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Abstract
In this paper, we consider the iteration method called ‘Picard-Mann hybrid iterative
process’ for finding a fixed point of continuous functions on an arbitrary interval. We
give a necessary and sufficient condition for convergence of this iteration for
continuous functions on an arbitrary interval. Also, we compare the rate of
convergence of the Picard-Mann hybrid iteration with the other iterations and prove
that it is better than the others under the same computational cost. Moreover, we
present numerical examples.
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1 Introduction and preliminaries
Let E be a closed interval on the real line, and let f : E → E be a continuous mapping.
A point p ∈ E is a fixed point of f if f (p) = p. We denote the set of fixed points of f by F(f ).
It is known that if E is also bounded, then F(f ) is nonempty.
Iterative methods are popular tools to approximate fixed points of nonlinear mappings.

Now, we give some of them. Recall that the normal Mann iteration was introduced by
Mann [] in . Recently, construction of fixed points for nonlinear mappings via the
normal Mann iteration has been extensively investigated by many authors. The normal
Mann iteration generates a sequence {xn} in the following manner: x ∈R,

xn+ = ( – αn)xn + αnf (xn) (.)

for all n≥ , where x is an arbitrary initial value, f is a real function, and {αn} is a sequence
in [, ].
Next, we recall another popular iteration, the Ishikawa iteration. The Ishikawa iteration

was introduced by Ishikawa [] in . The Ishikawa iteration generates a sequence {xn}
in the following manner:

{
xn+ = ( – αn)xn + αnf (yn),
yn = ( – βn)xn + βnf (xn)

(.)
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for all n≥ , where x is an arbitrary initial value, f is a real function, and {αn}, {βn} are real
sequences in [, ]. In , Noor [] introduced a new iteration method, that is, defined
by x ∈ E and

⎧⎪⎨
⎪⎩
xn+ = ( – αn)xn + αnf (yn),
yn = ( – βn)xn + βnf (zn),
zn = ( – γn)xn + γnf (xn)

(.)

for all n ≥ , where {αn}, {βn} and {γn} are sequences in [, ]. It is easy to see that the
Mann and Ishikawa iteration methods are special cases of the Noor iteration method, and
the Mann iteration is also special case of the Ishikawa iteration method.
In , Mann proved that if f is a continuous real function on a unit interval of the

real line with a unique fixed point, then the Mann iteration converges to a unique fixed
point of f . In , Franks and Marzed [] removed the condition that f enjoys a unique
fixed point. In , for the class of continuous and nondecreasing functions on a closed
unit interval, Rhoades [] proved the convergence of the Mann iteration, and then, he []
extended convergence results to the Ishikawa iteration.He also proved that the Ishikawa it-
eration is better than theMann iteration for this class of mappings. Later, in , Borwein
and Borwein [] proved the convergence of the Mann iteration of continuous mappings
on a bounded closed interval. In , Qing and Qihou [] extended their results to an ar-
bitrary interval and to the Ishikawa iteration and gave a necessary and sufficient condition
for convergence of the Ishikawa iteration on an arbitrary interval. Recently, Phuengrattana
and Suantai [] proved the convergence of (.) to a fixed point of continuous function f
on an arbitrary interval under the suitable conditions. Also, they introduced the following
iteration method called the SP-iteration method:⎧⎪⎨

⎪⎩
xn+ = ( – αn)yn + αnf (yn),
yn = ( – βn)zn + βnf (zn),
zn = ( – γn)xn + γnf (xn)

(.)

for all n ≥ , where x is an arbitrary initial value, {αn}, {βn} and {γn} are sequences in
[, ]. Under the suitable conditions, they proved that (.) iteration method converges
to a fixed point of continuous function f on an arbitrary interval E ⊂ R. Moreover, they
also compared the convergence speed of the Mann, Ishikawa, Noor and SP-iterations and
concluded that the SP-iteration is better than the others.
Let E be a closed interval on the real line (can be unbounded), and let f : E → E be a con-

tinuous function. Recently, Khan [] and Sahu [], individually, introduced the follow-
ing iterative process, which Khan referred to as that Picard-Mann hybrid iterative process
(PMH):

