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Abstract
Wardowski (Fixed Point Theory Appl. 2012:94, 2012, doi:10.1186/1687-1812-2012-94)
introduced a new type of contraction called F-contraction and proved a fixed point
result in complete metric spaces, which in turn generalizes the Banach contraction
principle. The aim of this paper is to introduce F-contractions with respect to a
self-mapping on a metric space and to obtain common fixed point results. Examples
are provided to support results and concepts presented herein. As an application of
our results, periodic point results for the F-contractions in metric spaces are proved.
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1 Introduction and preliminaries
The Banach contraction principle [] is a popular tool in solving existence problems in
many branches ofmathematics (see, e.g., [–]). Extensions of this principle were obtained
either by generalizing the domain of the mapping or by extending the contractive condi-
tion on the mappings [–]. Initially, existence of fixed points in ordered metric spaces
was investigated and applied by Ran and Reurings []. Since then, a number of results
have been proved in the framework of ordered metric spaces (see [–]). Contractive
conditions involving a pair of mappings are further additions to the metric fixed point
theory and its applications (for details, see [–]).
Recently, Wardowski [] introduced a new contraction called F-contraction and

proved a fixed point result as a generalization of the Banach contraction principle []. In
this paper, we introduce an F-contractionwith respect to a self-mapping on ametric space
and obtain common fixed point results in an ordered metric space. In the last section, we
give some results on periodic point properties of a mapping and a pair of mappings in a
metric space. We begin with some basic known definitions and results which will be used
in the sequel. Throughout this article, N, R+, R denote the set of natural numbers, the set
of positive real numbers and the set of real numbers, respectively.

Definition  Let f and g be self-mappings on a set X. If fx = gx = w for some x in X, then
x is called a coincidence point of f and g and w is called a coincidence point of f and g .
Furthermore, if fgx = gfx whenever x is a coincidence point of f and g , then f and g are
called weakly compatible mappings [].
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Let C(f , g) = {x ∈ X : fx = gx} (F(f , g) = {x ∈ X : x = fx = gx}) denote the set of all coinci-
dence points (the set of all common fixed points) of self-mappings f and g .

Definition  ([]) Let (X,d) be a metric space and f , g : X → X. The mapping f is called
a g-contraction if there exists α ∈ (, ) such that

d(fx, fy) ≤ αd(gx, gy)

holds for all x, y ∈ X.

In , Jungck [] obtained the following useful generalization of the Banach contrac-
tion principle.

Theorem  Let g be a continuous self-mapping on a complete metric space (X,d). Then g
has a fixed point in X if and only if there exists a g-contraction mapping f : X → X such
that f commutes with g and g(X)⊆ f (X).

Let� be the collection of all mappings F :R+ →R that satisfy the following conditions:
(C) F is strictly increasing, that is, for all α,β ∈R+ such that α < β implies that

F(α) < F(β).
(C) For every sequence {αn}n∈N of positive real numbers, limn→∞ αn =  and

limn→∞ F(αn) = –∞ are equivalent.
(C) There exists k ∈ (, ) such that

lim
α→+

αkF(α) = .

Definition  ([]) Let (X,d) be a metric space and F ∈ �. A mapping f : X → X is said
to be an F-contraction on X if there exists τ >  such that

d(fx, fy) >  implies that τ + F
(
d(fx, fy)

) ≤ F
(
d(x, y)

)
()

for all x, y ∈ X.

Note that every F-contraction is continuous (see []). We extend the above definition
to two mappings.

Definition  Let (X,d) be a metric space, F ∈ � and f , g : X → X. The mapping f is said
to be an F-contraction with respect to g on X if there exists τ >  such that

τ + F
(
d(fx, fy)

) ≤ F
(
d(gx, gy)

)
()

for all x, y ∈ X satisfying min{d(fx, fy),d(gx, gy)} > .

