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Abstract
In this paper, we introduce composite Mann iteration methods for a general system
of variational inequalities with solutions being also common fixed points of a
countable family of nonexpansive mappings and zeros of an accretive operator in real
smooth Banach spaces. Here, the composite Mann iteration methods are based on
Korpelevich’s extragradient method, viscosity approximation method and the Mann
iteration method. We first consider and analyze a composite Mann iterative algorithm
in the setting of uniformly convex and 2-uniformly smooth Banach space, and then
another composite Mann iterative algorithm in a uniformly convex Banach space
having a uniformly Gâteaux differentiable norm. Under suitable assumptions, we
derive some strong convergence theorems. The results presented in this paper
improve, extend, supplement and develop the corresponding results announced in
the earlier and very recent literature.
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1 Introduction
Let X be a real Banach space whose dual space is denoted by X∗. The normalized duality
mapping J : X → X∗ is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. It is an immediate consequence of the
Hahn-Banach theorem that J(x) is nonempty for each x ∈ X. Let U = {x ∈ X : ‖x‖ = }
denote the unit sphere of X. A Banach space X is said to be uniformly convex if for each
ε ∈ (, ], there exists δ >  such that for all x, y ∈U ,

‖x – y‖ ≥ ε ⇒ ‖x + y‖/ ≤  – δ.

It is known that a uniformly convex Banach space is reflexive and strict convex. A Banach
space X is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t
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exists for all x, y ∈U ; in this case, X is also said to have a Gâteaux differentiable norm. X is
said to have a uniformly Gâteaux differentiable norm if for each y ∈U , the limit is attained
uniformly for x ∈ U . Moreover, it is said to be uniformly smooth if this limit is attained
uniformly for x, y ∈U . The norm ofX is said to be the Frechet differential if for each x ∈U ,
this limit is attained uniformly for y ∈U . Let C be a nonempty closed convex subset of X.
A mapping T : C → C is called nonexpansive if ‖Tx–Ty‖ ≤ ‖x– y‖ for every x, y ∈ C. The
set of fixed points of T is denoted by Fix(T). A mapping A : C → X is said to be accretive
if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that 〈Ax –Ay, j(x – y)〉 ≥ .
Recently, Yao et al. [] combined the viscosity approximation method and the Mann

iteration method, and gave the following hybrid viscosity approximation method:
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X,

T : C → C a nonexpansive mapping such that Fix(T) �= ∅ and f ∈ ΞC with a contractive
coefficient ρ ∈ (, ), where ΞC is the set of all contractive self-mappings on C. For an
arbitrary x ∈ C, define {xn} in the following way:

⎧⎨
⎩yn = αnxn + ( – αn)Txn,

xn+ = βnf (xn) + ( – βn)yn, ∀n≥ ,
(YCY)

where {αn} and {βn} are two sequences in (, ). They proved under certain control con-
ditions on the sequences {αn} and {βn} that {xn} converges strongly to a fixed point of T .
Subsequently, Ceng and Yao [] under the convergence of no parameter sequences to zero
proved that the sequence {xn} generated by (YCY) converges strongly to a fixed point of T .
Such a result includes [, Theorem ] as a special case.

Theorem . (See [, Theorem .]) Let C be a nonempty closed convex subset of a uni-
formly smooth Banach space X. Let T : C → C be a nonexpansive mapping with Fix(T) �= ∅
and f ∈ ΞC with contractive coefficient ρ ∈ (, ). Given sequences {αn} and {βn} in [, ],
the following control conditions are satisfied:

(i) ≤ βn ≤  – ρ , ∀n≥ n for some integer n ≥ ;
(ii)

∑∞
n= βn =∞;

(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iv) limn→∞( βn+

–(–βn+)αn+
– βn

–(–βn)αn ) = .
For an arbitrary x ∈ C, let {xn} be generated by (YCY). Then

xn → q ⇐⇒ βn
(
f (xn) – xn

) → ,

where q ∈ Fix(T) solves the variational inequality problem (VIP):

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ Fix(T).

On the other hand, Cai and Bu [] considered the following general system of variational
inequalities (GSVI) in a real smooth Banach space X, which involves finding (x∗, y∗) ∈
C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗, J(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, J(x – y∗)〉 ≥ , ∀x ∈ C,
(.)
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where C is a nonempty, closed and convex subset of X, B,B : C → X are two nonlinear
mappings andμ andμ are two positive constants. Here, the set of solutions of GSVI (.)
is denoted byGSVI(C,B,B). In particular, ifX =H in a real Hilbert space, thenGSVI (.)
reduces to the following GSVI of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,
(.)

which μ and μ are two positive constants. The set of solutions of problem (.) is still
denoted by GSVI(C,B,B). In particular, if B = B = A, then problem (.) reduces to
the new system of variational inequalities (NSVI), introduced and studied by Verma [].
Further, if x∗ = y∗ additionally, then theNSVI reduces to the classical variational inequality
problem (VIP) of finding x∗ ∈ C such that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted byVI(C,A). Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving, equilibrium problems. It is now well known that the
variational inequalities are equivalent to the fixed point problems, the origin of which
can be traced back to Lions and Stampacchia []. This alternative formulation has been
used to suggest and analyze projection iterativemethod for solving variational inequalities
under the conditions that the involved operator must be strongly monotone and Lipschitz
continuous.
Recently, Ceng et al. [] transformed problem (.) into a fixed point problem in the

following way.