{
xn+ = f (yn),
yn = ( – βn)xn + βnf (xn)

(.)

for all n ≥ , where x is an arbitrary initial value, and {βn} is a sequence in [, ].
The purpose of this paper is to prove that the PMH-iteration process converges to a fixed

point of continuous function f on an arbitrary interval E, and compare the convergence
speed of (.) with the other iteration processes under the suitable conditions and the same
computational cost.
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2 Convergence theorems
In this section, we prove convergence theorems for the PMH-iteration process.

Lemma  Let E be a closed interval on the real line (can be unbounded), let f : E → E be a
continuous function. For x ∈ E, let the PMH-iteration {xn} be defined by (.), where {βn}
is a sequence in [, ] such that limn→∞ βn = . If xn → a, then a is a fixed point of f .

Proof Suppose that f (a) �= a. Since xn → a, and f (x) is continuous, we have that f (xn) is
bounded. Since yn = ( – βn)xn + βnf (xn) and βn → , we have yn → a. Let pk = f (yk) – xk .
Then we write

lim
k→∞

pk = lim
k→∞

(
f (yk) – xk

)
= f (a) – a = p �= .

Using xn+ = f (yn), we obtain

xn+ – xn = f (yn) – xn,

which implies that

xn = x +
n–∑
k=

(
f (yk) – xk

)
= x +

n–∑
k=

pk .

Since pk → p �= , then {xn} must diverge, which is contradiction with xn → a. Thus,
f (a) = a. �

Lemma  Let E be a closed interval on the real line (can be unbounded), let f : E → E be a
continuous and nondecreasing function. For x ∈ E, let the PMH-iteration {xn} be defined
by (.), where {βn} is a sequence in [, ] such that limn→∞ βn = . If {xn} is bounded, then
it is convergent.

Proof Suppose that {xn} is not convergent. Let a = lim infn→∞ xn and b = lim supn→∞ xn.
Then a < b. First, we prove that if a <m < b, then f (m) =m. Suppose that f (m) �=m. With-
out loss of generality, we may suppose that f (m) –m > . Since f (x) is a continuous func-
tion, there exists δ,  < δ < b – a, such that

f (x) – x > , for |x –m| ≤ δ. (.)

From the hypothesis that {xn} is bounded, so, {xn} belongs to a bounded closed interval.
Since f (x) is continuous, f (xn) belongs to another bounded closed interval, so, f (xn) is
bounded. Since yn = ( – βn)xn + βnf (xn), we obtain that {yn} is bounded, and, thus, f (yn)
is bounded. Using yn – xn = βn(f (xn) – xn) and limn→∞ βn = , we get that yn – xn → , as
n→ ∞. For the real numbers f (x) and x, there exist three cases: f (x) > x, f (x) < x and
f (x) = x. Let f (x) > x. From the definition of {xn}, we have f (x) ≥ y ≥ x. Since f is
nondecreasing, we write f (y) = x ≥ f (x) ≥ y ≥ x. Again, using f is nondecreasing, we
get f (x)≥ x = f (y). From the definition of {xn}, we get f (x) ≥ y ≥ x. This implies that

http://www.fixedpointtheoryandapplications.com/content/2013/1/244


Karahan and Ozdemir Fixed Point Theory and Applications 2013, 2013:244 Page 4 of 12
http://www.fixedpointtheoryandapplications.com/content/2013/1/244

f (y) = x ≥ f (x) ≥ y ≥ x. Thus, we obtain that f (y)≥ y. So, by continuing in this way,
we have that f (yn) ≥ yn for all n≥ . Hence, from the definition of {xn}, we get that

xn – xn+ = yn – f (yn) + βn
(
xn – f (xn)

) ≤ βn
(
xn – f (xn)

)
.

Thus, using limn→∞ βn = , we obtain that

lim
n→∞(xn – xn+) = .

