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1 Introduction
Let E be a real Banach space, and let K be a nonempty, closed and convex subset of E.
A mapping T : K → K is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ K . (.)

One parameter family S := {T(s) :  ≤ s < ∞} is said to be a nonexpansive semigroup
from K into K if the following conditions are satisfied:
() T()x = x for all x ∈ K ;
() T(s + t) = T(s)T(t) for all s, t ≥ ;
() ‖T(t)x – T(t)y‖ ≤ ‖x – y‖, ∀x, y ∈ K and t ≥ ;
() for each x ∈ K , the mapping T(·)x from [,∞) into K is continuous.
Let F(S) denote the common fixed point set of the semigroup S, i.e., F(S) := {x ∈ K :

T(s)x = x,∀s > }. It is known that F(S) is closed and convex.
A continuous operator of the semigroup S is said to be uniformly asymptotically regular

(u.a.r.) on K if for all h ≥  and any bounded subset C of K , lims→∞ supx∈C ‖T(h)T(s)x –
T(s)x‖ =  (see []).
Approximation of fixed points of nonexpansive mappings by a sequence of finite means

has been considered by many authors (see [–]). In , Yao et al. [] introduced two
new algorithms for finding a common fixed point of a nonexpansive semigroup {T(s)}s≥

in Hilbert spaces and proved that both approaches converge strongly to a common fixed
point of {T(s)}s≥.
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Theorem . [] Let C be a nonempty closed convex subset of a real Hilbert space H .
Let S = {T(s)}s≥ : C → C be a nonexpansive semigroup with Fix(S) 	= ∅. Let {γt}<t< and
{λt}<t< be two continuous nets of positive real numbers such that γt ∈ (, ), limt→ γt = 
and limt→ λt = +∞. Let {xt} be the net defined in the following implicit manner:

xt = PC

[
t(γtxt) + ( – t)


λt

∫ λt


T(s)xt ds

]
, ∀t ∈ (, ). (.)

Then, as t → +, the net {xt} strongly converges to x∗ ∈ Fix(s).

Theorem . [] Let C be a nonempty closed convex subset of a real Hilbert space H .
Let S = {T(s)}s≥ : C → C be a nonexpansive semigroup with Fix(S) 	= ∅. Let {xn} be the
sequence generated iteratively by the following explicit algorithm:

xn+ = ( – βn)xn + βnPC

[
αn(γnxn) + ( – αn)


λn

∫ λn


T(s)xn ds

]
, ∀n≥ , (.)

where {αn}, {βn} and {γn} are sequences of real numbers in [, ] and {λn} is a sequence of
positive real numbers. Suppose that the following conditions are satisfied:

(i) limn→∞ αn = ,
∑∞

n= αn =∞ and limn→∞ γn = ;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii) limn→∞ λn =∞ and limn→∞ λn–

λn
= .

Then the sequence {xn} generated by (.) strongly converges to a point x∗ ∈ Fix(s).

In this paper, we study the convergence of the following iterative schemes in a reflexive,
strictly convex and uniformly smooth Banach space which satisfies Opial’s condition:

xt =QK
[
t(γtxt) + ( – t)T(st)xt

]
, ∀t ∈ (, ),

xn+ = ( – βn)xn + βnQK
[
αn(γnxn) + ( – αn)T(sn)xn

]
, ∀n≥ .

Ourwork improves and generalizesmany others. In particular, our results extend themain
results of Yao et al. [].

2 Preliminaries
Let E be a real Banach space and E∗ be the dual space of E. The dualitymapping J : E → E∗

is defined by

(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}. (.)

By the Hahn-Banach theorem, J(x) is nonempty.
Let dimE ≥ . The modulus of convexity of E is the function δE : (, ] → [, ] defined

by

δE(ε) := inf

{
 –

∥∥∥∥x – y


∥∥∥∥ : ‖x‖ = ‖y‖ = ; ε = ‖x – y‖
}
. (.)

