# RESEARCH

# **Open Access**

# Iteration scheme for common fixed points of hemicontractive and nonexpansive operators in Banach spaces

Nawab Hussain<sup>1</sup>, DR Sahu<sup>2</sup> and Arif Rafiq<sup>3\*</sup>

Dedicated to Professor Wataru Takahashi on the occasion of his seventieth birthday

\*Correspondence: aarafiq@gmail.com <sup>3</sup>Department of Mathematics, Lahore Leads University, Lahore, Pakistan Full list of author information is available at the end of the article

# Abstract

The purpose of this paper is to characterize the conditions for the convergence of the iterative scheme in the sense of Agarwal *et al.* (J. Nonlinear Convex. Anal. 8(1): 61-79, 2007), associated with nonexpansive and  $\phi$ -hemicontractive mappings in a nonempty convex subset of an arbitrary Banach space.

**Keywords:** modified iterative scheme; nonexpansive mappings;  $\phi$ -hemicontractive mappings; Banach spaces

# 1 Preliminaries

Let *K* be a nonempty subset of an arbitrary Banach space *X*, and let  $X^*$  be its dual space. Let  $T: X \to X$  be an operator. The symbols D(T) and R(T) stand for the domain and the range of *T*, respectively. We denote F(T) by the set of fixed points of a single-valued mapping  $T: K \to K$ . We denote by *J* the normalized duality mapping from *X* to  $2^{X^*}$  defined by

$$J(x) = \{f^* \in X^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2\}.$$

Let  $T: D(T) \subseteq X \to X$  be an operator.

**Definition 1** *T* is called *L*-*Lipschitzian* if there exists  $L \ge 0$  such that

$$\|Tx - Ty\| \le L\|x - y\|$$

for all  $x, y \in D(T)$ . If L = 1, then T is called *non-expansive*, and if  $0 \le L < 1$ , T is called *contraction*.

# **Definition 2** [1–3]

(i) *T* is said to be strongly pseudocontractive if there exists a t > 1 such that for each  $x, y \in D(T)$ , there exists  $j(x - y) \in J(x - y)$  satisfying

$$\operatorname{Re}\langle Tx - Ty, j(x - y) \rangle \leq \frac{1}{t} ||x - y||^2.$$

©2013 Hussain et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



(ii) *T* is said to be strictly hemicontractive if  $F(T) \neq \emptyset$  and if there exists a t > 1 such that for each  $x \in D(T)$  and  $q \in F(T)$ , there exists  $j(x - y) \in J(x - y)$  satisfying

$$\operatorname{Re}\langle Tx-q,j(x-q)\rangle \leq \frac{1}{t}\|x-q\|^2.$$

(iii) *T* is said to be  $\phi$ -strongly pseudocontractive if there exists a strictly increasing function  $\phi : [0, \infty) \rightarrow [0, \infty)$  with  $\phi(0) = 0$  such that for each  $x, y \in D(T)$ , there exists  $j(x - y) \in J(x - y)$  satisfying

$$\operatorname{Re}(Tx - Ty, j(x - y)) \le ||x - y||^2 - \phi(||x - y||) ||x - y||.$$

(iv) *T* is said to be  $\phi$ -hemicontractive if  $F(T) \neq \emptyset$  and if there exists a strictly increasing function  $\phi : [0, \infty) \rightarrow [0, \infty)$  with  $\phi(0) = 0$  such that for each  $x \in D(T)$  and  $q \in F(T)$ , there exists  $j(x - y) \in J(x - y)$  satisfying

$$\operatorname{Re}(Tx-q,j(x-q)) \le ||x-q||^2 - \phi(||x-q||) ||x-q||.$$

Clearly, each strictly hemicontractive operator is  $\phi$ -hemicontractive. For a nonempty convex subset *K* of a normed space *X*, *S* : *K*  $\rightarrow$  *K* and *T* : *K*  $\rightarrow$  *K*, (a) the Mann iteration scheme [4] is defined by the following sequence {*x*<sub>n</sub>}:

$$\begin{cases} x_1 \in C, \\ x_{n+1} = (1 - b_n)x_n + b_n T x_n, \quad n \ge 1, \end{cases}$$
(M<sub>n</sub>)

where  $\{b_n\}$  is a sequence in [0,1];