In a similar way, for the case f (x) < x, we have

xn+ – xn = f (yn) – yn + βn
(
f (xn) – xn

) ≤ βn
(
f (xn) – xn

)
.

Again, using limn→∞ βn = , we get the desired conclusion. For the case f (x) = x, since
we supposed that f (m) �=m for the real number m such that a <m < b, so either x < a or
x > b. Now, without loss of generality, we may suppose that x < a. Since f (x) = x, (.)
implies that x = x, and by induction, xn+ = xn for all n≥ , which yields

lim
n→∞(xn+ – xn) = .

Hence, in all the three cases, we obtain

lim
n→∞(xn+ – xn) = .

Thus, there exists a positive integer N such that

|xn+ – xn| < δ


, |yn – xn| < δ


for all n >N . (.)

Since b = lim supn→∞ xn >m, there exist k >N such that xnk >m. Let nk = k, then xk >m.
For xk , there exist only two cases

(i) If xk >m + δ
 , then xk+ > xk – δ

 ≥m using (.). So, xk+ >m.
(ii) If m < xk <m + δ

 , then m – δ
 < yk <m + δ using (.). So, we have |xk –m| < δ

 < δ,
|yk –m| < δ. Using (.), we get

f (xk) – xk > , f (yk) – yk > . (.)

From (.), we get that

yk – xk = βk
[
f (xk) – xk

] ≥ ,

and hence,

xk+ – xk = f (yk) – xk = f (yk) – yk + yk – xk > .

So, we obtain xk+ > xk >m.

http://www.fixedpointtheoryandapplications.com/content/2013/1/244


Karahan and Ozdemir Fixed Point Theory and Applications 2013, 2013:244 Page 5 of 12
http://www.fixedpointtheoryandapplications.com/content/2013/1/244

In conclusion, by (i), (ii), we have xk+ >m. Analogously, we have xk+ >m, xk+ >m,. . . .
Thus, we get xn >m, for all n > k = nk . So, a = limk→∞ xnk ≥ m, which is a contradiction
with a <m. Thus, f (m) =m. Now, we consider the following two cases:
(I) There exists xM such that a < xM < b. From the proof above, we obtain f (xM) = xM . It

follows that

yM = ( – βM)xM + βMf (xM) = xM,

xM+ = f (yM) = f (xM) = xM.

Analogously, we have xM = xM+ = xM+ = · · · , so xn → xM . It follows that xM = a, and
xn → a, which is a contradiction with the assumption.
(II) For all n, xn ≤ a or xn ≥ b. Since b– a > , and limn→∞ |xn+ – xn| = , so there exists

N such that

|xn+ – xn| < b – a


for all n >N. It implies that either xn ≤ a or xn ≥ b for all n >N. If xn ≤ a for all n >N,
then b = lim supn→∞ xn ≤ a, which is a contradiction with a < b. If xn ≥ b for all n >N, so
we have a = lim infn→∞ xn ≥ b, which is a contradiction with a < b. So, the assumption is
not true. Then xn → a as n→ ∞. �

Theorem  Let E be a closed interval on the real line (can be unbounded), let f : E → E be
a continuous and nondecreasing function. For x ∈ E, let the PMH-iteration {xn} be defined
by (.), where {βn} is a sequence in [, ] such that limn→∞ βn = . Then {xn} converges to
a fixed point of f if and only if {xn} is bounded.

Proof It is clear that if {xn} converges to a fixed point of f , then it is bounded. Now, assume
that {xn} is bounded. Then it follows from Lemma  and Lemma  that {xn} is convergent
to a fixed point of f . �

The following result is obtained directly from Theorem .

Corollary  Let f : [a,b] → [a,b] be a continuous and nondecreasing function. For x ∈
[a,b], let the PMH-iteration {xn} be defined by (.), where {βn} is a sequence in [, ] such
that limn→∞ βn = . Then {xn} converges to a fixed point of f .