E is uniformly convex if ∀ε ∈ (, ], there exists δ = δ(ε) >  such that if x, y ∈ E with
‖x‖ ≤ , ‖y‖ ≤  and ‖x– y‖ ≥ ε, then ‖ x+y

 ‖ ≤  – δ. Equivalently, E is uniformly convex if

http://www.fixedpointtheoryandapplications.com/content/2013/1/248
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and only if δE(ε) > , ∀ε ∈ (, ]. E is strictly convex if for all x, y ∈ E, x 	= y, ‖x‖ = ‖y‖ = ,
we have ‖λx + ( – λ)y‖ < , ∀λ ∈ (, ).
Let S(E) = {x ∈ E : ‖x‖ = }. The space E is said to be smooth if

lim
t→

(‖x + ty‖ – ‖x‖)/t (.)

exists for all x, y ∈ S(E). The norm of E is said to be Fréchet differentiable if for all x ∈
S(E), the limit (.) exists uniformly for all y ∈ S(E). E is said to have a uniformly Gâteaux
differentiable norm if for all y ∈ S(E), the limit (.) is attained uniformly for all x ∈ S(E).
The norm of E is said to be uniformly Fréchet differentiable (or uniformly smooth) if the
limit (.) is attained uniformly for x, y ∈ S(E)× S(E).
It is well known that if E is smooth, then J is single-valued, which is denoted by j. And if E

has a uniformly Gâteaux differentiable norm, then J is norm-to-weak∗ uniformly contin-
uous on each bounded subset of E. The duality mapping J is said to be weakly sequentially
continuous if J is single-valued and for any {xn} ∈ E with xn ⇀ x, J(xn) ⇀∗ J(x). Gossez
and Lami Dozo [] proved that a space with a weakly continuous duality mappings satis-
fies Opial’s condition. Conversely, if a space satisfies Opial’s condition and has a uniformly
Gâteaux differentiable norm, then it has a weakly continuous duality mapping.
Recall that ifC andD are nonempty subsets of a Banach space E such thatC is nonempty

closed convex and D ⊂ C, the mapping Q : C →D is said to be sunny if

Q
(
Qx + t(x –Qx)

)
=Qx,

where Qx + t(x –Qx) ∈ C for all x ∈ C and t ≥ .
A mapping Q : C →D is called a retraction if Qx = x for all x ∈D.
A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny

nonexpansive retraction from C into D (see [, ]). It is well known that if E is a Hilbert
space, then a sunny nonexpansive retraction is coincident with themetric projection from
E onto C.

Proposition . [] Let C be a closed convex subset of a smooth Banach space E. Let D be
a nonempty subset of C. Let Q : C →D be a retraction, and let J be the normalized duality
mapping on E. Then the following are equivalent:
() Q is sunny and nonexpansive.
() ‖Qx –Qy‖ ≤ 〈x – y, J(Qx –Qy)〉, ∀x, y ∈ C.
() 〈x –Qx, J(y –Qx)〉 ≤ , ∀x ∈ C, y ∈D.

Proposition . [] Let C be a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space E, and let T be a nonexpansive mapping of C into itself
with F(T) 	= ∅. Then the set F(S) is a sunny nonexpansive retraction of C.

Lemma . [] Let K be a nonempty closed convex subset of a reflexive Banach space E
which satisfies Opial’s condition, and suppose that T : K → E is nonexpansive. Then the
mapping I – T is demiclosed at zero, that is, xn ⇀ x, xn – Txn →  implies x = Tx.

Lemma . [] Let {xn}, {yn} be two bounded sequences in a Banach space E and βn ∈
(, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose xn+ = βnyn + ( – βn)xn for all
integers n≥  and lim supn→∞(‖yn+ – yn‖ – ‖xn+ – xn‖)≤ . Then limn→∞ ‖xn – yn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/248
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Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+ ≤ ( – ρn)an + ρnσn, n≥ ,

where {ρn} and {σn} are sequences of real numbers such that
(i)  < ρn < ;
(ii)

∑∞
n= ρn =∞;

(iii) lim supn→∞ σn ≤  or
∑∞

n= |ρnσn| is convergent.
Then limn→∞ an = .