By different choices of mappings F in () and (), one obtains a variety of contractions
[].
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Example  Let F :R+ → R be given by F(α) = ln(α). It is clear that F ∈ �. Suppose that
f : X → X is an F-contraction with respect to a self-mapping g on X. From () we have

τ + ln
(
d(fx, fy)

) ≤ ln
(
d(gx, gy)

)
,

which implies that

d(fx, fy) ≤ e–τd(gx, gy).

Therefore an F-contraction map f with respect to g reduces to a g-contraction mapping.

Now we give an example of an F-contraction with respect to a self-mapping g on X
which is not a g-contraction on X.

Example  Consider the following sequence of partial sums {Sn}n∈N [, Example .]:

S = ,

S =  + ,

S =  +  + ,

· · ·

Sn =  +  + · · · + n =
n(n + )


, n ∈N.

Let X = {Sn : n ∈ N} and d be the usual metric on X. Let f : X → X and g : X → X be
defined as

fSn =

⎧⎨
⎩
Sn–, if n > ,

S, if n = ,
gSn =

⎧⎨
⎩
Sn+, if n > ,

S, if n = .

Let F :R+ →R be given by F(α) = ln(α). As

lim
n→∞

d(fSn, fS)
d(gSn, gS)

= lim
n→∞

Sn– – S
Sn+ – S

= ,

so f is not a g-contraction. If we take F(α) = ln(α) + α, then F ∈ � and f is an F-
contraction with respect to a mapping g (taking τ = ). Indeed, the following holds:

d(fSn, fS)
d(gSn, gS)

ed(fSn ,fS)–d(gSn ,gS) =
Sn– – S
Sn+ – S

eSn––S–Sn++S =
n – n – 
n + n

e–n– ≤ e–

for all n > . For allm,n ∈ N with m > n > , we have

d(fSm, fSn)
d(gSm, gSn)

ed(fSm ,fSn)–d(gSm ,gSn)

=
Sm– – Sn–
Sm+ – Sn+

eSm––Sn––Sm++Sn+

=
m +m – n – n

m + m – n – n
e–(m–n) ≤ e–.
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Definition  ([], Dominance condition) Let (X,�) be a partially ordered set. A self-
mapping f on X is said to be (i) a dominatedmap if fx � x for each x in X, (ii) a dominating
map if x � fx for each x in X.

Example  Let X = [, ] be endowed with the usual ordering and f , g : X → X defined by
gx = xn for some n ∈N and fx = kx for some real number k ≥ . Note that

gx = xn ≤ x and x≤ kx = fx

for all x in X. Thus g is dominated and f is a dominating map.

Definition  Let (X,�) be a partially ordered set. Two mappings f , g : X → X are said to
be weakly increasing if fx � gfx and gx � fgx for all x in X (see []).

Definition  Let X be a nonempty set. Then (X,d,�) is called an ordered metric space if
(X,d) is a metric space and (X,�) is a partially ordered set.

Definition  Let (X,�) be a partial ordered set, then x, y in X are called comparable
elements if either x� y or y � x holds true. Moreover, we define � ⊆ X ×X by

� =
{
(x, y) ∈ X ×X : x� y or y� x

}
.

Definition  An ordered metric space (X,d,�) is said to have the sequential limit com-
parison property if for every non-decreasing sequence (non-increasing sequence) {xn}n∈N
in X such that xn → x implies that xn � x (x� xn).

2 Common fixed point results in orderedmetric spaces
We present the following theorem as a generalization of results in [] and [, Theo-
rem .].

Theorem  Let (X,�) be a partially ordered set such that there exists a metric d on X,
and let f : X → X be an F-contraction with respect to g : X → X on � with f (X) ⊆ g(X).
Assume that f is dominating and g is dominated. Then
(a) f and g have a coincidence point in X provided that g(X) is complete and has the

sequential limit comparison property.
(b) C(f , g) is well ordered if and only if C(f , g) is a singleton.
(c) f and g have a unique common fixed point if f and g are weakly compatible and

C(f , g) is well ordered.