(b) the sequence  $\{x_n\}$  defined by

$$\begin{cases} x_1 \in C, \\ y_n = (1 - b'_n)x_n + b'_n T x_n, \\ x_{n+1} = (1 - b_n)x_n + b_n T y_n, \quad n \ge 1, \end{cases}$$
(I<sub>n</sub>)

where  $\{b_n\}$ ,  $\{b'_n\}$  are sequences in [0,1] is known as the Ishikawa [2] iteration scheme;

(c) the sequence  $\{x_n\}$  defined by

$$\begin{cases} x_{1} \in C, \\ y_{n} = b'_{n} x_{n} + (1 - b'_{n}) T x_{n}, \\ x_{n+1} = b_{n} T x_{n} + (1 - b_{n}) T y_{n}, \quad n \ge 1, \end{cases}$$
(ARS<sub>n</sub>)

where  $\{b_n\}$ ,  $\{b'_n\}$  are sequences in [0,1], is known as the Agarwal-O'Regan-Sahu [5] iteration scheme;

(d) the sequence  $\{x_n\}$  defined by

$$\begin{cases} x_{1} \in C, \\ y_{n} = b'_{n}x_{n} + (1 - b'_{n})Tx_{n}, \\ x_{n+1} = b_{n}Sx_{n} + (1 - b_{n})Ty_{n}, \quad n \ge 1, \end{cases}$$
(ARS<sub>n</sub>)

where  $\{b_n\}$ ,  $\{b'_n\}$  are sequences in [0,1], is known as the modified Agarwal-O'Regan-Sahu iteration scheme.

Chidume [1] established that the Mann iteration sequence converges strongly to the unique fixed point of T in case T is a Lipschitz strongly pseudo-contractive mapping from a bounded closed convex subset of  $L_p$  (or  $l_p$ ) into itself. Afterwards, several authors generalized this result of Chidume in various directions [3, 6–12].

The purpose of this paper is to characterize conditions for the convergence of the iterative scheme in the sense of Agarwal *et al.* [5] associated with nonexpansive and  $\phi$ -hemicontractive mappings in a nonempty convex subset of an arbitrary Banach space. Our results improve and generalize most results in recent literature [1, 3, 5, 6, 8, 9, 11, 12].

## 2 Main result

The following result is now well known.

**Lemma 3** [13] *For all*  $x, y \in X$  *and*  $j(x + y) \in J(x + y)$ ,

$$||x + y||^2 \le ||x||^2 + 2 \operatorname{Re}\langle y, j(x + y) \rangle.$$

Now, we prove our main result.

**Theorem 4** Let K be a nonempty closed and convex subset of an arbitrary Banach space X, let  $S: K \to K$  be nonexpansive, and let  $T: K \to K$  be a uniformly continuous  $\phi$ -hemicontractive mapping such that S and T have the common fixed point. Suppose that  $\{b_n\}_{n=1}^{\infty}$  and  $\{b'_n\}_{n=1}^{\infty}$  are sequences in [0,1] satisfying conditions

(i)  $\lim_{n \to \infty} (1 - b_n) = \lim_{n \to \infty} b'_n = 0,$ (ii)  $\sum_{n=1}^{\infty} (1 - b_n) = \infty.$ 

For any  $x_1 \in K$ , define the sequence  $\{x_n\}_{n=1}^{\infty}$  inductively as follows:

$$y_n = b'_n x_n + (1 - b'_n) T x_n,$$
  

$$x_{n+1} = b_n S x_n + (1 - b_n) T y_n, \quad n \ge 1.$$
(2.1)

Then the following conditions are equivalent:

- (a)  $\{x_n\}_{n=1}^{\infty}$  converges strongly to the common fixed point q of S and T.
- (b)  $\{Sx_n\}_{n=1}^{\infty}, \{Tx_n\}_{n=1}^{\infty} and \{Ty_n\}_{n=1}^{\infty} are bounded.$

*Proof* First, we prove that (a) implies (b).

Since *T* is  $\phi$ -hemicontractive, it follows that F(T) is a singleton. Let  $F(S) \cap F(T) = \{q\}$  for some  $q \in K$ .

Suppose that  $\lim_{n\to\infty} x_n = q$ . Then the continuity of *S* and *T* yields that

$$\lim_{n\to\infty} Sx_n = q = \lim_{n\to\infty} Tx_n$$

and

$$\lim_{n\to\infty}y_n=\lim_{n\to\infty}[b'_nx_n+(1-b'_n)Tx_n]=q.$$

Thus,  $\lim_{n\to\infty} Ty_n = q$ . Therefore,  $\{Sx_n\}_{n=1}^{\infty}$ ,  $\{Tx_n\}_{n=1}^{\infty}$  and  $\{Ty_n\}_{n=1}^{\infty}$  are bounded.