3 Main result
Theorem . Let E be a reflexive, strictly convex and uniformly smooth Banach space
which satisfies Opial’s condition, and let K be a nonempty closed convex subset of E. Let
S = {T(s) : s ≥ } : K → K be a uniformly asymptotically regular nonexpansive semigroup
such that F(S) 	= ∅. Let {γt}<t< and {st}<t< be two continuous nets of positive real numbers
such that γt ∈ (, ), limt→ γt =  and limt→ st = +∞. Let {xt} be the net defined by

xt =QK
[
t(γtxt) + ( – t)T(st)xt

]
, ∀t ∈ (, ). (.)

Then, as t → +, the net {xt} converges strongly to a point x∗ ∈ F(S).

Proof Consider a mappingW on K defined by

Wx :=QK
[
t(γtx) + ( – t)T(st)x

]
, ∀t ∈ (, ).

∀x, y ∈ K , we have

‖Wx –Wy‖ ≤ ∥∥tγt(x – y) + ( – t)
(
T(st)x – T(st)y

)∥∥
≤ tγt‖x – y‖ + ( – t)‖x – y‖
=

[
 – ( – γt)t

]‖x – y‖.

Hence,W is a contraction. So, it has a unique fixed point, denoted by xt . That is,

xt =QK
[
t(γtxt) + ( – t)T(st)xt

]
.

Therefore, the sequence {xt} defined by (.) is well defined.
Let p ∈ F(S), then

‖xt – p‖ = ∥∥QK
[
t(γtxt) + ( – t)T(st)xt

]
– p

∥∥
≤ ∥∥tγt(xt – p) – t( – γt)p + ( – t)

(
T(st)xt – p

)∥∥
≤ tγt‖xt – p‖ + t( – γt)‖p‖ + ( – t)‖xt – p‖
=

[
 – ( – γt)t

]‖xt – p‖ + t( – γt)‖p‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/248
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It follows that

‖xt – p‖ ≤ ‖p‖.

Thus, {xt} is bounded, so is {T(st)un}.
Let R = ‖p‖. It is clear that {xt} ⊂ B(p,R). Then B(p,R) ∩ K is a nonempty bounded

closed convex subset of K and T(s)-invariant. Since {T(s)} is u.a.r. nonexpansive semi-
group and limt→ st =∞, then for all s > ,

lim
t→

∥∥T(s)(T(st)xt) – T(st)xt
∥∥ ≤ lim

n→∞ sup
x∈D

∥∥T(s)(T(st)x) – T(st)x
∥∥ = ,

where D is any bounded subset of K containing {un}. Since
∥∥xt – T(st)xt

∥∥ ≤ t
∥∥γtxt – T(st)xt

∥∥ → ,

and

∥∥xt – T(s)xt
∥∥ ≤ ∥∥xt – T(st)xt

∥∥ +
∥∥T(st)xt – T(s)

(
T(st)xt

)∥∥ +
∥∥T(s)(T(st)xt) – T(s)xt

∥∥
≤ 

∥∥xt – T(st)xt
∥∥ +

∥∥T(st)xt – T(s)
(
T(st)xt

)∥∥.
Thus, for all s > , we have

lim
t→

∥∥xt – T(s)xt
∥∥ = . (.)

Set yt = t(γtxt) + ( – t)T(st)xt . Then xt =QKyt . By Proposition .(), we can get that

‖xt – p‖ = ‖QKyt –QKp‖

≤ 〈
yt – p, j(xt – p)

〉
= tγt

〈
xt – p, j(xt – p)

〉
– t( – γt)

〈
p, j(xt – p)

〉
+ ( – t)

〈
T(st)xt – p, j(xt – p)

〉
≤ [

 – ( – γt)t
]‖xt – p‖ – t( – γt)

〈
p, j(xt – p)

〉
.

Thus

‖xt – p‖ ≤ –
〈
p, j(xt – p)

〉
, ∀p ∈ F(S). (.)