Proof (a) Let x be an arbitrary point of X. Since the range of g contains the range of f ,
there exists a point x in X such that f (x) = g(x). As f is dominating and g is dominated,
so we have

x � fx = gx � x.

Hence (x,x) ∈ �. Continuing this process, having chosen xn in X, we obtain xn+ in X
such that

xn � fxn = gxn+ � xn+.

http://www.fixedpointtheoryandapplications.com/content/2013/1/243
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So, we obtain (xn,xn+) ∈ � for every n ∈N∪ {}. For the sake of simplicity, take

γn = d(gxn, gxn+) ()

for all n ∈ N ∪ {}. If there exists n ∈ N ∪ {} for which xn+ = xn , then fxn = gxn+
implies that fxn+ = gxn+, that is, xn+ ∈ C(f , g). Now we assume that xn+ 
= xn for all
n ∈N∪ {}. As f is an F-contraction with respect to g on �, so we obtain

F(γn) = F
(
d(gxn, gxn+)

)
= F

(
d(fxn–, fxn)

)

≤ F
(
d(gxn–, gxn)

)
– τ

= F
(
d(fxn–, fxn–)

)
– τ

≤ F
(
d(gxn–, gxn–)

)
– τ ≤ · · ·

≤ F
(
d(gx, gx)

)
– (n – )τ = F(γ) – (n – )τ .

That is,

F(γn) ≤ F(γ) – (n – )τ .

On taking limit as n → ∞, we obtain limn→∞ F(γn) = –∞. Hence limn→∞ γn =  by (C).
Now, by (C), there exists k ∈ (, ) such that limn→∞ γ k

n F(γn) = . Note that

γ k
n F(γn) – γ k

n F(γ) ≤ γ k
n
(
F(γ) – (n – )τ

)
– γ k

n F(γ) = –γ k
n (n – )τ ≤ . ()

Taking limit as n→ ∞ in (), we have limn→∞(n – )γ k
n = . Consequently, limn→∞ nγ k

n =
. Thus there exists n in N such that nγ k

n ≤  for all n ≥ n, that is, γn ≤ /n/k for all
n≥ n. Now, for integersm > n≥ , we obtain

d(gxn, gxm) ≤ d(gxn, gxn+) + d(gxn+, gxn+) + · · · + d(gxm–, gxm)

<
∞∑
i=n

γi ≤
∞∑
i=n



i

k
< ∞.

This shows that {gxn}n∈N is a Cauchy sequence in g(X). As g(X) is complete, so there exists
q in g(X) such that limn→∞ gxn = q. Let p ∈ X be such that g(p) = q. The sequential limit
comparison property implies that gxn+ � q. As xn � fxn = gxn+ � q = g(p) � p so (xn,p) ∈
�. Hence from () we have

F
(
d(gxn, fp)

)
= F

(
d(fxn–, fp)

) ≤ F
(
d(gxn–, gp)

)
– τ .

Since limn→∞ d(gxn–, gp) = , therefore by (C) we have limn→∞ F(d(gxn–, gp)) = –∞.
Hence limn→∞ F(d(gxn, fp)) = –∞ implies that limn→∞ d(gxn, fp) = . That is, limn→∞ gxn =
fp. Uniqueness of limit implies fp = gp, that is, p ∈ C(f , g).
(b) Now suppose thatC(f , g) is well ordered.We prove thatC(f , g) is a singleton. Assume

on the contrary that there exists another point w in X such that fw = gw with w 
= p. Since
C(f , g) is well ordered, so (w,p) ∈ �. Now from () we have

τ ≤ F
(
d(gw, gp)

)
– F

(
d(fw, fp)

)
= ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/243
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a contradiction. Therefore w = p. Hence f and g have a unique coincidence point p in X.
The converse follows immediately.
(c) Now if f and g are weakly compatible mappings, then we have fq = fgp = gfp = gq, that

is, q is the coincidence point of f and g . But q is the only point of coincidence of f and g ,
so fq = gq = q. Hence q is the unique common fixed point of f and g . �

Example  LetX = [, ] be endowedwith usualmetric and usual order. Definemappings
f , g : X → X by

gx =

⎧⎪⎪⎨
⎪⎪⎩

 if x ∈ [, ),

 if x ∈ [, ),

 if x = ,

fx =

⎧⎨
⎩
 if x ∈ [, ),

 if x ∈ [, ].

