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Abstract
We prove some coupled coincidence and coupled common fixed point theorems for
mappings satisfying (ψ ,φ ,θ )-contractive conditions in partially ordered complete
b-metric spaces. The obtained results extend and improve many existing results from
the literature. As an application, we prove the existence of a unique solution to a class
of nonlinear quadratic integral equations.
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1 Introduction and preliminaries
In [, ], Czerwik introduced the notion of a b-metric space, which is a generalization of
the usual metric space, and generalized the Banach contraction principle in the context
of complete b-metric spaces. After that, many authors have carried out further studies
on b-metric spaces and their topological properties (see, e.g., [–]). In this paper, some
coupled coincidence and coupled common fixed point theorems for mappings satisfying
(ψ ,φ, θ )-contractive conditions in partially ordered complete b-metric spaces are proved.
Also, we apply our results to study the existence of a unique solution to a large class of
nonlinear quadratic integral equations. There are many papers in the literature concern-
ing coupled fixed points introduced by Bhaskar and Lakshmikantham [] and their ap-
plications in the existence and uniqueness of solutions for boundary value problems. A
number of articles on this topic have been dedicated to the improvement and general-
ization; see [–] and references therein. Also, to see some results on common fixed
points for generalized contraction mappings, we refer the reader to [–]. For the sake
of convenience, some definitions and notations are recalled from [, , ] and [].

Definition . [] Let X be a (nonempty) set and s ≥  be a given real number. A function
d : X×X −→ R

+ is said to be a b-metric space iff for all x, y, z ∈ X, the following conditions
are satisfied:

(i) d(x, y) =  iff x = y,
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(ii) d(x, y) = d(y,x),
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X,d) is called a b-metric space with the parameter s.
It should be noted that the class of b-metric spaces is effectively larger than that ofmetric

spaces since a b-metric is a metric when s = .
The following example shows that, in general, a b-metric need not necessarily be a met-

ric (see also []).

Example . [] Let (X,d) be a metric space and ρ(x, y) = (d(x, y))p, where p >  is a real
number. Then ρ is a b-metric with s = p–. However, if (X,d) is a metric space, then (X,ρ)
is not necessarily a metric space. For example, if X = R is the set of real numbers and
d(x, y) = |x– y| is the usual Euclidean metric, then ρ(x, y) = (x– y)s is a b-metric on R with
s = , but is not a metric on R.

Also, the following example of a b-metric space is given in [].

Example . [] Let X be the set of Lebesgue measurable functions on [, ] such that∫ 
 |f (x)| dx < ∞. DefineD : X×X −→ [,∞) byD(f , g) =

∫ 
 |f (x)–g(x)| dx. As (∫ 

 |f (x)–
g(x)| dx)  is a metric on X, then, from the previous example, D is a b-metric on X, with
s = .

Khamsi [] also showed that each conemetric space over a normal cone has a b-metric
structure.
Since, in general, a b-metric is not continuous, we need the following simple lemma

about the b-convergent sequences in the proof of our main result.

Lemma . [] Let (X,d) be a b-metric space with s ≥ , and suppose that {xn} and {yn}
are b-convergent to x, y, respectively. Then we have


s
d(x, y)≤ lim infd(xn, yn)≤ lim supd(xn, yn) ≤ sd(x, y).

In particular, if x = y, then we have limd(xn, yn) = .Moreover, for each z ∈ X, we have


s
d(x, z) ≤ lim infd(xn, z) ≤ lim supd(xn, z) ≤ sd(x, z).

In [], Lakshmikantham and Ćirić introduced the concept of mixed g-monotone prop-
erty as follows.

Definition . [] Let (X,≤) be a partially ordered set and F : X × X −→ X and
g : X −→ X. We say F has the mixed g-monotone property if F is non-decreasing g-
monotone in its first argument and is non-increasing g-monotone in its second argument,
that is, for any x, y ∈ X,

x,x ∈ X, gx ≤ gx �⇒ F(x, y) ≤ F(x, y)
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and

y, y ∈ X, gy ≤ gy �⇒ F(x, y) ≥ F(x, y).

Note that if g is an identitymapping, then F is said to have themixedmonotone property
(see also []).

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of a
mapping F : X ×X −→ X and a mapping g : X −→ X if

F(x, y) = gx, F(y,x) = gy.

Similarly, note that if g is an identity mapping, then (x, y) is called a coupled fixed point
of the mapping F (see also []).

Definition . [] An element x ∈ X is called a common fixed point of a mapping F :
X ×X −→ X and g : X −→ X if

F(x,x) = gx = x. (.)

Definition . [] Let X be a nonempty set and F : X × X −→ X and g : X −→ X. One
says that F and g are commutative if for all x, y ∈ X,

F(gx, gy) = g
(
F(x, y)

)
.

Definition . [] The mappings F and g , where F : X × X −→ X and g : X −→ X, are
said to be compatible if

lim
n−→∞d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
= 

and

lim
n−→∞d

(
g
(
F(yn,xn)

)
,F(gyn, gxn)

)
= ,

whenever {xn} and {yn} are sequences in X such that limn−→∞ F(xn, yn) = limn−→∞ gxn = x
and limn−→∞ F(yn,xn) = limn−→∞ gyn = y for all x, y ∈ X.

