Swn – p∗,xn+ – xn

〉
≤ ( – c)

〈
Swn – p∗,xn+ – xn

〉
. (.)

From Swnk ⇀ p∗ and xnk+ – xnk →  as k → ∞, it follows from (.) that

∥∥xnk+ – p∗∥∥ → ∥∥xnk – p∗∥∥ (k → ∞).

Using the Kadec-Klee property of H , we obtain that limk→∞ xnk = p∗.

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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Step .We claim that the sequence {xn} generated by Algorithm (.) converges strongly
to p∗ ∈ � = Fix(S)∩VI(C,A)∩GMEP(F ,ϕ,B).
In fact, from the result of Step , p∗ ∈ �. Let p = p∗ in (.). Consequently, ‖xn+ – p∗‖ ≤

‖xn –p∗‖. Meanwhile, limk→∞ ‖xnk –p∗‖ =  from Step . Then from Lemma ., we have
limn→∞ ‖xn – p∗‖ = . Therefore, limn→∞ xn = p∗.
Step . We claim that p∗ = limn→∞ P�xn.
From (.), we have

〈
xn – P�xn,p∗ – P�xn

〉 ≤ . (.)

By (.) and Lemma ., limn→∞ P�xn = q∗ for some q∗ ∈ �. Then in (.), let n → ∞,
since limn→∞ xn = p∗ by Step , we have

〈
p∗ – q∗,p∗ – q∗〉 ≤ ,

and, consequently, we have p∗ = q∗. Hence, p∗ = limn→∞ P�xn.
This completes the proof of Theorem .. �

The following theorems can be obtained from Theorem . immediately.

Theorem . Let C,H , S be as in Theorem .. Assume that � = Fix(S)∩VI(C,A) �= ∅, let
{xn}, {yn} be sequences generated by

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C,

yn = PC(xn – λnAxn),

xn+ = αnxn + ( – αn)S[βnxn + ( – βn)PC(yn – λnAyn)]

for every n = , , . . . , where {λn}, {αn}, {βn} satisfy the following conditions: (i) {λn} ⊂ [a,b]
for some a,b ∈ (, α) and (ii) {αn} ⊂ [c,d], {βn} ⊂ [e, f ] for some c,d, e, f ∈ (, ), then {xn}
converges strongly to p∗ ∈ �, where p∗ = limn→∞ P�(xn).

Proof Putting B = F = ϕ = , rn =  in Theorem ., the conclusion of Theorem . can be
obtained from Theorem .. �

Remark . The main result of Nadezhkina and Takahashi [] is a special case of our
Theorem .. Indeed, if we take βn =  in Theorem ., then we obtain the result of [].

Theorem . Let C, H , F , A, B, S be as in Theorem .. Assume � = Fix(S) ∩ VI(C,A) ∩
GEP(F ,B) �= ∅; let {xn}, {yn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = x ∈ C,

F(un, y) + 〈Bxn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

xn+ = αnxn + ( – αn)S[βnxn + ( – βn)PC(yn – λnAyn)]

for every n = , , . . . , where {λn}, {rn}, {αn}, {βn} satisfy conditions (i) and (ii) as in Theo-
rem ., then {xn} converges strongly to p∗ ∈ �, where p∗ = limn→∞ P�(xn).

http://www.fixedpointtheoryandapplications.com/content/2013/1/240
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Proof Putting ϕ =  in Theorem ., the conclusion of Theorem . is obtained. �

Remark . Theorem . can be viewed as an improvement of Theorem . of Inchan
[] because of removing the iterative step Cn in the algorithm of Theorem . of [].

Theorem . Let C,H , F , A, S be as in Theorem .. Assume that � = Fix(S)∩VI(C,A)∩
EP(F) �= ∅; let {xn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = x ∈ C,

F(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

xn+ = αnxn + ( – αn)SPC(yn – λnAyn)

for every n = , , . . . , where {λn}, {rn}, {αn} satisfy the following conditions:  < rn < β ,
{λn} ⊂ [a,b] for some a,b ∈ (, α), {αn} ⊂ [c,d] for some c,d ∈ (, ), then {xn} converges
strongly to p∗ ∈ �, where p∗ = limn→∞ P�(xn).

Proof Taking B = ϕ = , βn =  in Theorem ., the conclusion of Theorem . is ob-
tained. �

Remark . Theorem . is the strong convergence result of Theorem . of Jaiboon,
Kumam and Humphries [].
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