Clearly, g is dominated and f is dominating. Define F : R+ → R as F(x) = ln(x). If x ∈
[, ) and y ∈ [, ), then

F
(
d(fx, fy)

)
= F

(
d(, )

)
= F() = ln()≈ .

< F
(
d(gx, gy)

)
= F

(
d(, )

)

= F() = ln() ≈ ..

Hence, for τ ∈ (, .], inequality () is satisfied. Similarly, for x ∈ [, ) and y = , we
have

F
(
d(fx, fy)

)
= F

(
d(, )

)
= F() = ln()≈ .

< F
(
d(gx, gy)

)
= F

(
d(, )

)

= F() = ln() ≈ ..

Hence, for τ ∈ (, .], inequality () is satisfied. We can take a τ ∈ (, .] so that

τ + F
(
d(fx, fy)

) ≤ F
(
d(gx, gy)

)

is satisfied for all x, y ∈ [, ], whenever min{d(fx, fy),d(gx, gy)} > . Hence f is an F-
contraction with respect to g on [, ]. Hence all the conditions of Theorem  are satisfied.
Moreover, x =  is the coincidence point of f and g . Also note that f and g are weakly com-
patible and x =  is the common fixed point of g and f as well.

Now we give a common fixed point result without imposing any type of commutativity
condition for self-mappings f and g on X. Moreover, we relax the dominance conditions
on f and g as well.

Theorem  Let (X,�) be a partially ordered set such that there exists a complete metric d
on X. If self-mappings f and g on X are weakly increasing and for some τ >  satisfy

τ + F
(
d(fx, gy)

) ≤ F
(
d(x, y)

)
()

http://www.fixedpointtheoryandapplications.com/content/2013/1/243
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for all (x, y) ∈ � such that min{d(fx, gy),d(x, y)} > , then F(f , g) 
= ∅, provided that X has
the sequential limit comparison property. Further, f and g have a unique common fixed
point if and only if F(f , g) is well ordered.

Proof Let x be an arbitrary point of X. Define a sequence {xn}n∈N in X as follows: xn+ =
fxn and xn+ = gxn+. Since f and g are weakly increasing, we have xn+ = fxn � gfxn =
gxn+ = xn+ and xn+ = gxn+ � fgxn+ = fxn+ = xn+. Hence (xn+,xn+) ∈ � and
(xn+,xn+) ∈ � for every n ∈N∪ {}. Now define

γn = d(xn+,xn+) ()

for all n ∈N∪ {}. Using () the following holds for every n ∈N∪ {}:

F(γn) = F
(
d(xn+,xn+)

)
= F

(
d(fxn, gxn+)

)

≤ F
(
d(xn,xn+)

)
– τ = F(γn–) – τ .

Similarly,

F(γn+) = F
(
d(xn+,xn+)

)
= F

(
d(fxn+, gxn+)

)

≤ F
(
d(xn+,xn+)

)
– τ = F(γn) – τ .

Therefore, for all n ∈ N∪ {}, we have

F(γn) ≤ F(γn–) – τ ≤ F(γn–) – τ ≤ · · ·
≤ F

(
d(x,x)

)
– nτ = F(γ) – nτ .

Thus

F(γn) ≤ F(γ) – nτ . ()

Taking limit as n→ ∞ in (), we get

lim
n→∞F(γn) = –∞.