2 Main results
Throughout the paper, let � be a family of all functions ψ : [,∞) −→ [,∞) satisfying
the following conditions:
(a) ψ is continuous,
(b) ψ non-decreasing,
(c) ψ(t) =  if and only if t = .

We denote by � the set of all functions φ : [,∞) −→ [,∞) satisfying the following con-
ditions:
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(a) φ is lower semi-continuous,
(b) φ(t) =  if and only if t = ,

and � the set of all continuous functions θ : [,∞) −→ [,∞) with θ (t) =  if and only if
t = .
Let (X,d,≤) be a partially ordered b-metric space, and let T : X × X −→ X and

g : X −→ X be two mappings. Set

Ms,T ,g(x, y,u, v) = max

{
d(gx, gu),d(gy, gv),d

(
gx,T(x, y)

)
,


s
d
(
gu,T(u, v)

)
,d

(
gy,T(y,x)

)
,

s
d
(
gv,T(v,u)

)
,

d(gx,T(u, v)) + d(gu,T(x, y))
s

,
d(gy,T(v,u)) + d(gv,T(y,x))

s

}

and

NT ,g(x, y,u, v) = min
{
d
(
gx,T(x, y)

)
,d

(
gu,T(u, v)

)
,d

(
gu,T(x, y)

)
,d

(
gx,T(u, v)

)}
.

Now, we introduce the following definition.

Definition . Let (X,d,≤) be a partially ordered b-metric space and ψ ∈ � , φ ∈ � and
θ ∈ �. We say that T : X×X −→ X is an almost generalized (ψ ,φ, θ )-contractive mapping
with respect to g : X −→ X if there exists L ≥  such that

ψ
(
sd

(
T(x, y),T(u, v)

)) ≤ ψ
(
Ms,T ,g(x, y,u, v)

)
– φ

(
Ms,T ,g(x, y,u, v)

)
+ Lθ

(
NT ,g(x, y,u, v)

)
(.)

for all x, y,u, v ∈ X with gx≤ gu and gy≥ gv.

Now, we establish some results for the existence of a coupled coincidence point and
a coupled common fixed point of mappings satisfying almost generalized (ψ ,φ, θ )-
contractive condition in the setup of partially ordered b-metric spaces. The first result
in this paper is the following coupled coincidence theorem.

Theorem . Suppose that (X,d,≤) is a partially ordered complete b-metric space. Let
T : X × X −→ X be an almost generalized (ψ ,φ, θ )-contractive mapping with respect to
g : X −→ X, and T and g are continuous such that T has the mixed g-monotone property
and commutes with g . Also, suppose T(X × X) ⊆ g(X). If there exists (x, y) ∈ X × X such
that gx ≤ T(x, y) and gy ≥ T(y,x), then T and g have coupled coincidence point in X.

Proof By the given assumptions, there exists (x, y) ∈ X × X such that gx ≤ T(x, y)
and gy ≥ T(y,x). Since T(X ×X) ⊆ g(X), we can define (x, y) ∈ X ×X such that gx =
T(x, y) and gy = T(y,x), then gx ≤ T(x, y) = gx and gy ≥ T(y,x) = gy. Also,
there exists (x, y) ∈ X × X such that gx = T(x, y) and gy = T(y,x). Since T has the
mixed g-monotone property, we have

gx = T(x, y)≤ T(x, y)≤ T(x, y) = gx
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and

gy = T(y,x) ≤ T(y,x) ≤ T(y,x) = gy.

Continuing in this way, we construct two sequences {xn} and {yn} in X such that

gxn+ = T(xn, yn) and gyn+ = T(yn,xn) for all n = , , , . . . (.)

for which

gx ≤ gx ≤ gx ≤ · · · ≤ gxn ≤ gxn+ ≤ · · · ,
gy ≥ gy ≥ gy ≥ · · · ≥ gyn ≥ gyn+ ≥ · · · .

(.)

From (.) and (.) and inequality (.) with (x, y) = (xn, yn) and (u, v) = (xn+, yn+), we
obtain

ψ
(
d(gxn+, gxn+)

) ≤ ψ
(
sd(gxn+, gxn+)

)
=ψ

(
sd

(
T(xn, yn),T(xn+, yn+)

))
≤ ψ

(
Ms,T ,g(xn, yn,xn+, yn+)

)
– φ

(
Ms,T ,g(xn, yn,xn+, yn+)

)
+ Lθ

(
NT ,g(xn, yn,xn+, yn+)

)
, (.)

where

Ms,T ,g(xn, yn,xn+, yn+) = max

{
d(gxn, gxn+),d(gyn, gyn+),d

(
gxn,T(xn, yn)

)
,


s
d
(
gxn+,T(xn+, yn+)

)
,d

(
gyn,T(yn,xn)

)
,


s
d
(
gyn+,T(yn+,xn+)

)
,

d(gxn,T(xn+, yn+)) + d(gxn+,T(xn, yn))
s

,

d(gyn,T(yn+,xn+)) + d(gyn+,T(yn,xn))
s

}

= max

{
d(gxn, gxn+),d(gyn, gyn+),


s
d(gxn+, gxn+),


s
d(gyn+, gyn+),

d(gxn, gxn+)
s

,
d(gyn, gyn+)

s

}

and

NT ,g(xn, yn,xn+, yn+) = min
{
d
(
gxn,T(xn, yn)

)
,d

(
gxn+,T(xn+, yn+)

)
,

d
(
gxn+,T(xn, yn)

)
,d

(
gxn+,T(xn+, yn+)

)}
= .