Lemma . (See []) For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of problem (.) if and only if x̄
is a fixed point of the mapping G : C → C defined by

G(x) = PC
[
PC(x –μBx) –μBPC(x –μBx)

]
, ∀x ∈ C, (.)

where ȳ = PC(x̄ –μBx̄) and PC is the projection of H onto C.
In particular, if the mappings Bi : C →H is βi-inverse strongly monotone for i = , , then

the mapping G is nonexpansive provided μi ∈ (, βi) for i = , .

In , Korpelevich [] proposed an iterative algorithm for solving the VIP (.) in
Euclidean space Rn:

⎧⎨
⎩yn = PC(xn – τAxn),

xn+ = PC(xn – τAyn), n≥ ,

with τ >  a given number, which is known as the extragradient method. The literature on
the VIP is vast, and Korpelevich’s extragradient method has received great attention given
by many authors, who improved it in various ways; see, e.g., [, –] and the references
therein, to name but a few.

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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In particular, whenever X is still a real smooth Banach space, B = B = A and x∗ = y∗,
then GSVI (.) reduces to the variational inequality problem (VIP) of finding x∗ ∈ C such
that

〈
Ax∗, J

(
x – x∗)〉 ≥ , ∀x ∈ C, (.)

whichwas considered byAoyama et al. []. Note that VIP (.) is connectedwith the fixed
point problem for nonlinearmapping (see, e.g., [, ]), the problemof finding a zero point
of a nonlinear operator (see, e.g., []) and so on. It is clear that VIP (.) extends VIP (.)
from Hilbert spaces to Banach spaces.
In order to find a solution of VIP (.), Aoyama et al. [] introduced the followingMann

iterative scheme for an accretive operator A:

xn+ = αnxn + ( – αn)ΠC(xn – λnAxn), ∀n≥ , (.)

where ΠC is a sunny nonexpansive retraction from X onto C. Then they proved a weak
convergence theorem.
Obviously, it is an interesting and valuable problem of constructing some algorithms

with strong convergence for solving GSVI (.), which contains VIP (.) as a special case.
Very recently, Cai and Bu [] constructed an iterative algorithm for solving GSVI (.)
and a common fixed point problem of a countable family of nonexpansive mappings in a
uniformly convex and -uniformly smooth Banach space.

Theorem . (See [, Theorem .]) Let C be a nonempty closed convex subset of a uni-
formly convex and -uniformly smooth Banach space X. Let ΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be βi-inverse-strongly ac-
cretive with  < μi < βi

κ
for i = , . Let f be a contraction of C into itself with coeffi-

cient δ ∈ (, ). Let {Tn}∞n= be a countable family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Ti) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping

G = ΠC(I – μB)ΠC(I – μB) on C. For arbitrarily given x ∈ C, let {xn} be the sequence
generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+ = βnxn + ( – βn)Tnyn,

yn = αnf (xn) + ( – αn)zn,

zn =ΠC(un –μBun),

un =ΠC(xn –μBxn), ∀n≥ .

Suppose that {αn} and {βn} are two sequences in (, ) satisfying the following conditions:
(i) limn→∞ αn =  and

∑∞
n= αn =∞;

(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Assume that

∑∞
n= supx∈D ‖Tn+x – Tnx‖ < ∞ for any bounded subset D of C, and let T be

a mapping of C into X defined by Tx = limn→∞ Tnx for all x ∈ C and suppose that Fix(T) =⋂∞
n= Fix(Tn). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

http://www.fixedpointtheoryandapplications.com/content/2013/1/249


Ceng and Wen Fixed Point Theory and Applications 2013, 2013:249 Page 5 of 37
http://www.fixedpointtheoryandapplications.com/content/2013/1/249

Furthermore, recall that a (possibly multivalued) operator A⊂ X×X with domainD(A)
and range R(A) in a real Banach space X is accretive if, for each xi ∈ D(A) and yi ∈ Axi
(i = , ), there exists a j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . (Here J
is the duality mapping.) An accretive operator A is said to satisfy the range condition if
D(A) ⊂ R(I + rA) for all r > . An accretive operator A is m-accretive if R(I + rA) = X for
each r > . If A is an accretive operator which satisfies the range condition, then we can
define, for each r >  a mapping Jr : R(I + rA) → D(A) defined by Jr = (I + rA)–, which is
called the resolvent of A. We know that Jr is nonexpansive and Fix(Jr) = A– for all r > .
Hence,

Fix(Jr) = A– =
{
z ∈D(A) :  ∈ Az

}
.

If A– �= ∅, then the inclusion  ∈ Az is solvable. The following resolvent identity is well
known to us; see [], where more details on accretive operators can be found.

Proposition . (Resolvent identity) For λ > , μ >  and x ∈ X,

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx

)
.

Recently, Aoyama et al. [] studied the following iterative scheme in a uniformly con-
vex Banach space having a uniformly Gâteaux differentiable norm: for resolvents Jrn of an
accretive operator A such that A– �= ∅ and D(A) ⊂ C ⊂ ⋂

r> R(I + rA) and {αn} ⊂ (, )

⎧⎨
⎩x = x ∈ C,

xn+ = αnx + ( – αn)Jrnxn.
(.)

