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Abstract
The purpose of this paper is to characterize the conditions for the convergence of the
iterative scheme in the sense of Agarwal et al. (J. Nonlinear Convex. Anal. 8(1): 61-79,
2007), associated with nonexpansive and φ-hemicontractive mappings in a
nonempty convex subset of an arbitrary Banach space.
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1 Preliminaries
LetK be a nonempty subset of an arbitrary Banach spaceX, and letX∗ be its dual space. Let
T : X → X be an operator. The symbolsD(T) and R(T) stand for the domain and the range
of T , respectively. We denote F(T) by the set of fixed points of a single-valued mapping
T : K → K . We denote by J the normalized duality mapping from X to X∗ defined by

J(x) =
{
f ∗ ∈ X∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥}.

Let T :D(T) ⊆ X → X be an operator.

Definition  T is called L-Lipschitzian if there exists L ≥  such that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ D(T). If L = , then T is called non-expansive, and if  ≤ L < , T is called
contraction.

Definition  [–]
(i) T is said to be strongly pseudocontractive if there exists a t >  such that for each

x, y ∈D(T), there exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – Ty, j(x – y)

〉 ≤ 
t
‖x – y‖.
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(ii) T is said to be strictly hemicontractive if F(T) 	= ∅ and if there exists a t >  such
that for each x ∈D(T) and q ∈ F(T), there exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – q, j(x – q)

〉 ≤ 
t
‖x – q‖.

(iii) T is said to be φ-strongly pseudocontractive if there exists a strictly increasing
function φ : [,∞) → [,∞) with φ() =  such that for each x, y ∈D(T), there
exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – φ
(‖x – y‖)‖x – y‖.

(iv) T is said to be φ-hemicontractive if F(T) 	= ∅ and if there exists a strictly increasing
function φ : [,∞) → [,∞) with φ() =  such that for each x ∈D(T) and
q ∈ F(T), there exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – q, j(x – q)

〉 ≤ ‖x – q‖ – φ
(‖x – q‖)‖x – q‖.

Clearly, each strictly hemicontractive operator is φ-hemicontractive.
For a nonempty convex subset K of a normed space X,S : K → K and T : K → K ,
(a) the Mann iteration scheme [] is defined by the following sequence {xn}:

⎧⎨
⎩
x ∈ C,

xn+ = ( – bn)xn + bnTxn, n≥ ,
(Mn)

where {bn} is a sequence in [, ];
(b) the sequence {xn} defined by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ C,

yn = ( – b′
n)xn + b′

nTxn,

xn+ = ( – bn)xn + bnTyn, n≥ ,

(In)

where {bn}, {b′
n} are sequences in [, ] is known as the Ishikawa [] iteration

scheme;
(c) the sequence {xn} defined by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ C,

yn = b′
nxn + ( – b′

n)Txn,

xn+ = bnTxn + ( – bn)Tyn, n≥ ,

(ARSn)

where {bn}, {b′
n} are sequences in [, ], is known as the Agarwal-O’Regan-Sahu []

iteration scheme;
(d) the sequence {xn} defined by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ C,

yn = b′
nxn + ( – b′

n)Txn,

xn+ = bnSxn + ( – bn)Tyn, n≥ ,

(ARSn)
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where {bn}, {b′
n} are sequences in [, ], is known as the modified

Agarwal-O’Regan-Sahu iteration scheme.
Chidume [] established that the Mann iteration sequence converges strongly to the

unique fixed point of T in case T is a Lipschitz strongly pseudo-contractive mapping from
a bounded closed convex subset of Lp (or lp) into itself. Afterwards, several authors gen-
eralized this result of Chidume in various directions [, –].
The purpose of this paper is to characterize conditions for the convergence of the

iterative scheme in the sense of Agarwal et al. [] associated with nonexpansive and
φ-hemicontractive mappings in a nonempty convex subset of an arbitrary Banach space.
Our results improve and generalize most results in recent literature [, , , , , , , ].

2 Main result
The following result is now well known.

Lemma  [] For all x, y ∈ X and j(x + y) ∈ J(x + y),

‖x + y‖ ≤ ‖x‖ + Re
〈
y, j(x + y)

〉
.

Now, we prove our main result.

Theorem  Let K be a nonempty closed and convex subset of an arbitrary Banach
space X, let S : K → K be nonexpansive, and let T : K → K be a uniformly continuous
φ-hemicontractivemapping such that S and T have the common fixed point. Suppose that
{bn}∞n= and {b′

n}∞n= are sequences in [, ] satisfying conditions
(i) limn→∞( – bn) = limn→∞ b′

n = ,
(ii)

∑∞
n=( – bn) = ∞.

For any x ∈ K , define the sequence {xn}∞n= inductively as follows:
⎧⎨
⎩
yn = b′

nxn + ( – b′
n)Txn,

xn+ = bnSxn + ( – bn)Tyn, n≥ .
(.)

Then the following conditions are equivalent:
(a) {xn}∞n= converges strongly to the common fixed point q of S and T .
(b) {Sxn}∞n=, {Txn}∞n= and {Tyn}∞n= are bounded.