Since

d(gxn, gxn+)
s

≤ d(gxn, gxn+) + d(gxn+, gxn+)


≤max
{
d(gxn, gxn+),d(gxn+, gxn+)

}
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and

d(gyn, gyn+)
s

≤ d(gyn, gyn+) + d(gyn+, gyn+)


≤max
{
d(gyn, gyn+),d(gyn+, gyn+)

}
,

then we get

Ms,T ,g(xn, yn,xn+, yn+) ≤max
{
d(gxn, gxn+),d(gxn+, gxn+),

d(gyn, gyn+),d(gyn+, gyn+)
}
,

NT ,g(xn, yn,xn+, yn+) = .

(.)

By (.) and (.), we have

ψ
(
d(gxn+, gxn+)

)
≤ ψ

(
max

{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

})
– φ

(
max

{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

})
. (.)

Similarly, we can show that

ψ
(
d(gyn+, gyn+)

)
≤ ψ

(
max

{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

})
– φ

(
max

{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

})
. (.)

Now, denote

δn =max
{
d(gxn, gxn+),d(gyn, gyn+)

}
. (.)

Combining (.), (.) and the fact thatmax{ψ(a),ψ(b)} =ψ(max{a,b}) for a,b ∈ [, +∞),
we have

ψ(δn+) =max
{
ψ

(
d(gxn+, gxn+)

)
,ψ

(
d(gyn+, gyn+)

)}
. (.)

So, using (.), (.), (.) together with (.), we obtain

ψ(δn+)

≤ ψ
(
max

{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

})
– φ

(
max

{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

})
. (.)

Now we prove that for all n ∈N,

max
{
d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)

}
= δn and δn+ ≤ δn. (.)

For this purpose, consider the following three cases.

http://www.fixedpointtheoryandapplications.com/content/2013/1/245
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Case . If max{d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)} = δn, then by
(.) we have

ψ(δn+) ≤ ψ(δn) – φ(δn) <ψ(δn), (.)

so (.) obviously holds.
Case . If max{d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)} =

d(gxn+, gxn+) > , then by (.) we have

ψ
(
d(gxn+, gxn+)

) ≤ ψ
(
d(gxn+, gxn+)

)
–φ

(
d(gxn+, gxn+)

)
<ψ

(
d(gxn+, gxn+)

)
,

which is a contradiction.
Case . If max{d(gxn, gxn+),d(gxn+, gxn+),d(gyn, gyn+),d(gyn+, gyn+)} =

d(gyn+, gyn+) > , then from (.) we have

ψ
(
d(gyn+, gyn+)

) ≤ ψ
(
d(gyn+, gyn+)

)
– φ

(
d(gyn+, gyn+)

)
< ψ

(
d(gyn+, gyn+)

)
,

which is again a contradiction.
Thus, in all the cases, (.) holds for each n ∈ N. It follows that the sequence {δn} is

a monotone decreasing sequence of nonnegative real numbers and, consequently, there
exists δ ≥  such that

lim
n−→∞ δn = δ. (.)

We show that δ = . Suppose, on the contrary, that δ > . Taking the limit as n −→ ∞ in
(.) and using the properties of the function φ, we get

ψ(δ)≤ ψ(δ) – φ(δ) < ψ(δ),

which is a contradiction. Therefore δ = , that is,

lim
n−→∞ δn = lim

n−→∞max
{
d(gxn, gxn+),d(gyn, gyn+)

}
= ,

which implies that

lim
n−→∞d(gxn, gxn+) =  and lim

n−→∞d(gyn, gyn+) = . (.)

Now, we claim that

lim
n,m−→∞max

{
d(gxn, gxm),d(gyn, gym)

}
= . (.)

Assume, on the contrary, that there exist ε >  and subsequences {gxm(k)}, {gxn(k)} of {gxn}
and {gym(k)}, {gyn(k)} of {gyn} with m(k) > n(k)≥ k such that

max
{
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

} ≥ ε. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/245
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Additionally, corresponding to n(k), wemay choosem(k) such that it is the smallest integer
satisfying (.) andm(k) > n(k) ≥ k. Thus,

max
{
d(gxn(k), gxm(k)–),d(gyn(k), gym(k)–)

}
< ε. (.)

Using the triangle inequality in a b-metric space and (.) and (.), we obtain that

ε ≤ d(gxm(k), gxn(k)) ≤ sd(gxm(k), gxm(k)–) + sd(gxm(k)–, gxn(k))

< sd(gxm(k), gxm(k)–) + sε.

Taking the upper limit as k −→ ∞ and using (.), we obtain

ε ≤ lim sup
k−→∞

d(gxn(k), gxm(k)) ≤ sε. (.)

Similarly, we obtain

ε ≤ lim sup
k−→∞

d(gyn(k), gym(k)) ≤ sε. (.)