They proved that the sequence {xn} generated by (.) converges strongly to a zero of A
under appropriate assumptions on {αn} and {rn}. Subsequently, Ceng et al. [] introduced
and analyzed the following composite iterative scheme in either a uniformly smooth Ba-
nach space or a reflexive Banach space having a weakly sequentially continuous duality
mapping

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ X,

yn = αnu + ( – αn)Jrnxn,

xn+ = ( – βn)yn + βnJrnyn,

(.)

whereu ∈D(A) is an arbitrary (but fixed) element, under the following control conditions:
(H) limn→∞ αn = ;
(H)

∑∞
n= αn =∞, or, equivalently,

∏∞
n=( – αn) = ;

(H)
∑∞

n= |αn – αn–| < ∞;
(H) rn ≥ ε, ∀n≥ , for some ε >  and

∑∞
n= |rn – rn–| < ∞;

(H) βn ∈ [,a) for some a ∈ (, ) and
∑∞

n= |βn – βn–| <∞.
Further, as the viscosity approximation method, Jung [] purposed and analyzed the

following composite iterative scheme for finding a zero of an accretive operator A: for

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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resolvent Jrn of an accretive operator A such that A– �= ∅ andD(A) ⊂ C ⊂ ⋂
r> R(I + rA),

f ∈ ΞC (ΞC denotes the set of all contractions on C) and {αn}, {βn} ⊂ (, ),

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C,

yn = αnf (xn) + ( – αn)Jrnxn,

xn+ = ( – βn)yn + βnJrnyn.

(JS)

Theorem. (See [, Theorem.]) Let X be a strictly convex and reflexive Banach space
having a uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex sub-
set of X and A ⊂ X × X an accretive operator in X such that A– �= ∅ and D(A) ⊂ C ⊂⋂

r> R(I + rA). Let {αn} and {βn} be sequences in (, ) which satisfy the conditions:
(i) limn→∞ αn =  and

∑∞
n= αn =∞;

(ii) βn ∈ [,a) for some  < a <  for all n ≥ .
Let f ∈ ΞC and x ∈ C be chosen arbitrarily. Let {xn} be a sequence generated by (JS) for
rn > . If {xn} is asymptotically regular, i.e., limn→∞ ‖xn+ – xn‖ = , then {xn} converges
strongly to q ∈ A–, which is the unique solution of the variational inequality problem
(VIP)

〈
(I – f )q, J(q – p)

〉 ≤ , ∀f ∈ ΞC ,p ∈ A–.

Let C be a nonempty closed convex subset of a real smooth Banach space X. Let ΠC

be a sunny nonexpansive retraction from X onto C, and let f : C → C be a contraction
with coefficient ρ ∈ (, ). Motivated and inspired by the research going on in this area,
we introduce the composite Mann iteration methods for finding solutions of GSVI (.),
which are also common fixed points of a countable family of nonexpansive mappings and
zeros of an accretive operator A ⊂ X × X such that D(A) ⊂ C ⊂ ⋂

r> R(I + rA). Here,
the composite Mann iteration methods are based on Korpelevich’s extragradient method,
viscosity approximation method and the Mann iteration method. We first consider and
analyze a composite Mann iterative algorithm in the setting of uniformly convex and -
uniformly smooth Banach space, and then another composite Mann iterative algorithm
in a uniformly convex Banach space having a uniformly Gâteaux differentiable norm. Un-
der suitable assumptions, we derive some strong convergence theorems. The results pre-
sented in this paper improve, extend, supplement and develop the corresponding results
announced in the earlier and very recent literature; see, e.g., [, , , , ].

2 Preliminaries
Let X be a real Banach space.We define a function ρ : [,∞)→ [,∞) called the modulus
of smoothness of X as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.

It is known that X is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed
real number with  < q ≤ . Then a Banach space X is said to be q-uniformly smooth if
there exists a constant c >  such that ρ(τ ) ≤ cτ q for all τ > . As pointed out in [],
no Banach space is q-uniformly smooth for q > . In addition, it is also known that J is

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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single-valued if and only if X is smooth, whereas if X is uniformly smooth, then J is norm-
to-norm uniformly continuous on bounded subsets of X. If X has a uniformly Gâteaux
differentiable norm, then the duality mapping J is norm-to-weak∗ uniformly continuous
on bounded subsets of X. We use the notation ⇀ to indicate the weak convergence and
the one → to indicate the strong convergence.
Let C be a nonempty closed convex subset of X. Recall that a mapping A : C → X is said

to be
(i) α-strongly accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖x – y‖

for some α ∈ (, );
(ii) β-inverse-strongly-accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such

that

〈
Ax –Ay, j(x – y)

〉 ≥ β‖Ax –Ay‖

for some β > ;
(iii) λ-strictly pseudocontractive [] if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y)

such that

〈
Ax –Ay, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥x – y – (Ax –Ay)

∥∥

for some λ ∈ (, ).
It is worth emphasizing that the definition of the inverse strongly accretive mapping is

based on that of the inverse strongly monotone mapping, which was studied by so many
authors; see, e.g., [, , ].

Proposition . (See []) Let X be a -uniformly smooth Banach space. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ ‖κy‖, ∀x, y ∈ X,

where κ is the -uniformly smooth constant of X , and J is the normalized duality mapping
from X into X∗.

Proposition . (See []) Let X be a real smooth and uniform convex Banach space,
and let r > . Then there exists a strictly increasing, continuous and convex function
g : [, r]→ R, g() =  such that

g
(‖x – y‖) ≤ ‖x‖ – 

〈
x, J(y)

〉
+ ‖y‖, ∀x, y ∈ Br ,

where Br = {x ∈ X : ‖x‖ ≤ r}.