Proof First, we prove that (a) implies (b).
Since T is φ-hemicontractive, it follows that F(T) is a singleton. Let F(S) ∩ F(T) = {q}

for some q ∈ K .
Suppose that limn→∞ xn = q. Then the continuity of S and T yields that

lim
n→∞Sxn = q = lim

n→∞Txn

and

lim
n→∞ yn = lim

n→∞
[
b′
nxn +

(
 – b′

n
)
Txn

]
= q.

Thus, limn→∞ Tyn = q. Therefore, {Sxn}∞n=, {Txn}∞n= and {Tyn}∞n= are bounded.
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Second,we need to show that (b) implies (a). Suppose that {Sxn}∞n=, {Txn}∞n= and {Tyn}∞n=
are bounded.
Put

M = ‖x – q‖ + sup
n≥

‖Sxn – q‖ + sup
n≥

‖Txn – q‖ + sup
n≥

‖Tyn – q‖.

It is clear that ‖x – q‖ ≤M. Let ‖xn – q‖ ≤M. Next, we will prove that ‖xn+ – q‖ ≤M.
Note that

‖xn+ – q‖ =
∥∥bnSxn + ( – bn)Tyn – q

∥∥
=

∥∥bn(Sxn – q) + ( – bn)(Tyn – q)
∥∥

≤ bn‖Sxn – q‖ + ( – bn)‖Tyn – q‖
≤ (

bn + ( – bn)
)
M

= M.

Thus, we can conclude that the sequence {xn – q}n≥ is bounded, and hence, there is a
constantM >  satisfying

M = sup
n≥

‖xn – q‖ + sup
n≥

‖Sxn – q‖ + sup
n≥

‖Txn – q‖ + sup
n≥

‖Tyn – q‖. (.)

Let wn = ‖Tyn – Txn+‖ for each n≥ . The uniform continuity of T ensures that

lim
n→∞wn = , (.)

because

‖yn – xn+‖ =
∥∥b′

n(xn – Txn) + ( – bn)(Sxn – Tyn)
∥∥

≤ b′
n‖xn – Txn‖ + ( – bn)‖Sxn – Tyn‖

≤ M
(
b′
n + ( – bn)

)

→  as n→ ∞.

By virtue of Lemma  and (.), we infer that

‖xn+ – q‖ = ∥∥bnSxn + ( – bn)Tyn – q
∥∥

=
∥∥bn(Sxn – q) + ( – bn)(Tyn – q)

∥∥

≤ bn‖Sxn – q‖ + ( – bn)Re
〈
Tyn – q, j(xn+ – q)

〉

≤ bn‖xn – q‖ + ( – bn)Re
〈
Tyn – Txn+, j(xn+ – q)

〉

+ ( – bn)Re
〈
Txn+ – q, j(xn+ – q)

〉

≤ bn‖xn – q‖ + ( – bn)‖Tyn – Txn+‖‖xn+ – q‖
+ ( – bn)‖xn+ – q‖ – ( – bn)φ

(‖xn+ – q‖)‖xn+ – q‖
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≤ bn‖xn – q‖ + M( – bn)wn + ( – bn)‖xn+ – q‖

– ( – bn)φ
(‖xn+ – q‖)‖xn+ – q‖. (.)

The real function f : [,∞) → [,∞), f (t) = t is increasing and convex. For all a ∈ [, ]
and t, t > , we have

(
( – a)t + at

) ≤ ( – a)t + at.

Hence,

‖xn+ – q‖ =
∥∥bnSxn + ( – bn)Tyn – q

∥∥

=
∥∥bn(Sxn – q) + ( – bn)(Tyn – q)

∥∥

≤ bn‖Sxn – q‖ + ( – bn)‖Tyn – q‖

≤ bn‖xn – q‖ + ( – bn)M, (.)

where the second inequality holds by the convexity of ‖ · ‖.
By substituting (.) in (.), we get

‖xn+ – q‖ ≤ (
bn + bn( – bn)

)‖xn – q‖

+ M( – bn)
(
wn +M( – bn)

)

– ( – bn)φ
(‖xn+ – q‖)‖xn+ – q‖

=
(
 – ( – bn)

)‖xn – q‖ + M( – bn)
(
wn +M( – bn)

)

– ( – bn)φ
(‖xn+ – q‖)‖xn+ – q‖

≤ ‖xn – q‖ + M( – bn)
(
wn +M( – bn)

)

– ( – bn)φ
(‖xn+ – q‖)‖xn+ – q‖

= ‖xn – q‖ + ( – bn)ln – ( – bn)φ
(‖xn+ – q‖)‖xn+ – q‖, (.)

where

ln = M
(
wn +M( – bn)

) → , (.)

as n→ ∞.
Let δ = inf{‖xn+ – q‖ : n≥ }. We claim that δ = . Otherwise, δ > . Thus, (.) implies

that there exists a positive integer N such that ln < φ(δ)δ for each n≥N. In view of (.),
we conclude that

‖xn+ – q‖ ≤ ‖xn – q‖ – φ(δ)δ( – bn), n≥N,

which implies that

φ(δ)δ
∞∑

n=N

( – bn) ≤ ‖xN – q‖, (.)
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which contradicts (ii). Therefore, δ = . Thus, there exists a subsequence {xni+}∞n= of
{xn+}∞n= such that

lim
i→∞xni+ = q. (.)