Also,

ε ≤ d(gxn(k), gxm(k)) ≤ sd(gxn(k), gxm(k)+) + sd(gxm(k)+, gxm(k))

≤ sd(gxn(k), gxm(k)) + sd(gxm(k), gxm(k)+) + sd(gxm(k)+, gxm(k))

≤ sd(gxn(k), gxm(k)) +
(
s + s

)
d(gxm(k), gxm(k)+).

So, from (.) and (.), we have

ε

s
≤ lim sup

k−→∞
d(gxn(k), gxm(k)+)≤ sε. (.)

Similarly, we obtain

ε

s
≤ lim sup

k−→∞
d(gyn(k), gym(k)+) ≤ sε. (.)

Also,

ε ≤ d(gxm(k), gxn(k)) ≤ sd(gxm(k), gxn(k)+) + sd(gxn(k)+, gxn(k))

≤ sd(gxm(k), gxn(k)) + sd(gxn(k), gxn(k)+) + sd(gxn(k)+, gxn(k))

≤ sd(gxm(k), gxn(k)) +
(
s + s

)
d(gxn(k), gxn(k)+).

So, from (.) and (.), we have

ε

s
≤ lim sup

k−→∞
d(gxm(k), gxn(k)+)≤ sε. (.)

In a similar way, we obtain

ε

s
≤ lim sup

k−→∞
d(gym(k), gyn(k)+) ≤ sε. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/245
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Also,

d(gxn(k)+, gxm(k)) ≤ sd(gxn(k)+, gxm(k)+) + sd(gxm(k)+, gxm(k)).

So, from (.) and (.), we have

ε

s
≤ lim sup

k−→∞
d(gxn(k)+, gxm(k)+). (.)

Similarly, we obtain

ε

s
≤ lim sup

k−→∞
d(gyn(k)+, gym(k)+). (.)

Linking (.), (.), (.), (.), (.), (.) together with (.), we get

ε

s
= min

{
ε, ε,

ε
s +

ε
s

s
,

ε
s +

ε
s

s

}

≤ max

{
lim sup
k−→∞

d(gxn(k), gxm(k)), lim sup
k−→∞

d(gyn(k), gym(k)),

lim supk−→∞ d(gxn(k), gxm(k)+) + lim supk−→∞ d(gxm(k), gxn(k)+)
s

,

lim supk−→∞ d(gyn(k), gym(k)+) + lim supk−→∞ d(gym(k), gyn(k)+)
s

}

≤ max

{
sε, sε,

sε + sε
s

,
sε + sε

s

}
= sε.

So,

ε

s
≤ lim sup

k−→∞
Ms,T ,g(xn(k), yn(k),xm(k), ym(k)) ≤ εs. (.)

Similarly, we have

ε

s
≤ lim inf

k−→∞
Ms,T ,g(xn(k), yn(k),xm(k), ym(k))≤ εs (.)

and

lim
k−→∞

NT ,g(xn(k), yn(k),xm(k), ym(k)) = . (.)

Sincem(k) > n(k), from (.) we have

gxn(k) ≤ gxm(k), gyn(k) ≥ gym(k).

Thus,

ψ
(
sd(gxn(k)+, gxm(k)+)

)
=ψ

(
sd

(
T(xn(k), yn(k)),T(xm(k), ym(k))

))
≤ ψ

(
Ms,T ,g(xn(k), yn(k),xm(k), ym(k))

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/245
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– φ
(
Ms,T ,g(xn(k), yn(k),xm(k), ym(k))

)
+ Lθ

(
NT ,g(xn(k), yn(k),xm(k), ym(k))

)
,

ψ
(
sd(gyn(k)+, gym(k)+)

)
=ψ

(
sd

(
T(yn(k),xn(k)),T(ym(k),xm(k))

))
≤ ψ

(
Ms,T ,g(xn(k), yn(k),xm(k), ym(k))

)
– φ

(
Ms,T ,g(xn(k), yn(k),xm(k), ym(k))

)
+ Lθ

(
NT ,g(xn(k), yn(k),xm(k), ym(k))

)
.

Since ψ is a non-decreasing function, we have

max
{
ψ

(
sd(gxn(k)+, gxm(k)+)

)
,ψ

(
sd(gyn(k)+, gym(k)+)

)}
=ψ

(
smax

{
d(gxn(k)+, gxm(k)+),d(gyn(k)+, gym(k)+)

})
.

Taking the upper limit as k −→ ∞ and using (.) and (.), we get

ψ(sε)≤ ψ
(
smax

{
lim sup
k−→∞

d(gxn(k)+, gxm(k)+), lim sup
k−→∞

d(gyn(k)+, gym(k)+)
})

≤ ψ
(
lim sup
k−→∞

Ms,T ,g(xn(k), yn(k),xm(k), ym(k))
)

– φ
(
lim inf
k−→∞

Ms,T ,g(xn(k), yn(k),xm(k), ym(k))
)

+ Lθ
(
lim sup
k−→∞

NT ,g(xn(k), yn(k),xm(k), ym(k))
)

≤ ψ(sε) – φ
(
lim inf
k−→∞

Ms,T ,g(xn(k), yn(k),xm(k), ym(k))
)
,

which implies that

φ
(
lim inf
k−→∞

Ms,T ,g(xn(k), yn(k),xm(k), ym(k))
)
= ,

so

lim inf
k−→∞

Ms,T ,g(xn(k), yn(k),xm(k), ym(k)) = ,

a contradiction to (.). Therefore, (.) holds and we have

lim
n,m−→∞d(gxn, gxm) =  and lim

n,m−→∞d(gyn, gym) = .