Next, we list some lemmas that will be used in the sequel. Lemma . can be found
in []. Lemma . is an immediate consequence of the subdifferential inequality of the
function 

‖ · ‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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Lemma . Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + αnβn + γn, ∀n≥ ,

where {αn}, {βn} and {γn} satisfy the conditions
(i) {αn} ⊂ [, ] and

∑∞
n= αn =∞;

(ii) lim supn→∞ βn ≤ ;
(iii) γn ≥ , ∀n≥ , and

∑∞
n= γn <∞.

Then lim supn→∞ sn = .

Lemma . In a real smooth Banach space X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
, ∀x, y ∈ X.

Let D be a subset of C, and let Π be a mapping of C into D. Then Π is said to be sunny
if

Π
[
Π (x) + t

(
x –Π (x)

)]
= Π (x),

wheneverΠ (x)+ t(x–Π (x)) ∈ C for x ∈ C and t ≥ . AmappingΠ ofC into itself is called
a retraction ifΠ =Π . If amappingΠ ofC into itself is a retraction, thenΠ (z) = z for every
z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma . (See []) Let C be a nonempty closed convex subset of a real smooth Banach
space X . Let D be a nonempty subset of C. Let Π be a retraction of C onto D. Then the
following are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π (x) –Π (y)‖ ≤ 〈x – y, J(Π (x) –Π (y))〉, ∀x, y ∈ C;
(iii) 〈x –Π (x), J(y –Π (x))〉 ≤ , ∀x ∈ C, y ∈D.

It is well known that if X =H in a Hilbert space, then a sunny nonexpansive retraction
ΠC is coincident with the metric projection from X onto C; that is, ΠC = PC . If C is a
nonempty closed convex subset of a strictly convex and uniformly smoothBanach spaceX,
and if T : C → C is a nonexpansive mapping with the fixed point set Fix(T) �= ∅, then the
set Fix(T) is a sunny nonexpansive retract of C.

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X . Let
ΠC be a sunny nonexpansive retraction from X onto C, and let B,B : C → X be nonlinear
mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (.) if and only if x∗ =ΠC(y∗ –
μBy∗), where y∗ =ΠC(x∗ –μBx∗).

Proof We can rewrite GSVI (.) as

⎧⎨
⎩〈x∗ – (y∗ –μBy∗), J(x – x∗)〉 ≥ , ∀x ∈ C,

〈y∗ – (x∗ –μBx∗), J(x – y∗)〉 ≥ , ∀x ∈ C,

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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which is obviously equivalent to

⎧⎨
⎩x∗ =ΠC(y∗ –μBy∗),

y∗ =ΠC(x∗ –μBx∗),

because of Lemma .. This completes the proof. �

In terms of Lemma ., we observe that

x∗ =ΠC
[
ΠC

(
x∗ –μBx∗) –μBΠC

(
x∗ –μBx∗)],

which implies that x∗ is a fixed point of the mapping G. Throughout this paper, the set of
fixed points of the mapping G is denoted by Ω .

Lemma . (See []) Given a number r > . A real Banach space X is uniformly con-
vex if and only if there exists a continuous strictly increasing function g : [,∞) → [,∞),
g() =  such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)
for all λ ∈ [, ] and x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

Lemma . (See []) Let C be a nonempty closed convex subset of a Banach space X. Let
S,S, . . . be a sequence of mappings of C into itself. Suppose that

∑∞
n= sup{‖Snx – Sn–x‖ :

x ∈ C} < ∞. Then for each y ∈ C, {Sny} converges strongly to some point of C. More-
over, let S be a mapping of C into itself defined by Sy = limn→∞ Sny for all y ∈ C. Then
limn→∞ sup{‖Sx – Snx‖ : x ∈ C} = .

Let C be a nonempty closed convex subset of a Banach space X, and let T : C → C be a
nonexpansive mapping with Fix(T) �= ∅. As previously, let ΞC be the set of all contractions
on C. For t ∈ (, ) and f ∈ ΞC , let xt ∈ C be the unique fixed point of the contraction
x �→ tf (x) + ( – t)Tx on C; that is,

xt = tf (xt) + ( – t)Txt .

Lemma . (See [, ]) Let X be a uniformly smooth Banach space, or a reflexive and
strictly convex Banach space with a uniformly Gâteaux differentiable norm. Let C be a
nonempty closed convex subset of X , let T : C → C be a nonexpansive mapping with
Fix(T) �= ∅, and f ∈ ΞC .Then the net {xt} defined by xt = tf (xt)+(–t)Txt converges strongly
to a point in Fix(T). If we define a mapping Q : ΞC → Fix(T) by Q(f ) := s – limt→ xt ,
∀f ∈ ΞC , then Q(f ) solves the VIP:

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀f ∈ ΞC ,p ∈ Fix(T).

Lemma . (See []) Let C be a nonempty closed convex subset of a strictly convex Ba-
nach space X. Let {Tn}∞n= be a sequence of nonexpansive mappings on C. Suppose that

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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⋂∞
n= Fix(Tn) is nonempty. Let {λn} be a sequence of positive numbers with

∑∞
n= λn = .

Then a mapping S on C defined by Sx =
∑∞

n= λnTnx for x ∈ C is defined well, nonexpan-
sive and Fix(S) =

⋂∞
n= Fix(Tn) holds.