Since {xt} is bounded and E is reflexive, there exists a subsequence {xtn} of {xt} such that
xtn ⇀ x∗. From (.), we have xtn –T(s)xtn →  as n→ ∞. Since E satisfies Opial’s condi-
tion, it follows from Lemma . that x∗ ∈ F(S). From (.), we have

‖xtn – p‖ ≤ –
〈
p, j(xtn – p)

〉
, ∀p ∈ F(S). (.)

In particular, if we substitute x∗ for p in (.), then we have

∥∥xtn – x∗∥∥ ≤ –
〈
x∗, j

(
xtn – x∗)〉. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/248
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Since j is weakly sequentially continuous from E to E∗, it follows from (.) that

lim
n→∞

∥∥xtn – x∗∥∥ ≤ lim
n→∞–

〈
x∗, j

(
xtn – x∗)〉 = .

Suppose that there exists a subsequence {xtm} of {xt} such that xtm ⇀ x̃. Then we have
x̃ ∈ F(S) and

‖xtm – p‖ ≤ –
〈
p, j(xtm – p)

〉
, ∀p ∈ F(S). (.)

Since x∗, x̃ ∈ F(S), from (.) and (.), we have

‖xtn – x̃‖ ≤ –
〈̃
x, j(xtn – x̃)

〉
, (.)

and

∥∥xtm – x∗∥∥ ≤ –
〈
x∗, j

(
xtm – x∗)〉. (.)

Now, in (.) and (.), taking n→ ∞ andm → ∞, respectively. We get

∥∥x∗ – x̃
∥∥ ≤ –

〈̃
x, j

(
x∗ – x̃

)〉
, (.)

and

∥∥̃x – x∗∥∥ ≤ –
〈
x∗, j

(̃
x – x∗)〉. (.)

Adding up (.) and (.), we have

∥∥x∗ – x̃
∥∥ ≤ .

We have proved that each cluster point of {xt} (as t → ) equals x∗. Thus xt → x∗ as
t → . �

Remark . Theorem . improves and extends Theorem . of Yao et al. [] in the fol-
lowing aspects.
() From a real Hilbert space to a reflexive, strictly convex and uniformly smooth

Banach space which satisfies Opial’s condition.
() 

λt

∫ λt
 T(s)xt ds is replaced by T(st)xt .

Theorem . Let E be a reflexive, strictly convex and uniformly smooth Banach space
which satisfies Opial’s condition, and let K be a nonempty closed convex subset of E. Let
S = {T(s) : s ≥ } : K → K be a uniformly asymptotically regular nonexpansive semigroup
such that F(S) 	= ∅. Let {xn} be a sequence generated in the following iterative process:

xn+ = ( – βn)xn + βnQK
[
αn(γnxn) + ( – αn)T(sn)xn

]
, ∀n≥ , (.)

where {αn}, {βn} and {γn} are sequences of real numbers in [, ] satisfying the following
conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/248


Wang et al. Fixed Point Theory and Applications 2013, 2013:248 Page 7 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/248

() limn→∞ γn = ,
∑∞

n=( – γn)αn =∞, limn→∞ αn = .
()  < lim infn→∞ βn ≤ lim supn→∞ βn < .
() h, sn ≥  such that sn+ = h + sn and limn→∞ sn =∞.

Then {xn} converges strongly to x∗ ∈ F(S).

Proof Let p ∈ F(S), we can get

‖xn+ – p‖ = ∥∥( – βn)xn + βnQK
[
αn(γnxn) + ( – αn)T(sn)xn

]
– p

∥∥
≤ ( – βn)‖xn – p‖ + βn

∥∥QK
[
αn(γnxn) + ( – αn)T(sn)xn

]
– p

∥∥
≤ ( – βn)‖xn – p‖ + βn

∥∥αnγn(xn – p) – αn( – γn)p + ( – αn)
(
T(sn)xn – p

)∥∥
≤ ( – βn)‖xn – p‖ + βn

(
αnγn‖xn – p‖ – αn( – γn)‖p‖ + ( – αn)‖xn – p‖)

=
[
 – ( – γn)αnβn

]‖xn – p‖ + ( – γn)αnβn‖p‖
≤max

{‖xn – p‖,‖p‖}
≤max

{‖x – p‖,‖p‖}.
Hence, {xn} is bounded, so is {T(sn)xn}.
Set yn =QK [αn(γnxn) + ( – αn)T(sn)xn] for all n≥ . Then xn+ = ( – βn)xn + βnyn.