Second, we need to show that (b) implies (a). Suppose that  $\{Sx_n\}_{n=1}^{\infty}$ ,  $\{Tx_n\}_{n=1}^{\infty}$  and  $\{Ty_n\}_{n=1}^{\infty}$  are bounded.

Put

$$M_1 = \|x_1 - q\| + \sup_{n \ge 1} \|Sx_n - q\| + \sup_{n \ge 1} \|Tx_n - q\| + \sup_{n \ge 1} \|Ty_n - q\|.$$

It is clear that  $||x_1 - q|| \le M_1$ . Let  $||x_n - q|| \le M_1$ . Next, we will prove that  $||x_{n+1} - q|| \le M_1$ . Note that

$$||x_{n+1} - q|| = ||b_n S x_n + (1 - b_n) T y_n - q||$$
  
=  $||b_n (S x_n - q) + (1 - b_n) (T y_n - q)||$   
 $\leq b_n ||S x_n - q|| + (1 - b_n) ||T y_n - q||$   
 $\leq (b_n + (1 - b_n)) M_1$   
=  $M_1$ .

Thus, we can conclude that the sequence  $\{x_n - q\}_{n \ge 1}$  is bounded, and hence, there is a constant M > 0 satisfying

$$M = \sup_{n \ge 1} \|x_n - q\| + \sup_{n \ge 1} \|Sx_n - q\| + \sup_{n \ge 1} \|Tx_n - q\| + \sup_{n \ge 1} \|Ty_n - q\|.$$
(2.2)

Let  $w_n = ||Ty_n - Tx_{n+1}||$  for each  $n \ge 1$ . The uniform continuity of *T* ensures that

$$\lim_{n \to \infty} w_n = 0, \tag{2.3}$$

because

$$||y_n - x_{n+1}|| = ||b'_n(x_n - Tx_n) + (1 - b_n)(Sx_n - Ty_n)||$$
  

$$\leq b'_n ||x_n - Tx_n|| + (1 - b_n)||Sx_n - Ty_n||$$
  

$$\leq 2M(b'_n + (1 - b_n))$$
  

$$\to 0 \quad \text{as } n \to \infty.$$

By virtue of Lemma 3 and (2.1), we infer that

$$\begin{aligned} \|x_{n+1} - q\|^2 &= \|b_n Sx_n + (1 - b_n) Ty_n - q\|^2 \\ &= \|b_n (Sx_n - q) + (1 - b_n) (Ty_n - q)\|^2 \\ &\leq b_n^2 \|Sx_n - q\|^2 + 2(1 - b_n) \operatorname{Re} \langle Ty_n - q, j(x_{n+1} - q) \rangle \\ &\leq b_n^2 \|x_n - q\|^2 + 2(1 - b_n) \operatorname{Re} \langle Ty_n - Tx_{n+1}, j(x_{n+1} - q) \rangle \\ &+ 2(1 - b_n) \operatorname{Re} \langle Tx_{n+1} - q, j(x_{n+1} - q) \rangle \\ &\leq b_n^2 \|x_n - q\|^2 + 2(1 - b_n) \|Ty_n - Tx_{n+1}\| \|x_{n+1} - q\| \\ &+ 2(1 - b_n) \|x_{n+1} - q\|^2 - 2(1 - b_n) \phi (\|x_{n+1} - q\|) \|x_{n+1} - q\| \end{aligned}$$

$$\leq b_n^2 \|x_n - q\|^2 + 2M(1 - b_n)w_n + 2(1 - b_n)\|x_{n+1} - q\|^2 - 2(1 - b_n)\phi(\|x_{n+1} - q\|)\|x_{n+1} - q\|.$$
(2.4)