Since X is a complete b-metric space, there exist x, y ∈ X such that

lim
n−→∞ gxn+ = x and lim

n−→∞ gyn+ = y. (.)

From the commutativity of T and g , we have

g(gxn+) = g
(
T(xn, yn)

)
= T(gxn, gyn), g(gyn+) = g

(
T(yn,xn)

)
= T(gyn, gxn). (.)
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Now, we shall show that

gx = T(x, y) and gy = T(y,x).

Letting n −→ ∞ in (.), from the continuity of T and g , we get

gx = lim
n−→∞ g(gxn+) = lim

n−→∞T(gxn, gyn) = T
(
lim

n−→∞ gxn, lim
n−→∞ gyn

)
= T(x, y),

gy = lim
n−→∞ g(gyn+) = lim

n−→∞T(gyn, gxn) = T
(
lim

n−→∞ gyn, lim
n−→∞ gxn

)
= T(y,x).

This implies that (x, y) is a coupled coincidence point of T and g . This completes the
proof. �

Corollary . Let (X,d,≤) be a partially ordered complete b-metric space, and let T :
X × X −→ X be a continuous mapping such that T has the mixed monotone property.
Suppose that there exist ψ ∈ � , φ ∈ �, θ ∈ � and L ≥  such that

ψ
(
sd

(
T(x, y),T(u, v)

)) ≤ ψ
(
Ms(x, y,u, v)

)
– φ

(
Ms(x, y,u, v)

)
+ Lθ

(
N(x, y,u, v)

)
,

where

Ms(x, y,u, v) = max

{
d(x,u),d(y, v),d

(
x,T(x, y)

)
,


s
d
(
u,T(u, v)

)
,d

(
y,T(y,x)

)
,

s
d
(
v,T(v,u)

)
,

d(x,T(u, v)) + d(u,T(x, y))
s

,
d(y,T(v,u)) + d(v,T(y,x))

s

}

and

N(x, y,u, v) =min
{
d
(
x,T(x, y)

)
,d

(
u,T(u, v)

)
,d

(
u,T(x, y)

)
,d

(
x,T(u, v)

)}

for all x, y,u, v ∈ X with x ≤ u and y ≥ v. If there exists (x, y) ∈ X × X such that x ≤
T(x, y) and y ≥ T(y,x), then T has a coupled fixed point in X .

Proof Take g = IX and apply Theorem .. �

The following result is the immediate consequence of Corollary ..

Corollary . Let (X,d,≤) be a partially ordered complete b-metric space. Let T :
X × X −→ X be a continuous mapping such that T has the mixed monotone property.
Suppose that there exists φ ∈ � such that

d
(
T(x, y),T(u, v)

) ≤ 
s
Ms(x, y,u, v) –


s

φ
(
Ms(x, y,u, v)

)
, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/245
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where

Ms(x, y,u, v) = max

{
d(x,u),d(y, v),d

(
x,T(x, y)

)
,


s
d
(
u,T(u, v)

)
,d

(
y,T(y,x)

)
,

s
d
(
v,T(v,u)

)
,

d(x,T(u, v)) + d(u,T(x, y))
s

,
d(y,T(v,u)) + d(v,T(y,x))

s

}

for all x, y,u, v ∈ X with x ≤ u and y ≥ v. If there exists (x, y) ∈ X × X such that x ≤
T(x, y) and y ≥ T(y,x), then T has a coupled fixed point in X .

3 Uniqueness of a common fixed point
In this section we shall provide some sufficient conditions under which T and g have a
unique common fixed point. Note that if (X,≤) is a partially ordered set, then we endow
the product X ×X with the following partial order relation, for all (x, y), (z, t) ∈ X ×X,

(x, y) ≤ (z, t) ⇐⇒ x ≤ z, y≥ t.

From Theorem ., it follows that the set C(T , g) of coupled coincidences is nonempty.

Theorem . By adding to the hypotheses of Theorem ., the condition: for every (x, y)
and (z, t) in X × X, there exists (u, v) ∈ X × X such that (T(u, v),T(v,u)) is comparable to
(T(x, y),T(y,x)) and to (T(z, t),T(t, z)), then T and g have a unique coupled common fixed
point; that is, there exists a unique (x, y) ∈ X ×X such that

x = gx = T(x, y), y = gy = T(y,x).

Proof We know, from Theorem ., that there exists at least a coupled coincidence point.
Suppose that (x, y) and (z, t) are coupled coincidence points of T and g , that is, T(x, y) =
gx, T(y,x) = gy, T(z, t) = gz and T(t, z) = gt. We shall show that gx = gz and gy = gt. By
the assumptions, there exists (u, v) ∈ X × X such that (T(u, v),T(v,u)) is comparable to
(T(x, y),T(y,x)) and to (T(z, t),T(t, z)). Without any restriction of the generality, we can
assume that

(
T(x, y),T(y,x)

) ≤ (
T(u, v),T(v,u)

)
and

(
T(z, t),T(t, z)

) ≤ (
T(u, v),T(v,u)

)
.