Let ε >  be a fixed number. By virtue of (.) and (.), we can select a positive integer
i >N such that

‖xni+ – q‖ < ε, ln < φ(ε)ε, n≥ ni . (.)

Let p = ni . By induction, we show that

‖xp+m – q‖ < ε, m ≥ . (.)

Observe that (.) means that (.) is true for m = . Suppose that (.) is true for some
m ≥ . If ‖xp+m+ – q‖ ≥ ε, by (.) and (.), we know that

ε ≤ ‖xp+m+ – q‖

≤ ‖xp+m – q‖ + (
 – bp+m

)
lp+m

– 
(
 – bp+m

)
φ
(‖xp+m+ – q‖)‖xp+m+ – q‖

< ε +
(
 – bp+m

)
φ(ε)ε – 

(
 – bp+m

)
φ(ε)ε

= ε –
(
 – bp+m

)
φ(ε)ε < ε,

which is impossible. Hence, ‖xp+m+ –q‖ < ε. That is, (.) holds for allm≥ . Thus, (.)
ensures that limn→∞ xn = q. This completes the proof. �

Taking S = I in Theorem , we get the following.

Corollary  Let K be a nonempty closed and convex subset of an arbitrary Banach space
X, and let T : K → K be a uniformly continuous φ-hemicontractive mapping. Suppose that
{bn}∞n= and {b′

n}∞n= are sequences in [, ] satisfying conditions (i)-(ii) of Theorem . For any
x ∈ K , define the sequence {xn}∞n= inductively as follows:

⎧⎨
⎩
yn = b′

nxn + ( – b′
n)Txn,

xn+ = bnxn + ( – bn)Tyn, n ≥ .

Then the following conditions are equivalent:
(a) {xn}∞n= converges strongly to the unique fixed point q of T .
(b) {Txn}∞n= is bounded.

Remark 
. All the results can also be proved for the same iterative scheme with error terms.
. The known results for strongly pseudocontractive mappings are weakened by the

φ-hemicontractive mappings.
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. Our results hold in arbitrary Banach spaces, where as other known results are
restricted for Lp (or lp) spaces and q-uniformly smooth Banach spaces.

. Theorem  is more general in comparison to the results of Agarwal et al. [] in the
context of the class of φ-hemicontractive mappings. Theorem  extends convergence
results coercing φ-hemicontractive mappings in the literature in the framework of
Agarwal-O’Regan-Sahu iteration process (see also [–]).

3 Applications
Theorem  Let X be an arbitrary real Banach space, S : X → X be nonexpansive, and let
T : X → X be uniformly continuous φ-strongly accretive operators, respectively. Suppose
that {bn}∞n= and {b′

n}∞n= are sequences in [, ] satisfying conditions (i)-(ii) of Theorem .
For any x ∈ X, define the sequence {xn}∞n= inductively as follows:

⎧⎨
⎩
yn = b′

nxn + ( – b′
n)(f + (I – T)xn),

xn+ = bn(f + (I – S)xn) + ( – bn)(f + (I – T)yn), n ≥ ,

where f ∈ X, and I is the identity operator. Then the following conditions are equivalent:
(a) {xn}∞n= converges strongly to the solution of the system Sx = f = Tx.
(b) {(I – S)xn}∞n=, {(I – T)xn}∞n= and {(I – T)yn}∞n= are bounded.

Proof Suppose that x∗ is the solution of the system Sx = f = Tx. Define G,G′ : X → X by
Gx = f + (I – S)x and G′x = f + (I – T)x, respectively. Since S and T are nonexpansive and
uniformly continuous φ-strongly accretive operators, respectively, so are G and G′, then
x∗ is the common fixed point of G and G′. Thus, Theorem  follows from Theorem . �

Example  Let X = R be the reals with the usual norm and K = [, ]. Define S : K → K
by

Sx = sinx for all x ∈ K

and T : K → K by

Tx = x – tanx for all x ∈ K .

By the mean value theorem, we have

∣∣T(x) – T(y)
∣∣ ≤ sup

c∈(,)

∣∣T ′(c)
∣∣|x – y| for all x, y ∈ K .

Noticing that T ′(c) =  – sec(c) and  < supc∈(,) |T ′(c)| = .. Hence,

∣∣T(x) – T(y)
∣∣ ≤ L|x – y| for all x, y ∈ K ,

where L = .. It is easy to verify that T is φ-hemicontractive mapping with φ :
[,∞) → [,∞) defined by φ(t) = tan(t) for all t ∈ [,∞). Moreover,  is the common
fixed point of S and T . Let {bn}∞n= and {b′

n}∞n= be sequences in [, ] defined by

bn =  –

n

and b′
n =


n
, n≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/247
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Then {xn}∞n= defined by (.) in Theorem  converges to , which is the common fixed
point of S and T .
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