3 Rate of convergence
Now,we give some definitions, lemmas, and theorems about the rate of convergence speed
of iterative schemes and compare those with each other. Also, we support our theorems
with numerical example.

Definition  [] Let E be a closed interval on the real line, and let f : E → E be a con-
tinuous function. Suppose that {xn} and {yn} are two iterations, which converge to a fixed
point p of f . Then {xn} is better than {yn}∞n= if

|xn – p| ≤ |yn – p|

for all n ≥ .
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For any sequence {xn} that converges to a point p, it is said that {xn} converges linearly
to p if there exist a constant μ ∈ (, ) such that

∣∣∣∣xn+ – p
xn – p

∣∣∣∣ ≤ μ.

The number μ is called the rate of convergence.
In , Phuengrattana and Suantai [] proved the following theorem about the rate of

convergence speed of the Mann, Ishikawa, Noor and SP-iteration processes.

Theorem [] Let E be a closed interval on the real line, and let f : E → E be a continuous
and nondecreasing function such that F(f ) is nonempty and bounded. For u = s = w =
x ∈ E, let {un}, {sn}, {wn}, and {xn} be the sequences defined by the Mann, Ishikawa, Noor
iterations and SP-iteration method, respectively. Let {αn}, {βn}, {γn} be sequences in [, ).
Then the following are satisfied:

(i) The Ishikawa iteration {sn} converges to p ∈ F(f ) if and only if the Mann iteration
{un} converges to p.Moreover, the Ishikawa iteration converges faster than the Mann
iteration.

(ii) The Noor iteration {wn} converges to p ∈ F(f ) if and only if the Ishikawa iteration
{sn} converges to p.Moreover, the Noor iteration converges faster than the the
Ishikawa iteration.

(iii) The SP-iteration {xn} converges to p ∈ F(f ) if and only if the Noor iteration {wn}
converges to p.Moreover, the SP-iteration converges faster than the Noor iteration.

But in contrast to the theorem above, in , Dong et al. [] obtained that the Mann
iteration is better than the others under the same computational cost. Also, they stated
that one-step SP-iteration is exactly three-step Mann iteration (see Remark ., []) and
gave the following remark with regard to this.

Remark  [] In Theorem  [, Proposition .] above, Phuengrattana and Suantai []
compared the rate of convergence of the Mann, Ishikawa, Noor iterations and the SP-
iteration and drew the conclusion that the SP-iteration is better than other iterations,
the Noor iteration is better than the Ishikawa iteration, and the Ishikawa iteration is bet-
ter than the Mann iteration. However, we know from [, Remark .] that one-step SP-
iteration is three-step Mann iteration. Clearly, the computation cost of one-step Ishikawa
iteration and one-step Noor iteration equals to that of two-stepMann iteration and three-
step Mann iteration, respectively. So, it seems to be more reasonable to compare the rate
of convergence of the Mann, Ishikawa and Noor iterations under the same computation
cost. In this sense, from Theorem (iii) [, Proposition .(iii)], theMann iteration is bet-
ter than the Ishikawa and Noor iterations.

Also, they stated in [, Remark .] that under the same computational cost, the Mann
iteration is better than the Ishikawa and Noor iterations, the Ishikawa iteration is better
than the Noor iteration.
With reference to the remark above, it is more reasonable to compare the rate of con-

vergence of the PMH-iteration method and two-step Mann iteration method (denoted by

http://www.fixedpointtheoryandapplications.com/content/2013/1/244


Karahan and Ozdemir Fixed Point Theory and Applications 2013, 2013:244 Page 7 of 12
http://www.fixedpointtheoryandapplications.com/content/2013/1/244

MannII), which is defined by

{
un+ = ( – αn)vn + αnf (vn),
vn = ( – βn)un + βnf (un),

(.)

where {αn} and {βn} are sequences in [, ]. Clearly, the computation cost of the PMH-
iteration equals to the MannII iteration.
Now, we give lemmas and propositions to compare the rate of convergence speed of the

PMH and MannII iteration methods.