Put u = u, v = v and choose (u, v) ∈ X ×X such that

gu = T(u, v), gv = T(v,u).

For n≥ , continuing this process, we can construct sequences {gun} and {gvn} such that

gun+ = T(un, vn), gvn+ = T(vn,un) for all n.

Further, set x = x, y = y and z = z, t = t and in the same way define sequences {gxn},
{gyn} and {gzn}, {gtn}. Then it is easy to see that

gxn −→ T(x, y), gyn −→ T(y,x) and gzn −→ T(z, t), gtn −→ T(t, z) (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/245
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for all n≥ . Since (T(x, y),T(y,x)) = (gx, gy) = (gx, gy) is comparable to (T(u, v),T(v,u)) =
(gu, gv) = (gu, gv), then it is easy to show (gx, gy) ≤ (gu, gv). Recursively, we get that

(gxn, gyn) ≤ (gun, gvn) for all n. (.)

Thus from (.) we have

ψ
(
d(gx, gun+)

) ≤ ψ
(
sd(gx, gun+)

)
=ψ

(
sd

(
T(x, y),T(un, vn)

))
≤ ψ

(
Ms,T ,g(x, y,un, vn)

)
– φ

(
Ms,T ,g(x, y,un, vn)

)
+ Lθ

(
NT ,g(x, y,un, vn)

)
,

where

Ms,T ,g(x, y,un, vn) = max

{
d(gx, gun),d(gy, gvn),d

(
gx,T(x, y)

)
,


s
d
(
gun,T(un, vn)

)
,d

(
gy,T(y,x)

)
,


s
d
(
gvn,T(vn,un)

)
,
d(gx,T(un, vn)) + d(gun,T(x, y))

s
,

d(gy,T(vn,un)) + d(gvn,T(y,x))
s

}

≤ max
{
d(gx, gun),d(gy, gvn),d(gy, gvn+),d(gx, gun+)

}
.

It is easy to show that

Ms,T ,g(x, y,un, vn) ≤max
{
d(gx, gun),d(gy, gvn)

}

and

NT ,g(x, y,un, vn) = .

Hence,

ψ
(
d(gx, gun+)

) ≤ ψ
(
max

{
d(gx, gun),d(gy, gvn)

})
– φ

(
max

{
d(gx, gun),d(gy, gvn)

})
. (.)

Similarly, one can prove that

ψ
(
d(gy, gvn+)

) ≤ ψ
(
max

{
d(gx, gun),d(gy, gvn)

})
– φ

(
max

{
d(gx, gun),d(gy, gvn)

})
. (.)

Combining (.), (.) and the fact thatmax{ψ(a),ψ(b)} =ψ(max{a,b}) for a,b ∈ [, +∞),
we have

ψ
(
max

{
d(gx, gun+),d(gy, gvn+)

})
=max

{
ψ

(
d(gx, gun+)

)
,ψ

(
d(gy, gvn+)

)}
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≤ ψ
(
max

{
d(gx, gun),d(gy, gvn)

})
φ
(
max

{
d(gx, gun),d(gy, gvn)

})
≤ ψ

(
max

{
d(gx, gun),d(gy, gvn)

})
. (.)

Using the non-decreasing property of ψ , we get that

max
{
d(gx, gun+),d(gy, gvn+)

} ≤max
{
d(gx, gun),d(gy, gvn)

}

implies that max{d(gx, gun),d(gy, gvn)} is a non-increasing sequence. Hence, there exists
r ≥  such that

lim
n−→∞max

{
d(gx, gun),d(gy, gvn)

}
= r.

Passing the upper limit in (.) as n −→ ∞, we obtain

ψ(r)≤ ψ(r) – φ(r),

which implies that φ(r) = , and then r = . We deduce that

lim
n−→∞max

{
d(gx, gun),d(gy, gvn)

}
= ,

which concludes

lim
n−→∞d(gx, gun) = lim

n−→∞d(gy, gvn) = . (.)

Similarly, one can prove that

lim
n−→∞d(gz, gun) = lim

n−→∞d(gt, gvn) = . (.)

From (.) and (.), we have gx = gz and gy = gt. Since gx = T(x, y) and gy = T(y,x), by the
commutativity of T and g , we have

g(gx) = g
(
T(x, y)

)
= T(gx, gy), g(gy) = g

(
T(y,x)

)
= T(gy, gx). (.)

Denote gx = a and gy = b. Then from (.) we have

g(a) = T(a,b), g(b) = T(b,a). (.)

Thus, (a,b) is a coupled coincidence point. It follows that ga = gz and gb = gy, that is,

g(a) = a, g(b) = b. (.)

From (.) and (.), we obtain

a = g(a) = T(a,b), b = g(b) = T(b,a). (.)
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Therefore, (a,b) is a coupled common fixed point of T and g . To prove the uniqueness
of the point (a,b), assume that (c,d) is another coupled common fixed point of T and g .
Then we have

c = gc = T(c,d), d = gd = T(d, c).

Since (c,d) is a coupled coincidence point of T and g , we have gc = gx = a and gd = gy = b.
Thus c = gc = ga = a and d = gd = gb = b, which is the desired result. �

Theorem . In addition to the hypotheses of Theorem ., if gx and gy are comparable,
then T and g have a unique common fixed point, that is, there exists x ∈ X such that x =
gx = T(x,x).