The real function  $f : [0, \infty) \to [0, \infty)$ ,  $f(t) = t^2$  is increasing and convex. For all  $a \in [0, 1]$  and  $t_1, t_2 > 0$ , we have

$$\left((1-a)t_1+at_2\right)^2 \le (1-a)t_1^2+at_2^2.$$

Hence,

$$\|x_{n+1} - q\|^{2} = \|b_{n}Sx_{n} + (1 - b_{n})Ty_{n} - q\|^{2}$$
  

$$= \|b_{n}(Sx_{n} - q) + (1 - b_{n})(Ty_{n} - q)\|^{2}$$
  

$$\leq b_{n}\|Sx_{n} - q\|^{2} + (1 - b_{n})\|Ty_{n} - q\|^{2}$$
  

$$\leq b_{n}\|x_{n} - q\|^{2} + (1 - b_{n})M^{2},$$
(2.5)

where the second inequality holds by the convexity of  $\|\cdot\|^2.$ 

By substituting (2.5) in (2.4), we get

$$\|x_{n+1} - q\|^{2} \leq (b_{n}^{2} + 2b_{n}(1 - b_{n}))\|x_{n} - q\|^{2} + 2M(1 - b_{n})(w_{n} + M(1 - b_{n})) - 2(1 - b_{n})\phi(\|x_{n+1} - q\|)\|x_{n+1} - q\| = (1 - (1 - b_{n})^{2})\|x_{n} - q\|^{2} + 2M(1 - b_{n})(w_{n} + M(1 - b_{n})) - 2(1 - b_{n})\phi(\|x_{n+1} - q\|)\|x_{n+1} - q\| \leq \|x_{n} - q\|^{2} + 2M(1 - b_{n})(w_{n} + M(1 - b_{n})) - 2(1 - b_{n})\phi(\|x_{n+1} - q\|)\|x_{n+1} - q\| = \|x_{n} - q\|^{2} + (1 - b_{n})l_{n} - 2(1 - b_{n})\phi(\|x_{n+1} - q\|)\|x_{n+1} - q\|,$$
(2.6)

where

$$l_n = 2M(w_n + M(1 - b_n)) \to 0,$$
(2.7)

as  $n \to \infty$ .

Let  $\delta = \inf\{||x_{n+1} - q|| : n \ge 0\}$ . We claim that  $\delta = 0$ . Otherwise,  $\delta > 0$ . Thus, (2.7) implies that there exists a positive integer  $N_1$  such that  $l_n < \phi(\delta)\delta$  for each  $n \ge N_1$ . In view of (2.6), we conclude that

$$||x_{n+1}-q||^2 \le ||x_n-q||^2 - \phi(\delta)\delta(1-b_n), \quad n \ge N_1,$$

which implies that

$$\phi(\delta)\delta \sum_{n=N_1}^{\infty} (1-b_n) \le \|x_{N_1} - q\|^2,$$
(2.8)

which contradicts (ii). Therefore,  $\delta = 0$ . Thus, there exists a subsequence  $\{x_{n_i+1}\}_{n=1}^{\infty}$  of  $\{x_{n+1}\}_{n=1}^{\infty}$  such that

$$\lim_{i \to \infty} x_{n_i+1} = q. \tag{2.9}$$

Let  $\epsilon > 0$  be a fixed number. By virtue of (2.7) and (2.9), we can select a positive integer  $i_0 > N_1$  such that

$$\|x_{n_{i_0}+1}-q\| < \epsilon, \qquad l_n < \phi(\epsilon)\epsilon, \quad n \ge n_{i_0}.$$

$$(2.10)$$

Let  $p = n_{i_0}$ . By induction, we show that

$$\|x_{p+m} - q\| < \epsilon, \quad m \ge 1. \tag{2.11}$$

Observe that (2.6) means that (2.11) is true for m = 1. Suppose that (2.11) is true for some  $m \ge 1$ . If  $||x_{p+m+1} - q|| \ge \epsilon$ , by (2.6) and (2.10), we know that

$$\begin{aligned} \epsilon^{2} &\leq \|x_{p+m+1} - q\|^{2} \\ &\leq \|x_{p+m} - q\|^{2} + (1 - b_{p+m})l_{p+m} \\ &\quad -2(1 - b_{p+m})\phi(\|x_{p+m+1} - q\|)\|x_{p+m+1} - q\| \\ &< \epsilon^{2} + (1 - b_{p+m})\phi(\epsilon)\epsilon - 2(1 - b_{p+m})\phi(\epsilon)\epsilon \\ &= \epsilon^{2} - (1 - b_{p+m})\phi(\epsilon)\epsilon < \epsilon^{2}, \end{aligned}$$

which is impossible. Hence,  $||x_{p+m+1} - q|| < \epsilon$ . That is, (2.11) holds for all  $m \ge 1$ . Thus, (2.11) ensures that  $\lim_{n\to\infty} x_n = q$ . This completes the proof.