By (C) and (C) we get limn→∞ γn =  and k ∈ (, ) such that limn→∞ γ k
n F(γn) = . Note

that

γ k
n F(γn) – γ k

n F(γ) ≤ γ k
n
(
F(γ) – nτ

)
– γ k

n F(γ) = –γ k
n nτ ≤ . ()

By taking limit as n → ∞ in (), we get limn→∞ nγ k
n = . This implies that there exists n

such that nγ k
n ≤  for all n ≥ n. Consequently, we obtain γn ≤ /n/k for all n ≥ n. Now,

for integersm > n≥ , we have

d(xn,xm)≤ d(xn,xn+) + d(xn+,xn+) + · · · + d(xm–,xm) <
∞∑
i=n

γi ≤
∞∑
i=n



i

k
<∞.
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This shows that {xn}n∈N is a Cauchy sequence in X, so there exists p in X such that
limn→∞ xn = p. As X has the sequential limit comparison property, so (xn,p), (xn,p),
(xn+,p) ∈ �. Therefore

lim
n→∞F

(
d(xn+, gp)

)
= lim

n→∞F
(
d(fxn, gp)

) ≤ F
(
d(xn,p)

)
– τ .

Since limn→∞ d(xn,p) = , by (C) we have limn→∞ F(d(xn,p)) = –∞. This implies
limn→∞ F(d(xn+, gp)) = –∞, which further implies that limn→∞ d(xn+, gp) = . Hence
d(p, gp) =  and p = gp. Similarly, we obtain p = fp. This shows that p is a common fixed
point of g and f . Now suppose that F(f , g) is well ordered. We prove that F(f , g) is a sin-
gleton. Assume on the contrary that there exists another point q in X such that q = fq = gq
with q 
= p. Obviously, (q,p) ∈ �. So, from () we have τ ≤ F(d(q,p)) – F(d(fq, gp)) = ,
a contradiction. Therefore q = p. Hence g and f have a unique common fixed point p in X.
The converse follows immediately. �

3 Periodic point results in metric spaces
If x is a fixed point of the self-mapping f , then x is a fixed point of f n for every n ∈ N, but
the converse is not true. In the sequel, we denote by F(f ) the set of all fixed points of f .

Example  Let f : [, ] → [, ] be given by

f (x) =  – x.

Then f has a unique fixed point x = /. Note that f nx = x holds for every even natural
number n and x in [, ]. On the other hand, define a mapping g : [,π ] → [,π ] as

g(x) = cosx.

Then g has the same fixed point as gn for every n.

Definition  The self-mapping f is said to have the property P if F(f n) = F(f ) for every
n ∈ N. A pair (f , g) of self-mappings is said to have the property Q if F(f )∩ F(g) = F(f n)∩
F(gn).

For further details on these properties, we refer to [, ].
Let (X,d) be a metric space and f : X → X be a self-mapping. The set O(x) = {x, fx, . . . ,

f nx, . . .} is called the orbit of x []. A mapping f is called orbitally continuous at p if
limn→∞ f nx = p implies that limn→∞ f n+x = fp. A mapping f is orbitally continuous on
X if f is orbitally continuous for all x ∈ X.
In this section we prove some periodic point results for self-mappings on completemet-

ric spaces.

Theorem  Let X be a nonempty set such that there exists a complete metric d on X.
Suppose that f : X → X satisfies

τ + F
(
d
(
fx, f x

)) ≤ F
(
d(x, fx)

)
()

http://www.fixedpointtheoryandapplications.com/content/2013/1/243
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for some τ >  and for all x in X such that d(fx, f x) > . Then f has the property P provided
that f is orbitally continuous on X .