Lemma  Let E be a closed interval on the real line, and let f : E → E be a continuous and
nondecreasing function. Let {αn}, {βn} be sequences in [, ). Let the MannII iteration {un}
and the PMH-iteration {xn}be defined by (.) and (.), respectively. Then the following
hold:

(i) If f (u) < u, then f (un) < un for all n≥  and {un} is nonincreasing.
(ii) If f (u) > u, then f (un) > un for all n≥  and {un} is nondecreasing.
(iii) If f (x) < x, then f (xn) ≤ xn for all n ≥  and {xn} is nonincreasing.
(iv) If f (x) > x, then f (xn) ≥ xn for all n ≥  and {xn} is nondecreasing.

Proof (i) Let f (u) < u. Then, from the definition of {un}, we get that f (u) < v ≤ u. Since
f is nondecreasing, we have f (v) ≤ f (u) < v ≤ u. This implies that f (v) < u ≤ v. Since
f is nondecreasing, we have f (u) ≤ f (v) < u. Thus, f (u) < u. Assume that f (uk) < uk .
So, we write f (uk) < vk ≤ uk . Again, by using that f is nondecreasing, we have f (vk) ≤
f (uk) < vk ≤ uk . This implies that f (vk) < uk+ ≤ vk . Hence, f (uk+) ≤ f (vk) < uk+. Thus, we
get f (uk+) < uk+. By mathematical induction, we obtain that f (un) < un for all n ≥ . This
implies that f (un) < vn ≤ un. So, we can write f (vn) ≤ f (un) < vn ≤ un. From the definition
of MannII, we get f (vn) < un+ ≤ vn ≤ un. It follows that un+ ≤ un for all n ≥ , that is, {un}
is nonincreasing sequence.
(ii) By using the same argument as in (i), we get the desired conclusion.
(iii) Let f (x) < x. Then, from the definition of {xn}, we get that f (x) < y ≤ x. Since f is

nondecreasing, we have f (y) = x ≤ f (x) < y ≤ x. This implies that f (x) ≤ f (y). Thus,
f (x) ≤ x. Assume that f (xk)≤ xk . So, we write f (xk) ≤ yk ≤ xk . Since f is nondecreasing,
we have f (yk) = xk+ ≤ f (xk) ≤ yk ≤ xk . This implies that f (xk+) ≤ f (yk). Thus, f (xk+) ≤
xk+. By mathematical induction, we obtain that f (xn) ≤ xn, for all n ≥ . It follows that
xn+ ≤ xn, for all n≥ . So, we get that {xn} is a nonincreasing sequence.
(iv) In a similar way as in the proof of (iii), we get the desired conclusion. �

Lemma  Let E be a closed interval on the real line, and let f : E → E be a continuous
and nondecreasing function. Let the MannII iteration {un} and the PMH-iteration {xn} be
sequences defined by (.), (.), respectively, where {αn}, {βn} are sequences in [, ). Then
the following are satisfied:

(i) If p ∈ F(f ) with u > p, then un > p for all n≥ .
(ii) If p ∈ F(f ) with u < p, then un < p for all n≥ .
(iii) If p ∈ F(f ) with x > p, then xn ≥ p for all n≥ .
(iv) If p ∈ F(f ) with x < p, then xn ≤ p for all n≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/244
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Proof (i) Since p ∈ F(f ) with u > p, and f is nondecreasing function, we have f (u) ≥
f (p) = p. Thus, from the definition of {un}, we get v > p. This implies that f (v)≥ p. So, we
get u > p. Assume that uk > p. So, we have f (uk) ≥ p. From the definition of {un}, we get
vk > p. Since f is nondecreasing, we get f (vk) ≥ p. So, we have uk+ > p. By mathematical
induction, we obtain that un > p for all n≥ .
(ii) In a similar way as in the proof of (i), we get the desired conclusion.
(iii) Since p ∈ F(f ) with x > p, and f is nondecreasing function, we have f (x) ≥ f (p) = p.