Lemma . (See []) Let C be a nonempty closed convex subset of a smooth Banach
space X . Let ΠC be a sunny nonexpansive retraction from X onto C, and let A : C → X
be an accretive mapping. Then for all λ > ,

VI(C,A) = Fix
(
ΠC(I – λA)

)
.

Lemma . (See []) Let {xn} and {zn} be bounded sequences in a Banach space X,
and let {βn} be a sequence of nonnegative numbers in [, ] with  < lim infn→∞ βn ≤
lim supn→∞ βn < . Suppose that xn+ = βnxn + ( – βn)zn for all integers n ≥  and
lim supn→∞(‖zn+ – zn‖ – ‖xn+ – xn‖)≤ . Then limn→∞ ‖xn – zn‖ = .

Lemma . (See []) Let X be a uniformly convex Banach space and Br = {x ∈ X : ‖x‖ ≤
r}, r > .Then there exists a continuous, strictly increasing and convex function g : [,∞] →
[,∞], g() =  such that

‖αx + βy + γ z‖ ≤ α‖x‖ + β‖y‖ + γ ‖z‖ – αβg
(‖x – y‖)

for all x, y, z ∈ Br and all α,β ,γ ∈ [, ] with α + β + γ = .

3 Composite Mann iterative algorithms in uniformly convex and 2-uniformly
smooth Banach spaces

In this section, we introduce our compositeMann iterative algorithms in uniformly convex
and -uniformly smooth Banach spaces and show the strong convergence theorems. We
will use some useful lemmas in the sequel.

Lemma . (See [, Lemma .]) Let C be a nonempty closed convex subset of a real -
uniformly smooth Banach space X . Let the mapping Bi : C → X be αi-inverse-strongly ac-
cretive. Then we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤ ‖x – y‖ + μi

(
μiκ

 – αi
)‖Bix – Biy‖, ∀x, y ∈ C,

for i = , , where μi > . In particular, if  < μi ≤ αi
κ
, then I – μiBi is nonexpansive for

i = , .

Lemma . (See [, Lemma .]) Let C be a nonempty closed convex subset of a real
-uniformly smooth Banach space X . Let ΠC be a sunny nonexpansive retraction from
X onto C. Let the mapping Bi : C → X be αi-inverse-strongly accretive for i = , . Let
G : C → C be the mapping defined by

Gx =ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  < μi ≤ αi
κ

for i = , , then G : C → C is nonexpansive.

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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Theorem . Let C be a nonempty closed convex subset of a uniformly convex and
-uniformly smooth Banach space X . Let ΠC be a sunny nonexpansive retraction from X
onto C. Let A ⊂ X ×X be an accretive operator in X such that D(A)⊂ C ⊂ ⋂

r> R(I + rA).
Let Bi : C → X be αi-inverse strongly accretive for i = , . Let f : C → C be a contraction
with coefficient ρ ∈ (, ). Let {Si}∞i= be a countable family of nonexpansive mappings of C
into itself such that F =

⋂∞
i= Fix(Si) ∩ Ω ∩ A– �= ∅, where Ω is the fixed point set of the

mapping G = ΠC(I – μB)ΠC(I – μB) with  < μi < αi
κ

for i = , . For arbitrarily given
x ∈ C, let {xn} be the sequence generated by

⎧⎨
⎩yn = βnxn + γnSnxn + δnJrnGxn,

xn+ = αnf (xn) + ( – αn)yn, ∀n≥ ,
(.)

where {αn}, {βn}, {γn} and {δn} are the sequences in [, ] such that βn + γn + δn =  for all
n≥ . Suppose that the following conditions hold:

(i)
∑∞

n= αn =∞ and  ≤ αn ≤  – ρ , ∀n≥ n for some integer n ≥ ;
(ii) lim infn→∞ γn >  and lim infn→∞ δn > ;
(iii) limn→∞(| αn+

–(–αn+)βn+
– αn

–(–αn)βn | + | δn+
–βn+

– δn
–βn

|) = ;
(iv) limn→∞ |rn+ – rn| =  and rn ≥ ε >  for all n≥ ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Assume that
∑∞

n= supx∈D ‖Sn+x – Snx‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =⋂∞

i= Fix(Si). Then,

xn → q ⇐⇒ αn
(
f (xn) – xn

) → ,

where q ∈ F solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Proof First of all, let us show that the sequence {xn} is bounded. Indeed, take a fixed p ∈ F
arbitrarily. Then we get p =Gp, p = Snp and p = Jrnp for all n ≥ . By Lemma ., we know
that G is nonexpansive. Then from (.), we have

‖yn – p‖ ≤ βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖
≤ βn‖xn – p‖ + γn‖xn – p‖ + δn‖Gxn – p‖
≤ βn‖xn – p‖ + γn‖xn – p‖ + δn‖xn – p‖
= ‖xn – p‖, (.)

and hence

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + ( – αn)‖yn – p‖
≤ αn

(∥∥f (xn) – f (p)
∥∥ +

∥∥f (p) – p
∥∥)

+ ( – αn)‖yn – p‖
≤ αn

(
ρ‖xn – p‖ + ∥∥f (p) – p

∥∥)
+ ( – αn)‖xn – p‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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=
(
 – αn( – ρ)

)‖xn – p‖ + αn( – ρ)
‖f (p) – p‖

 – ρ

≤max

{
‖xn – p‖, ‖f (p) – p‖

 – ρ

}
.

By induction, we obtain

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
, ∀n≥ . (.)