Taking S = I in Theorem 4, we get the following.

**Corollary 5** Let K be a nonempty closed and convex subset of an arbitrary Banach space X, and let  $T: K \to K$  be a uniformly continuous  $\phi$ -hemicontractive mapping. Suppose that  $\{b_n\}_{n=1}^{\infty}$  and  $\{b'_n\}_{n=1}^{\infty}$  are sequences in [0,1] satisfying conditions (i)-(ii) of Theorem 4. For any  $x_1 \in K$ , define the sequence  $\{x_n\}_{n=1}^{\infty}$  inductively as follows:

$$\begin{cases} y_n = b'_n x_n + (1 - b'_n) T x_n, \\ x_{n+1} = b_n x_n + (1 - b_n) T y_n, \quad n \ge 1 \end{cases}$$

Then the following conditions are equivalent:

- (a)  $\{x_n\}_{n=1}^{\infty}$  converges strongly to the unique fixed point q of T.
- (b)  $\{Tx_n\}_{n=1}^{\infty}$  is bounded.

## Remark 6

- 1. All the results can also be proved for the same iterative scheme with error terms.
- 2. The known results for strongly pseudocontractive mappings are weakened by the  $\phi$ -hemicontractive mappings.

- 3. Our results hold in arbitrary Banach spaces, where as other known results are restricted for  $L_p$  (or  $l_p$ ) spaces and *q*-uniformly smooth Banach spaces.
- 4. Theorem 4 is more general in comparison to the results of Agarwal *et al.* [5] in the context of the class of φ-hemicontractive mappings. Theorem 4 extends convergence results coercing φ-hemicontractive mappings in the literature in the framework of Agarwal-O'Regan-Sahu iteration process (see also [14–21]).

## **3** Applications

**Theorem 7** Let X be an arbitrary real Banach space,  $S: X \to X$  be nonexpansive, and let  $T: X \to X$  be uniformly continuous  $\phi$ -strongly accretive operators, respectively. Suppose that  $\{b_n\}_{n=1}^{\infty}$  and  $\{b'_n\}_{n=1}^{\infty}$  are sequences in [0,1] satisfying conditions (i)-(ii) of Theorem 4. For any  $x_1 \in X$ , define the sequence  $\{x_n\}_{n=1}^{\infty}$  inductively as follows:

$$\begin{cases} y_n = b'_n x_n + (1 - b'_n)(f + (I - T)x_n), \\ x_{n+1} = b_n(f + (I - S)x_n) + (1 - b_n)(f + (I - T)y_n), \quad n \ge 1, \end{cases}$$

where  $f \in X$ , and I is the identity operator. Then the following conditions are equivalent:

- (a)  $\{x_n\}_{n=1}^{\infty}$  converges strongly to the solution of the system Sx = f = Tx.
- (b)  $\{(I-S)x_n\}_{n=1}^{\infty}, \{(I-T)x_n\}_{n=1}^{\infty} and \{(I-T)y_n\}_{n=1}^{\infty} are bounded.$

*Proof* Suppose that  $x^*$  is the solution of the system Sx = f = Tx. Define  $G, G' : X \to X$  by Gx = f + (I - S)x and G'x = f + (I - T)x, respectively. Since *S* and *T* are nonexpansive and uniformly continuous  $\phi$ -strongly accretive operators, respectively, so are *G* and *G'*, then  $x^*$  is the common fixed point of *G* and *G'*. Thus, Theorem 7 follows from Theorem 4.  $\Box$ 

**Example 8** Let  $X = \mathbb{R}$  be the reals with the usual norm and K = [0,1]. Define  $S : K \to K$  by

 $Sx = \sin x$  for all  $x \in K$ 

and  $T: K \to K$  by

 $Tx = x - \tan x$  for all  $x \in K$ .