Proof Following the proof of Theorem ., T and g have a unique coupled common fixed
point (x, y). We only have to show that x = y. Since gx and gy are comparable, we may
assume that gx ≤ gy. By using the mathematical induction, one can show that

gxn ≤ gyn for all n≥ , (.)

where {gxn} and {gyn} are defined by (.). From (.) and Lemma ., we have

ψ
(
sd(x, y)

)
=ψ

(
s


s
d(x, y)

)
≤ lim sup

n−→∞
ψ

(
sd(gxn+, gyn+)

)

= lim sup
n−→∞

ψ
(
sd

(
T(xn, yn),T(yn,xn)

))

≤ lim sup
n−→∞

ψ
(
Ms,T ,g(xn, yn, yn,xn)

)
– lim inf

n−→∞ φ
(
Ms,T ,g(xn, yn, yn,xn)

)

+ lim sup
n−→∞

Lθ
(
NT ,g(xn, yn, yn,xn)

)

≤ ψ
(
d(x, y)

)
– lim inf

n−→∞ φ
(
Ms(xn, yn, yn,xn)

)

<ψ
(
d(x, y)

)
,

a contradiction. Therefore, x = y, that is, T and g have a common fixed point. �

Remark . Since a b-metric is a metric when s = , from the results of Jachymski [],
the condition

ψ
(
d
(
F(x, y),F(u, v)

)) ≤ ψ
(
max

{
d(gx, gu),d(gy, gv)

})
– φ

(
max

{
d(gx, gu),d(gy, gv)

})

is equivalent to

d
(
F(x, y),F(u, v)

) ≤ ϕ
(
max

{
d(gx, gu),d(gy, gv)

})
,

where ψ ∈ � , φ ∈ � and ϕ : [,∞) −→ [,∞) is continuous, ϕ(t) < t for all t >  and
ϕ(t) =  if and only if t = . So, our results can be viewed as a generalization and extension
of the corresponding results in [, , –] and several other comparable results.
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4 Application to integral equations
Here, in this section, we wish to study the existence of a unique solution to a nonlinear
quadratic integral equation, as an application to our coupled fixed point theorem. Con-
sider the nonlinear quadratic integral equation

x(t) = h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds

∫ 


k(t, s)f

(
s,x(s)

)
ds, t ∈ I = [, ],λ ≥ . (.)

Let  denote the class of those functions γ : [, +∞)−→ [, +∞) which satisfy the follow-
ing conditions:

(i) γ is non-decreasing and (γ (t))p ≤ γ (tp) for all p≥ .
(ii) There exists φ ∈ � such that γ (t) = t – φ(t) for all t ∈ [, +∞).

For example, γ(t) = kt, where  ≤ k <  and γ(t) = t
t+ are in .

We will analyze Eq. (.) under the following assumptions:

(a) fi : I ×R −→ R (i = , ) are continuous functions, fi(t,x)≥  and there exist two func-
tions mi ∈ L(I) such that fi(t,x)≤mi(t) (i = , ).

(a) f(t,x) is monotone non-decreasing in x and f(t, y) is monotone non-increasing in y
for all x, y ∈R and t ∈ I .

(a) h : I −→ R is a continuous function.
(a) ki : I × I −→ R (i = , ) are continuous in t ∈ I for every s ∈ I and measurable in s ∈ I

for all t ∈ I such that

∫ 


ki(t, s)mi(s)ds≤ K , i = , ,

and ki(t,x)≥ .
(a) There exist constants ≤ Li <  (i = , ) and γ ∈  such that for all x, y ∈R and x≥ y,

∣∣fi(t,x) – fi(t, y)
∣∣ ≤ Liγ (x – y) (i = , ).

(a) There exist α,β ∈ C(I) such that

α(t)≤ h(t) + λ

∫ 


k(t, s)f

(
s,α(s)

)
ds

∫ 


k(t, s)f

(
s,β(s)

)
ds

≤ h(t) + λ

∫ 


k(t, s)f

(
s,β(s)

)
ds

∫ 


k(t, s)f

(
s,α(s)

)
ds≤ β(t).

(a) max{Lp ,Lp}λpKp ≤ 
p– .

Consider the spaceX = C(I) of continuous functions defined on I = [, ] with the standard
metric given by

ρ(x, y) = sup
t∈I

∣∣x(t) – y(t)
∣∣ for x, y ∈ C(I).

This space can also be equipped with a partial order given by

x, y ∈ C(I), x≤ y ⇐⇒ x(t)≤ y(t) for any t ∈ I.
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Now, for p≥ , we define

d(x, y) =
(
ρ(x, y)

)p = (
sup
t∈I

∣∣x(t) – y(t)
∣∣)p

= sup
t∈I

∣∣x(t) – y(t)
∣∣p for x, y ∈ C(I).

It is easy to see that (X,d) is a complete b-metric space with s = p– [].
Also, X ×X = C(I)×C(I) is a partially ordered set if we define the following order rela-

tion:

(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v) ⇐⇒ x ≤ u and y≥ v.

For any x, y ∈ X and each t ∈ I , max{x(t), y(t)} and min{x(t), y(t)} belong to X and are up-
per and lower bounds of x, y, respectively. Therefore, for every (x, y), (u, v) ∈ X × X, one
can take (max{x,u},min{y, v}) ∈ X × X which is comparable to (x, y) and (u, v). Now, we
formulate the main result of this section.