Thus, {xn} is bounded, and so are the sequences {yn}, {Gxn} and {f (xn)}.
Let us show that

lim
n→∞‖xn+ – xn‖ = . (.)

As a matter of fact, put σn = ( – αn)βn, ∀n≥ . Then it follows from (i) and (v) that

βn ≥ σn = ( – αn)βn ≥ (
 – ( – ρ)

)
βn = ρβn, ∀n≥ n,

and hence

 < lim inf
n→∞ σn ≤ lim inf

n→∞ σn < . (.)

Define

xn+ = σnxn + ( – σn)zn. (.)

Observe that

zn+ – zn

=
xn+ – σn+xn+

 – σn+
–
xn+ – σnxn

 – σn

=
αn+f (xn+) + ( – αn+)yn+ – σn+xn+

 – σn+
–

αnf (xn) + ( – αn)yn – σnxn
 – σn

=
(

αn+f (xn+)
 – σn+

–
αnf (xn)
 – σn

)
–
( – αn)[βnxn + γnSnxn + δnJrnGxn] – σnxn

 – σn

+
( – αn+)[βn+xn+ + γn+Sn+xn+ + δn+Jrn+Gxn+] – σn+xn+

 – σn+

=
(

αn+f (xn+)
 – σn+

–
αnf (xn)
 – σn

)
+
 – αn+

 – σn+
(γn+Sn+xn+ + δn+Jrn+Gxn+)

–
 – αn

 – σn
(γnSnxn + δnJrnGxn)

=
(

αn+f (xn+)
 – σn+

–
αnf (xn)
 – σn

)

+
( – αn+)( – βn+)

 – σn+

[
γn+Sn+xn+ + δn+Jrn+Gxn+

 – βn+
–

γnSnxn + δnJrnGxn
 – βn

]

http://www.fixedpointtheoryandapplications.com/content/2013/1/249
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+
[
( – αn+)( – βn+)

 – σn+
–
( – αn)( – βn)

 – σn

]
γnSnxn + δnJrnGxn

 – βn

=
αn+

 – σn+

(
f (xn+) – f (xn)

)
+

(
αn+

 – σn+
–

αn

 – σn

)
f (xn)

+
( – αn+)( – βn+)

 – σn+

[
γn+

γn+ + δn+
(Sn+xn+ – Snxn)

+
(

γn+

γn+ + δn+
–

γn

γn + δn

)
Snxn

+
δn+

γn+ + δn+
(Jrn+Gxn+ – JrnGxn) +

(
δn+

γn+ + δn+
–

δn

γn + δn

)
JrnGxn

]

–
(

αn+

 – σn+
–

αn

 – σn

)
γnSnxn + δnJrnGxn

γn + δn

=
αn+

 – σn+

(
f (xn+) – f (xn)

)
+

(
αn+

 – σn+
–

αn

 – σn

)(
f (xn) –

γnSnxn + δnJrnGxn
γn + δn

)

+
 – σn+ – αn+

 – σn+

[
γn+

γn+ + δn+
(Sn+xn+ – Snxn) +

(
γn+

γn+ + δn+
–

γn

γn + δn

)
Snxn

+
δn+

γn+ + δn+
(Jrn+Gxn+ – JrnGxn) +

(
δn+

γn+ + δn+
–

δn

γn + δn

)
JrnGxn

]
,

and hence

‖zn+ – zn‖

≤ αn+

 – σn+

∥∥f (xn+) – f (xn)
∥∥ +

∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣
∥∥∥∥f (xn) – γnSnxn + δnJrnGxn

γn + δn

∥∥∥∥
+
 – σn+ – αn+

 – σn+

∥∥∥∥ γn+

γn+ + δn+
(Sn+xn+ – Snxn) +

(
γn+

γn+ + δn+
–

γn

γn + δn

)
Snxn

+
δn+

γn+ + δn+
(Jrn+Gxn+ – JrnGxn) +

(
δn+

γn+ + δn+
–

δn

γn + δn

)
JrnGxn

∥∥∥∥
≤ ραn+

 – σn+
‖xn+ – xn‖ +

∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣(∥∥f (xn)∥∥ + ‖Snxn‖ + ‖JrnGxn‖
)

+
 – σn+ – αn+

 – σn+

[
γn+

γn+ + δn+
‖Sn+xn+ – Snxn‖ +

∣∣∣∣ γn+

γn+ + δn+
–

γn

γn + δn

∣∣∣∣‖Snxn‖
+

δn+

γn+ + δn+
‖Jrn+Gxn+ – JrnGxn‖ +

∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣‖JrnGxn‖
]
. (.)

On the other hand, if rn ≤ rn+, using the resolvent identity in Proposition .,

Jrn+Gxn+ = Jrn
(

rn
rn+

Gxn+ +
(
 –

rn
rn+

)
Jrn+Gxn+

)
,

we get

‖Jrn+Gxn+ – JrnGxn‖ =
∥∥∥∥Jrn

(
rn
rn+

Gxn+ +
(
 –

rn
rn+

)
Jrn+Gxn+

)
– JrnGxn

∥∥∥∥
≤ rn

rn+
‖Gxn+ –Gxn‖ +

(
 –

rn
rn+

)
‖Jrn+Gxn+ –Gxn‖
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≤ ‖xn+ – xn‖ + rn+ – rn
rn+

‖Jrn+Gxn+ –Gxn‖

≤ ‖xn+ – xn‖ + 
ε
|rn+ – rn|‖Jrn+Gxn+ –Gxn‖.