Thus, from the definition of {xn}, we get y > p. It implies that f (y) = x ≥ p. Assume
that xk ≥ p. So, we have f (xk) ≥ p. From the definition of {xn}, we have yk ≥ p. Since f is
nondecreasing, we get f (yk) = xk+ ≥ p. By mathematical induction, we obtain that xn ≥ p
for all n ≥ .
(iv) By using the same argument as in (iii), we get the desired conclusion. �

Lemma  Let E be a closed interval on the real line, and let f : E → E be a continuous
and nondecreasing function. For u = x, the MannII iteration {un} and the PMH-iteration
{xn} be sequences defined by (.), (.), respectively,where {αn}, {βn} are sequences in [, ).
Then the following are satisfied:

(i) If f (u) < u, then xn < un, for all n ≥ ,
(ii) If f (u) > u, then xn > un, for all n ≥ .

Proof (i) Let f (u) < u. Since u = x, we have f (x) < x. Using (.) and (.), we get

y – v = ( – β)(x – u) + β
(
f (x) – f (u)

)
= .

From the proof of Lemma (i), we know that f (v) – v = f (y) – v < . This implies that

x – u = ( – α)
(
f (y) – v

)
+ α

(
f (y) – f (v)

)
< .

Assume that xk < uk . Since f is nondecreasing, we get f (xk) ≤ f (uk). From the definition
of {xn} and {un}, we get

yk – vk = ( – βk)(xk – uk) + βk
(
f (xk) – f (uk)

)
< .

Since f is nondecreasing, we get f (yk) ≤ f (vk). On the other hand, from the proof of
Lemma (i), we know that f (vk) < vk . This implies that

xk+ – uk+ = ( – αk)
(
f (yk) – vk

)
+ αk

(
f (yk) – f (vk)

)
= ( – αk)

(
f (yk) – f (vk) + f (vk) – vk

)
+ αk

(
f (yk) – f (vk)

)
< .

By mathematical induction, we obtain that xn < un for all n≥ .
(ii) Suppose that f (u) > u. In a similar way as in proof of (i), we can show that xn > un,

for all n ≥ . �

Proposition  Let E be a closed interval on the real line, and let f : E → E be a continuous
and nondecreasing function such that F(f ) is nonempty and bounded with x > sup{p ∈ E :

http://www.fixedpointtheoryandapplications.com/content/2013/1/244
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p = f (p)}. Let {αn}, {βn} be sequences in [, ). If f (x) > x, then the sequence {xn} defined
by (.) or (.) does not converge to a fixed point of f .

Proof By Lemma (ii) or (iv), {xn} is a nondecreasing sequence. From the hypothesis, since
x > sup{p ∈ E : p = f (p)}, it is clear that {xn} does not converge to a fixed point of f . �

Proposition  Let E be a closed interval on the real line, and let f : E → E be a continuous
and nondecreasing function such that F(f ) is nonempty and bounded with x < inf{p ∈ E :
p = f (p)}. Let {αn}, {βn} be sequences in [, ). If f (x) < x, then the sequence {xn} defined
by (.) or (.) does not converge to a fixed point of f .

Proof By Lemma (i) or (iii), {xn} is a nonincreasing sequence. From the hypothesis, since
x < inf{p ∈ E : p = f (p)}, it is clear that {xn} does not converge to a fixed point of f . �

Theorem Let E be a closed interval on the real line, and let f : E → E be a continuous and
nondecreasing function such that F(f ) is nonempty and bounded. For u = x, let theMannII
iteration {un} and the PMH-iteration {xn} be sequences defined by (.), (.), respectively,
where {αn}, {βn} are sequences in [, ). If {un} converges to p ∈ F(f ), then {xn} converges to
p ∈ F(f ).Moreover, {xn} is better than {un}.