Theorem . Under assumptions (a)-(a), Eq. (.) has a unique solution in C(I).

Proof We consider the operator T : X ×X −→ X defined by

T(x, y)(t) = h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds

∫ 


k(t, s)f

(
s, y(s)

)
ds for t ∈ I.

By virtue of our assumptions,T is well defined (thismeans that if x, y ∈ X, thenT(x, y) ∈ X).
Firstly, we prove that T has the mixed monotone property. In fact, for x ≤ x and t ∈ I ,
we have

T(x, y)(t) – T(x, y)(t) = h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds

∫ 


k(t, s)f

(
s, y(s)

)
ds

– h(t) – λ

∫ 


k(t, s)f

(
s,x(s)

)
ds

∫ 


k(t, s)f

(
s, y(s)

)
ds

= λ

∫ 


k(t, s)

[
f
(
s,x(s)

)
– f

(
s,x(s)

)]
ds

∫ 


k(t, s)f

(
s, y(s)

)
ds

≤ .

Similarly, if y ≥ y and t ∈ I , then T(x, y)(t) ≤ T(x, y)(t). Therefore, T has the mixed
monotone property. Also, for (x, y) ≤ (u, v), that is, x ≤ u and y ≥ v, we have

∣∣T(x, y)(t) – T(u, v)(t)
∣∣

≤
∣∣∣∣λ

∫ 


k(t, s)f

(
s,x(s)

)
ds

∫ 


k(t, s)

[
f

(
s, y(s)

)
– f

(
s, v(s)

)]
ds

+ λ

∫ 


k(t, s)f

(
s, v(s)

)
ds

∫ 


k(t, s)

[
f
(
s,x(s)

)
– f

(
s,u(s)

)]
ds

∣∣∣∣
≤ λ

∫ 


k(t, s)f

(
s,x(s)

)
ds

∫ 


k(t, s)

∣∣f(s, y(s)) – f
(
s, v(s)

)∣∣ds

+ λ

∫ 


k(t, s)f

(
s, v(s)

)
ds

∫ 


k(t, s)

∣∣f(s,x(s)) – f
(
s,u(s)

)∣∣ds
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≤ λ

∫ 


k(t, s)m(s)ds

∫ 


k(t, s)Lγ

(
y(s) – v(s)

)
ds

+ λ

∫ 


k(t, s)m(s)ds

∫ 


k(t, s)Lγ

(
u(s) – x(s)

)
ds.

Since the function γ is non-decreasing and x ≤ u and y ≥ v, we have

γ
(
u(s) – x(s)

) ≤ γ
(
sup
t∈I

∣∣x(s) – u(s)
∣∣) = γ

(
ρ(x,u)

)

and

γ
(
y(s) – v(s)

) ≤ γ
(
sup
t∈I

∣∣y(s) – v(s)
∣∣) = γ

(
ρ(y, v)

)
,

hence

∣∣T(x, y)(t) – T(u, v)(t)
∣∣ ≤ λK

∫ 


k(t, s)Lγ

(
ρ(y, v)

)
ds + λK

∫ 


k(t, s)Lγ

(
ρ(u,x)

)
ds

≤ λKmax{L,L}
[
γ
(
ρ(u,x)

)
+ γ

(
ρ(y, v)

)]
.

Then we can obtain

d
(
T(x, y),T(u, v)

)
= sup

t∈I

∣∣T(x, y)(t) – T(u, v)(t)
∣∣p

≤ {
λKmax{L,L}

[
γ
(
ρ(u,x)

)
+ γ

(
ρ(y, v)

)]}p
= λpKpmax

{
Lp ,L

p

}[

γ
(
ρ(u,x)

)
+ γ

(
ρ(y, v)

)]p,
and using the fact that (a + b)p ≤ p–(ap + bp) for a,b ∈ (, +∞) and p > , we have

d
(
T(x, y),T(u, v)

) ≤ p–λpKpmax
{
Lp ,L

p

}[(

γ
(
ρ(u,x)

))p + (
γ
(
ρ(y, v)

))p]
≤ p–λpKpmax

{
Lp ,L

p

}[

γ
(
d(u,x)

)
+ γ

(
d(y, v)

)]
≤ pλpKpmax

{
Lp ,L

p

}[

γ
(
Ms(x, y,u, v)

)]
≤ pλpKpmax

{
Lp ,L

p

}[
Ms(x, y,u, v) – φ

(
Ms(x, y,u, v)

)]

≤ 
p–

Ms(x, y,u, v) –


p–
φ
(
Ms(x, y,u, v)

)
.

This proves that the operator T satisfies the contractive condition (.) appearing in
Corollary ..
Finally, let α, β be the functions appearing in assumption (a); then, by (a), we get

α ≤ T(α,β)≤ T(β ,α)≤ β .

Theorem . gives us that T has a unique coupled fixed point (x∗, y∗) ∈ X×X. Since α ≤ β ,
Theorem . says that x∗ = y∗ and this implies x∗ = T(x∗,x∗). So, x∗ ∈ C(I) is the unique
solution of Eq. (.) and the proof is complete. �
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