‖yn+ – yn‖ =
∥∥QK

[
αn+(γn+xn+) + ( – αn+)T(sn+)xn+

]
–QK

[
αn(γnxn) + ( – αn)T(sn)xn

]∥∥
≤ ∥∥[

αn+(γn+xn+) + ( – αn+)T(sn+)xn+
]
–

[
αn(γnxn) + ( – αn)T(sn)xn

]∥∥
=

∥∥αn+γn+(xn+ – xn) + (αn+γn+ – αnγn)xn + ( – αn+)

× (
T(sn+)xn+ – T(sn+)xn + T(sn+)xn – T(sn)xn

)
+ (αn+ – αn)T(sn)xn

∥∥
≤ αn+γn+‖xn+ – xn‖ + |αn+γn+ – αnγn|‖xn‖

+ ( – αn+)
(‖xn+ – xn‖ +

∥∥T(h)T(sn)xn – T(sn)xn
∥∥)

+ |αn+ – αn|
∥∥T(sn)xn∥∥

=
[
 – ( – γn+)αn+

]‖xn+ – xn‖ + |αn+γn+ – αnγn|‖xn‖
+ ( – αn+)

∥∥T(h)(sn)xn – T(sn)xn
∥∥ + |αn+ – αn|

∥∥T(sn)xn∥∥.
So,

‖yn+ – yn‖ – ‖xn+ – xn‖
≤ –( – γn+)αn+‖xn+ – xn‖ + |αn+γn+ – αnγn|‖xn‖
+ ( – αn+)

∥∥T(h)(sn)xn – T(sn)xn
∥∥ + |αn+ – αn|

∥∥T(sn)xn∥∥. (.)

Since {T(s) : s≥ } is uniformly asymptotically regular and limn→∞ sn =∞, it follows that

lim
n→∞

∥∥T(h)T(sn)xn – T(sn)xn
∥∥ ≤ lim

n→∞ sup
x∈B

∥∥T(h)T(sn)x – T(sn)x
∥∥ = , (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/248


Wang et al. Fixed Point Theory and Applications 2013, 2013:248 Page 8 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/248

where B is any bounded set containing {xn}. Moreover, since {xn}, {T(sn)xn} are bounded,
and αn →  as n→ ∞, (.) implies that

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Hence, by Lemma . we have limn→∞ ‖yn – xn‖ =  since xn+ – xn = βn(yn – xn). Conse-
quently, limn→∞ ‖xn+ – xn‖ = .
It follows from (.) that

∥∥xn – T(sn)xn
∥∥ ≤ ‖xn – xn+‖ +

∥∥xn+ – T(sn)xn
∥∥

≤ ‖xn – xn+‖ +
∥∥( – βn)

(
xn – T(sn)xn

)
+ βn

(
QK

[
αn(γnxn) + ( – αn)T(sn)xn

]
– T(sn)xn

)∥∥
≤ ‖xn – xn+‖ + ( – βn)

∥∥xn – T(sn)xn
∥∥ + αnγn

∥∥xn – T(sn)xn
∥∥

+ αn( – γn)
∥∥T(sn)xn∥∥

= ‖xn – xn+‖ + ( – βn + αnγn)
∥∥xn – T(sn)xn

∥∥ + αn( – γn)
∥∥T(sn)xn∥∥.

So,

∥∥xn – T(sn)xn
∥∥ ≤ 

βn – αnγn

(‖xn – xn+‖ + αn( – γn)
∥∥T(sn)xn∥∥) → . (.)