Proof Let U = sup{p ∈ E : p = f (p)} and L = inf{p ∈ E : p = f (p)}. Suppose that the MannII
iteration {un} converges to p ∈ F(f ). We shall divide our proof into three cases.
Case : Let U < u = x. From Proposition , we get f (x) < x and f (u) < u. It follows

from Lemma (i) that xn < un for all n ≥ . We note that U < x, and by using (.) and
mathematical induction, we can show thatU ≤ xn for all n≥ . Then we have  ≤ xn – p <
un – p, so

|xn – p| < |un – p| (.)

for all n ≥ . This implies that {xn} converges to p. Moreover, from (.), it is clear that
{xn} is better than {un}.
Case : Let L > u = x. From Proposition , we get f (x) > x and f (u) > u. This implies

by Lemma (ii) that xn > un for all n≥ . We note that L > x, and by using (.) and math-
ematical induction, we can show that L ≥ xn for all n≥ . Then we have |xn – p| < |un – p|,
that is, {xn} converges to p. Moreover, {xn} is better than {un}.
Case : Let L ≤ x = u ≤ U . Suppose that f (u) �= u. If f (u) < u, then from Lemma ,

we get that {un} is nonincreasing with limit p. By Lemma (i), (iii) and Lemma (i), we have
that p ≤ xn < un for all n≥ . So, it follows that |xn–p| < |un–p| for all n≥ . Therefore, we
obtain that {xn} converges to p and is better than {un}. If f (u) > u, then fromLemma , we
get that {un} is nondecreasing with limit p. By Lemma (ii), (iv) and Lemma (ii), we have
that p ≥ xn > un for all n ≥ . So, it follows that |xn – p| < |un – p| for all n ≥ . Therefore,
we obtain that {xn} converges to p. Moreover, {xn} is better than {un}. �

Remark  It follows from Theorem  and [, Remark .] that the PMH-iteration is
better than the Mann, Ishikawa, Noor and SP-iterations defined by (.), (.), (.) and
(.), respectively, under the same computational cost.
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Table 1 Comparison of the convergence rate of MannII and PMH iterations for function given
in Example 1

n MannII PMH

un xn |f (xn) – xn| |xn+1–p|
|xn–p|

2 2.252017 1.733837 5.015429E–01 3.057656E–01
3 1.950999 1.194651 1.426320E–01 2.652512E–01
4 1.828521 1.047977 3.578082E–02 2.464778E–01
...

...
...

...
...

11 1.644413 1.000003 1.971259E–06 2.500000E–01
12 1.637124 1.000001 4.357587E–07 2.272727E–01
13 1.631053 1.000000 8.356982E–08 2.000000E–01
14 1.625918 1.000000 5.939428E–09 0.000000E+00

Now, we give an example about the comparison of the rate of convergence speed of the
MannII and PMH-iterations for a given continuous and nondecreasing function on an
arbitrary interval.

Example  Let f : [, ] → [, ] be defined byf (x) = x+
√
x+

 . Then it is clear that f is
continuous and nondecreasing function with the fixed point p = . In Table , the com-
parison of the convergences for the MannII and PMH-iterations is given with the initial
point u = x = . and the sequences αn = 

n+ , βn = 
n+ . From Table , we see that the

PMH-iteration is better than the MannII iteration. Moreover, the sequence {xn} is seem
to be linear convergent.

The convergence speed of iteration methods depends on the choice of the control se-
quences. Now, we give such a theorem only for the PMH-iteration method.

Theorem  Let E be a closed interval on the real line, and let f : E → E be a continuous
and nondecreasing function such that F(f ) is nonempty and bounded. Let {βn} and {β∗

n}
be sequences in [, ) such that βn ≤ β∗

n for all n ≥ . Let {xn} and {x∗
n} be defined by (.)

generated by {βn} and {β∗
n}, respectively, and x = x∗

 . If {xn} converges to p ∈ F(f ), then {x∗
n}

converges to p ∈ F(f ).Moreover, {x∗
n} is better than {xn}.