Proof First we show that F(f ) 
= ∅. Let x ∈ X. Define a sequence {xn}n∈N in X, such that
xn+ = fxn, for all n ∈ N ∪ {}. Denote γn = d(xn,xn+) for all n ∈ N ∪ {}. If there exists
n ∈ N ∪ {} for which xn+ = xn , then fxn = xn and the proof is finished. Suppose that
xn+ 
= xn for all n ∈N∪ {}. Using (), we obtain

F(γn) = F
(
d(xn,xn+)

)
= F

(
d
(
fxn–, f xn–

))

≤ F
(
d(xn–, fxn–)

)
– τ = F

(
d
(
fxn–, f xn–

))
– τ

≤ F
(
d(xn–, fxn–)

)
– τ ≤ · · ·

≤ F
(
d(x,x)

)
– (n – )τ

= F
(
d
(
fx, f x

))
– (n – )τ ≤ F

(
d(x,x)

)
– nτ

= F(γ) – nτ

for every n ∈ N ∪ {}. By taking limit as n → ∞ in the above inequality, we obtain that
limn→∞ F(γn) = –∞, which togetherwith (C) gives limn→∞ γn = . From (C), there exists
k ∈ (, ) such that limn→∞ γ k

n F(γn) = . Note that

γ k
n F(γn) – γ k

n F(γ) ≤ γ k
n
(
F(γ) – nτ

)
– γ k

n F(γ)

= –γ k
n nτ ≤ .

On taking limit as n→ ∞, we get limn→∞ nγ k
n = . Hence there exists n such that nγ k

n ≤ 
for all n≥ n. Consequently γn ≤ /n/k for all n≥ n. Now, for integersm > n≥  such that

d
(
f nx, f mx

)
= d(xn,xm) ≤ d(xn,xn+) + d(xn+,xn+) + · · · + d(xm–,xm)

<
∞∑
i=n

γi ≤
∞∑
i=n



i

k
< ∞.

This shows that {f nx}n∈N is a Cauchy sequence. Since {f nx : n ∈ N} ⊆ O(x) ⊆ X and X
is complete, which implies that there exists x in X such that limn→∞ f nx = x. Since f is
orbitally continuous at x, so x = limn→∞ f nx = f (limn→∞ f n–x) = fx. Hence f has a fixed
point and F(f n) = F(f ) is true for n = . Now assume n > . Suppose on the contrary that
u ∈ F(f n) but u /∈ F(f ), then d(u, fu) = α > . Now consider

F(α) = F
(
d(u, fu)

)
= F

(
d
(
f
(
f n–u

)
, f 

(
f n–u

)))

≤ F
(
d
(
f n–u, f nu

))
– τ

≤ F
(
d
(
f n–u, f n–u

))
– τ ≤ · · ·

≤ F
(
d(u, fu)

)
– nτ .

Thus F(α)≤ limn→∞ F(d(u, fu)) –nτ = –∞. Hence F(α) = –∞. By (C) α = , a contradic-
tion. So u ∈ F(f ). �

http://www.fixedpointtheoryandapplications.com/content/2013/1/243
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Theorem  Let (X,�) be a partially ordered set such that there exists a complete metric
d on X and f , g self-mappings on X. Further assume that f , g are weakly increasing and
satisfy

τ + F
(
d(fx, gy)

) ≤ F
(
d(x, y)

)

for some τ > , for all x, y in X such that min{d(fx, gy),d(x, y)} > . Then f and g have the
property Q provided that X has the sequential limit comparison property.

Proof By Theorem , f and g have a common fixed point. Suppose on the contrary that

u ∈ F
(
f n

) ∩ F
(
gn

)

but u /∈ F(f )∩ F(g), then there are three possibilities (a) u ∈ F(f ) \ F(g), (b) u ∈ F(g) \ F(f ),
(c) u /∈ F(f ) and u /∈ F(g). Without loss of generality, let u /∈ F(g), that is, d(u, gu) = α > ,
so we get

F(α) = F
(
d(u, gu)

)
= F

(
d
(
f
(
f n–u

)
, g

(
gnu

)))

≤ F
(
d
(
f n–u, gnu

))
– τ

≤ F
(
d
(
f n–u, gn–u

))
– τ ≤ · · ·

≤ F
(
d(u, gu)

)
– nτ .

As limn→∞ F(d(u, gu)) – nτ = –∞, so we have F(α) = –∞. By (C) α = , a contradiction.
Hence u ∈ F(g)∩ F(f ). �
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