By the mean value theorem, we have

$$\left|T(x) - T(y)\right| \le \sup_{c \in (0,1)} \left|T'(c)\right| |x - y| \quad \text{for all } x, y \in K.$$

Noticing that  $T'(c) = 1 - \sec^2(c)$  and  $1 < \sup_{c \in (0,1)} |T'(c)| = 2.4255$ . Hence,

 $|T(x) - T(y)| \le L|x - y|$  for all  $x, y \in K$ ,

where L = 2.4255. It is easy to verify that T is  $\phi$ -hemicontractive mapping with  $\phi$ :  $[0,\infty) \rightarrow [0,\infty)$  defined by  $\phi(t) = \tan(t)$  for all  $t \in [0,\infty)$ . Moreover, 0 is the common fixed point of S and T. Let  $\{b_n\}_{n=1}^{\infty}$  and  $\{b'_n\}_{n=1}^{\infty}$  be sequences in [0,1] defined by

$$b_n = 1 - \frac{1}{n}$$
 and  $b'_n = \frac{1}{n}$ ,  $n \ge 1$ .

# Then $\{x_n\}_{n=1}^{\infty}$ defined by (2.1) in Theorem 4 converges to 0, which is the common fixed point of *S* and *T*.

## Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

## Author details

<sup>1</sup> Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. <sup>2</sup>Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India. <sup>3</sup>Department of Mathematics, Lahore Leads University, Lahore, Pakistan.

## Acknowledgements

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. Therefore, the first author acknowledges with thanks DSR, KAU for financial support.

## Received: 7 May 2013 Accepted: 5 September 2013 Published: 07 Nov 2013

## References

- 1. Chidume, CE: Iterative approximation of fixed point of Lipschitz strictly pseudocontractive mappings. Proc. Am. Math. Soc. 99, 283-288 (1987)
- 2. Ishikawa, S: Fixed point by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
- 3. Liu, LW: Approximation of fixed points of a strictly pseudocontractive mapping. Proc. Am. Math. Soc. 125, 1363-1366 (1997)
- 4. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 26, 506-510 (1953)
- Agarwal, RP, O'Regan, D, Sahu, DR: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 8(1), 61-79 (2007)
- Ciric, LB, Ume, JS: Ishikawa iterative process for strongly pseudocontractive operators in Banach spaces. Math. Commun. 8, 43-48 (2003)
- 7. Liu, LS: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. **194**, 114-125 (1995)
- Liu, Z, Kim, JK, Kang, SM: Necessary and sufficient conditions for convergence of Ishikawa iterative schemes with errors to φ-hemicontractive mappings. Commun. Korean Math. Soc. 18(2), 251-261 (2003)
- 9. Liu, Z, Xu, Y, Kang, SM: Almost stable iteration schemes for local strongly pseudocontractive and local strongly
- accretive operators in real uniformly smooth Banach spaces. Acta Math. Univ. Comen. LXXVII(2), 285-298 (2008)
  Schu, J: On a theorem of C.E. Chidume concerning the iterative approximation of fixed points. Math. Nachr. 153, 313-319 (1991)
- Xue, Z: Iterative approximation of fixed point for φ-hemicontractive mapping without Lipschitz assumption. Int. J. Math. Math. Sci. 17, 2711-2718 (2005)
- 12. Zhou, HY, Cho, YJ: Ishikawa and Mann iterative processes with errors for nonlinear *φ*-strongly quasi-accretive mappings in normed linear spaces. J. Korean Math. Soc. **36**, 1061-1073 (1999)
- 13. Xu, HK: Inequality in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
- 14. Kato, T: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508-520 (1967)
- Takahashi, W: Nonlinear Functional Analysis Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)
- Takahashi, W, Yao, J-C: Weak and strong convergence theorems for positively homogeneous nonexpansive mappings in Banach spaces. Taiwan. J. Math. 15, 961-980 (2011)
- Tan, KK, Xu, HK: Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces. J. Math. Anal. Appl. 178, 9-21 (1993)
- 18. Xu, Y: Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. **224**, 91-101 (1998)
- Hussain, N, Rafiq, A: On modified implicit Mann iteration method involving strictly hemicontractive mappings in smooth Banach spaces. J. Comput. Anal. Appl. 15(5), 892-902 (2013)
- 20. Hussain, N, Rafiq, A, Ciric, LB: Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces. Fixed Point Theory Appl. **2012**, 160 (2012)
- Khan, SH, Rafiq, A, Hussain, N: A three-step iterative scheme for solving nonlinear *φ*-strongly accretive operator equations in Banach spaces. Fixed Point Theory Appl. 2012, 149 (2012)

## 10.1186/1687-1812-2013-247

Cite this article as: Hussain et al.: Iteration scheme for common fixed points of hemicontractive and nonexpansive operators in Banach spaces. Fixed Point Theory and Applications 2013, 2013:247