Proof Let U = sup{p ∈ E : p = f (p)} and L = inf{p ∈ E : p = f (p)}. Suppose that {xn} con-
verges to p ∈ F(f ). We shall divide our proof into three cases.
Case : LetU < x = x∗

 . By Proposition , we have f (x) < x. FromLemma (iii), it implies
that f (xn) ≤ xn for all n ≥ . Using (.), we obtain that f (yn) ≤ yn for all n ≥ . It follows
from (.) that

y∗
 – y = x∗

 – x +
(
β∗
 – β

)(
f (x) – x

) ≤ .

Since f is nondecreasing function, we get f (y∗
 ) ≤ f (y). Thus, x∗

 ≤ x. Now, assume that
x∗
k ≤ xk . Since f (x∗

k) ≤ f (xk), we have

y∗
k – yk =

(
 – β∗

k
)
x∗
k + β∗

k f
(
x∗
k
)
–

(
( – βk)xk + βkf (xk)

)
≤ (

 – β∗
k
)(
x∗
k – xk

)
+ β∗

k
(
f
(
x∗
k
)
– f (xk)

)
≤ .
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Table 2 Comparison of the convergence rate of the PMH-iterations with the control
conditions given in Example 2

n βn β∗
n

xn |f (xn) – xn| x∗
n |f (x∗

n) – x
∗
n|

2 6.523555 2.923240E–01 6.460852 2.879644E–01
3 6.176831 2.680247E–01 6.053107 2.592325E–01
...

...
...

...
...

50 3.018344 2.032705E–03 3.012996 1.441226E–03
...

...
...

...
...

98 3.000064 7.152489E–06 3.000042 4.715360E–06
99 3.000057 6.357775E–06 3.000038 4.185547E–06
100 3.000051 5.642531E–06 3.000033 3.708715E–06

Therefore, y∗
k ≤ yk , and so f (y∗

k)≤ f (yk). Thus, we get x∗
k+ ≤ xk . Bymathematical induction,

we have x∗
n ≤ xn for all n ≥ . Using U < x∗

 and definition of {x∗
n}, from mathematical

induction, we can show that U ≤ x∗
n. Since p ≤ x∗

n ≤ xn, we get |x∗
n – p| ≤ |xn – p| for all

n≥ , that is, {x∗
n} is better than {xn}.

Case : Let x = x∗
 < L. By Proposition , we get f (x) > x. As in Case , we can show

that x∗
n ≥ xn for all n≥ . Since x∗

 < L, by using (.) and mathematical induction, it is easy
to see that x∗

n ≤ L. This implies that |x∗
n – p| ≤ |xn – p| for all n ≥ , that is, {x∗

n} is better
than {xn}.
Case : Let L ≤ x = x∗

 < U . Assume that f (x) �= x. If f (x) < x, then by Lemma (iii),
{xn} is a nonincreasing sequence, with limit p. So, it follows from Lemma (iii) that p≤ x∗

n

for all n ≥ . As in Case , we can show that x∗
n ≤ xn for all n ≥ . So, we have p ≤ x∗

n ≤ xn.
This implies that |x∗

n –p| ≤ |xn –p| for all n≥ , that is, {x∗
n} is better than {xn}. If f (x) > x,

then by Lemma (iv), {xn} is a nondecreasing sequence, with limit p. So, it follows from
Lemma (iv) that p≥ x∗

n for all n≥ . As in Case , we can show that x∗
n ≥ xn for all n≥ .

So, we have p ≥ x∗
n ≥ xn. This implies that |x∗

n – p| ≤ |xn – p| for all n ≥ , that is, {x∗
n} is

better than {xn}. �

Next, we present a numerical example.

Example  Let f : [, ] → [, ] be defined by f (x) =
√
x+
 . Then it is easy to see that f

is continuous and nondecreasing function and has the fixed point p = . Let βn = 
n+ and

β∗
n =

√
n+

. It is clear that βn ≤ β∗
n for all n≥ . The comparison of the convergence speed

for the PMH-iterations with new control conditions is given in Table  with initial point
x = x∗

 = . From Table , we see that {x∗
n} is better than {xn}.
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