Since

∥∥xn – T(h)xn
∥∥

≤ ∥∥xn – T(sn)xn
∥∥ +

∥∥T(sn)xn – T(h)T(sn)xn
∥∥ +

∥∥T(h)T(sn)xn – T(h)xn
∥∥

≤ 
∥∥xn – T(sn)xn

∥∥ +
∥∥T(sn)xn – T(h)T(sn)xn

∥∥,
from (.) and (.), we have

lim
n→∞

∥∥xn – T(h)xn
∥∥ = . (.)

Notice that {xn} is bounded. Put x∗ =QF(S)(). Then there exists a positive number R such
that B(x∗,R) ∩ K contains {xn}. Moreover, B(x∗,R) ∩ K is T(s)-invariant for all s ≥  and
so, without loss of generality, we can assume that {T(s) : s ≥ } is a nonexpansive semi-
group on B(x∗,R)∩K . We take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
–x∗, j

(
xn – x∗)〉 = lim

k→∞
〈
x∗, j

(
xnk – x∗)〉.

We may also assume that xnk ⇀ x̃. It follows from Lemma . and (.) that x̃ ∈ F(S) and
hence

〈
–x∗, j

(̃
x – x∗)〉 ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/248
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Since j is weakly sequentially continuous, we have

lim sup
n→∞

〈
–x∗, j

(
xn – x∗)〉 = lim

k→∞
〈
–x∗, j

(
xnk – x∗)〉 = 〈

–x∗, j
(̃
x – x∗)〉 ≤ .

Since limn→∞ ‖yn – xn‖ = , we have yn – x∗ → xn – x∗, so

lim sup
n→∞

〈
–x∗, j

(
yn – x∗)〉 = lim sup

n→∞

〈
–x∗, j

(
xn – x∗)〉 ≤ .

Set un = αn(γnxn) + ( – αn)T(sn)xn. It follows that yn = QKun for all n ≥ . By Proposi-
tion .(), we have

〈
yn – un, j

(
yn – x∗)〉 ≤ ,

and so

∥∥yn – x∗∥∥ =
〈
yn – x∗, j

(
yn – x∗)〉

=
〈
yn – un, j

(
yn – x∗)〉 + 〈

un – x∗, j
(
yn – x∗)〉

≤ 〈
un – x∗, j

(
yn – x∗)〉

= αnγn
〈
xn – x∗, j

(
yn – x∗)〉 – αn( – γn)

〈
x∗, j

(
yn – x∗)〉

+ ( – αn)
〈
T(sn)xn – x∗, j

(
yn – x∗)〉

≤ αnγn
∥∥xn – x∗∥∥∥∥j(yn – x∗)∥∥ – αn( – γn)

〈
x∗, j

(
yn – x∗)〉

+ ( – αn)
∥∥T(sn)xn – x∗∥∥∥∥j(yn – x∗)∥∥

≤ [
 – ( – γn)αn

]∥∥xn – x∗∥∥∥∥yn – x∗∥∥ – αn( – γn)
〈
x∗, j

(
yn – x∗)〉

≤  – ( – γn)αn


∥∥xn – x∗∥∥ +



∥∥yn – x∗∥∥ – αn( – γn)

〈
x∗, j

(
yn – x∗)〉,

that is,

∥∥yn – x∗∥∥ ≤ [
 – ( – γn)αn

]∥∥xn – x∗∥∥ – αn( – γn)
〈
x∗, j

(
yn – x∗)〉.

By the convexity of ‖ · ‖, we have
∥∥xn+ – x∗∥∥ ≤ ( – βn)

∥∥xn – x∗∥∥ + βn
∥∥yn – x∗∥∥

≤ [
 – ( – γn)αnβn

]∥∥xn – x∗∥∥ – ( – γn)αnβn
〈
x∗, j

(
yn – x∗)〉.

By Lemma ., we conclude that xn → x∗. �

Remark . Theorem . improves and extends Theorem . of Yao et al. [] in the fol-
lowing aspects.
() From a real Hilbert space to a reflexive, strictly convex and uniformly smooth

Banach space which satisfies Opial’s condition.
() 

λn

∫ λn
 T(s)xn ds is replaced by T(sn)xn.
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