If rn+ ≤ rn, we derive in the similar way

‖Jrn+Gxn+ – JrnGxn‖ ≤ ‖xn – xn+‖ + 
ε
|rn – rn+|‖JrnGxn –Gxn+‖.

Thus, combining the above cases, we obtain

‖Jrn+Gxn+ – JrnGxn‖ ≤ ‖xn – xn+‖ +M|rn – rn+|, ∀n≥ , (.)

where supn≥{ ε (‖Jrn+Gxn+ –Gxn‖+‖JrnGxn –Gxn+‖)} ≤M for someM > . Substitut-
ing (.) for (.), we have

‖zn+ – zn‖

≤ ραn+

 – σn+
‖xn+ – xn‖ +

∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣(∥∥f (xn)∥∥ + ‖Snxn‖ + ‖JrnGxn‖
)

+
 – σn+ – αn+

 – σn+

[
γn+

γn+ + δn+

(‖Sn+xn+ – Sn+xn‖ + ‖Sn+xn – Snxn‖
)

+
∣∣∣∣ γn+

γn+ + δn+
–

γn

γn + δn

∣∣∣∣‖Snxn‖ + δn+

γn+ + δn+

(‖xn – xn+‖ +M|rn – rn+|
)

+
∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣‖JrnGxn‖
]

≤ ραn+

 – σn+
‖xn+ – xn‖ +

∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣(∥∥f (xn)∥∥ + ‖Snxn‖ + ‖JrnGxn‖
)

+
 – σn+ – αn+

 – σn+

[
γn+

γn+ + δn+

(‖xn+ – xn‖ + ‖Sn+xn – Snxn‖
)

+
δn+

γn+ + δn+

(‖xn – xn+‖ +M|rn – rn+|
)

+
∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣(‖Snxn‖ + ‖JrnGxn‖
)]

=
 – σn+ – αn+( – ρ)

 – σn+
‖xn+ – xn‖

+
∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣(∥∥f (xn)∥∥ + ‖Snxn‖ + ‖JrnGxn‖
)

+
 – σn+ – αn+

 – σn+

[
γn+

γn+ + δn+
‖Sn+xn – Snxn‖ + δn+

γn+ + δn+
M|rn – rn+|

+
∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣(‖Snxn‖ + ‖JrnGxn‖
)]

≤ ‖xn+ – xn‖ +
∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣M + ‖Sn+xn – Snxn‖ +M|rn – rn+|

+
∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣M
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= ‖xn+ – xn‖ +M
(∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣ +
∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣ + |rn+ – rn|
)

+ ‖Sn+xn – Snxn‖,

which hence yields

‖zn+ – zn‖ – ‖xn+ – xn‖

≤M
(∣∣∣∣ αn+

 – σn+
–

αn

 – σn

∣∣∣∣ +
∣∣∣∣ δn+

γn+ + δn+
–

δn

γn + δn

∣∣∣∣ + |rn+ – rn|
)

+ ‖Sn+xn – Snxn‖, (.)

where supn≥{‖f (xn)‖ + ‖Snxn‖ + ‖JrnGxn‖ + M} ≤ M for some M > . So, from (.),
conditions (iii), (iv) and the assumption on {Sn}, it follows that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Consequently, by Lemma ., we have

lim
n→∞‖zn – xn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – σn)‖zn – xn‖ = . (.)

From (.), we have

xn+ – xn = αn
(
f (xn) – xn

)
+ ( – αn)(yn – xn),

which hence implies that

ρ‖yn – xn‖ =
(
 – ( – ρ)

)‖yn – xn‖ ≤ ( – αn)‖yn – xn‖
=

∥∥xn+ – xn – αn
(
f (xn) – xn

)∥∥
≤ ‖xn+ – xn‖ +

∥∥αn
(
f (xn) – xn

)∥∥.
Since xn+ – xn →  and αn(f (xn) – xn) → , we get

lim
n→∞‖yn – xn‖ = . (.)

Next, we show that ‖xn –Gxn‖ →  as n→ ∞.
Indeed, for simplicity, put q = ΠC(p – μBp), un = ΠC(xn – μBxn) and vn = ΠC(un –

μBun). Then vn =Gxn for all n≥ . From Lemma ., we have

‖un – q‖ = ∥∥ΠC(xn –μBxn) –ΠC(p –μBp)
∥∥ ≤ ∥∥xn – p –μ(Bxn – Bp)

∥∥

≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖, (.)
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and

‖vn – p‖ = ∥∥ΠC(un –μBun) –ΠC(q –μBq)
∥∥

≤ ∥∥un – q –μ(Bun – Bq)
∥∥

≤ ‖un – q‖ – μ
(
α – κμ

)‖Bun – Bq‖. (.)

Substituting (.) for (.), we obtain

‖vn – p‖ ≤ ‖xn – p‖ – μ
(
α – κμ

)‖Bxn – Bp‖

– μ
(
α – κμ

)‖Bun – Bq‖. (.)

From (.) and (.), we have

‖yn – p‖

≤ βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖

≤ βn‖xn – p‖ + γn‖xn – p‖ + δn‖vn – p‖

≤ βn‖xn – p‖ + γn‖xn – p‖ + δn
[‖xn – p‖

– μ
(
α – κμ

)‖Bxn – Bp‖ – μ
(
α – κμ

)‖Bun – Bq‖
]

= ‖xn – p‖ – δn
[
μ

(
α – κμ

)‖Bxn – Bp‖

+ μ
(
α – κμ

)‖Bun – Bq‖
]
, (.)

which hence implies that

δn
[
μ

(
α – κμ

)‖Bxn – Bp‖ +μ
(
α – κμ

)‖Bun – Bq‖
]

≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖. (.)

Since  < μi < αi
κ

for i = , , and {xn} is bounded, we obtain from (.), (.) and condi-
tion (ii) that

lim
n→∞‖Bxn – Bp‖ =  and lim

n→∞‖Bun – Bq‖ = . (.)

Utilizing Proposition . and Lemma ., we have

‖un – q‖ = ∥∥ΠC(xn –μBxn) –ΠC(p –μBp)
∥∥

≤ 〈
xn –μBxn – (p –μBp), J(un – q)

〉
=

〈
xn – p, J(un – q)

〉
+μ

〈
Bp – Bxn, J(un – q)

〉
≤ 


[‖xn – p‖ + ‖un – q‖ – g

(∥∥xn – un – (p – q)
∥∥)]

+μ‖Bp – Bxn‖‖un – q‖,
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which implies that

‖un – q‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖. (.)

In the same way, we derive

‖vn – p‖ = ∥∥ΠC(un –μBun) –ΠC(q –μBq)
∥∥

≤ 〈
un –μBun – (q –μBq), J(vn – p)

〉
=

〈
un – q, J(vn – p)

〉
+μ

〈
Bq – Bun, J(vn – p)

〉
≤ 


[‖un – q‖ + ‖vn – p‖ – g

(∥∥un – vn + (p – q)
∥∥)]

+μ‖Bq – Bun‖‖vn – p‖,

which implies that

‖vn – p‖ ≤ ‖un – q‖ – g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bq – Bun‖‖vn – p‖. (.)

Substituting (.) for (.), we get

‖vn – p‖ ≤ ‖xn – p‖ – g
(∥∥xn – un – (p – q)

∥∥)
– g

(∥∥un – vn + (p – q)
∥∥)

+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖. (.)

By Lemma ., we have from (.) and (.)

‖yn – p‖

≤ βn‖xn – p‖ + γn‖xn – p‖ + δn‖vn – p‖

≤ βn‖xn – p‖ + γn‖xn – p‖ + δn
[‖xn – p‖ – g

(∥∥xn – un – (p – q)
∥∥)

– g
(∥∥un – vn + (p – q)

∥∥)
+ μ‖Bp – Bxn‖‖un – q‖

+ μ‖Bq – Bun‖‖vn – p‖]
≤ ‖xn – p‖ – δn

[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
+ μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖,

which hence leads to

δn
[
g

(∥∥xn – un – (p – q)
∥∥)

+ g
(∥∥un – vn + (p – q)

∥∥)]
≤ ‖xn – p‖ – ‖yn – p‖ + μ‖Bp – Bxn‖‖un – q‖ + μ‖Bq – Bun‖‖vn – p‖
≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + μ‖Bp – Bxn‖‖un – q‖
+ μ‖Bq – Bun‖‖vn – p‖. (.)
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From (.), (.), condition (ii) and the boundedness of {xn}, {yn}, {un} and {vn}, we
deduce that

lim
n→∞ g

(∥∥xn – un – (p – q)
∥∥)

=  and lim
n→∞ g

(∥∥un – vn + (p – q)
∥∥)

= .

Utilizing the properties of g and g, we deduce that

lim
n→∞

∥∥xn – un – (p – q)
∥∥ =  and lim

n→∞
∥∥un – vn + (p – q)

∥∥ = . (.)

From (.), we get

‖xn – vn‖ ≤ ∥∥xn – un – (p – q)
∥∥ +

∥∥un – vn + (p – q)
∥∥ →  as n→ ∞.

That is,

lim
n→∞‖xn –Gxn‖ = . (.)

Next, let us show that

lim
n→∞‖Snxn – xn‖ =  and lim

n→∞‖Jrnxn – xn‖ = .

Indeed, utilizing Lemma . and (.), we have

‖yn – p‖ =
∥∥∥∥δn(JrnGxn – p) + (βn + γn)

(
βnxn + γnSnxn

βn + γn
– p

)∥∥∥∥


≤ δn‖JrnGxn – p‖ + (βn + γn)
∥∥∥∥βnxn + γnSnxn

βn + γn
– p

∥∥∥∥


= δn‖JrnGxn – p‖ + (βn + γn)
∥∥∥∥ βn

βn + γn
(xn – p) +

γn

βn + γn
(Snxn – p)

∥∥∥∥


≤ δn‖Gxn – p‖ + (βn + γn)
[

βn

βn + γn
‖xn – p‖ + γn

βn + γn
‖Snxn – p‖

–
βnγn

(βn + γn)
g

(‖xn – Snxn‖
)]

≤ δn‖xn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ – βnγn

βn + γn
g

(‖xn – Snxn‖
)

= ‖xn – p‖ – βnγn

βn + γn
g

(‖xn – Snxn‖
)
,

which immediately implies that

βnγng
(‖xn – Snxn‖

) ≤ βnγn

βn + γn
g

(‖xn – Snxn‖
)

≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.
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So, from (.), the boundedness of {xn}, {yn} and conditions (ii), (v), it follows that

lim
n→∞ g

(‖xn – Snxn‖
)
= .

From the properties of g, we have

lim
n→∞‖xn – Snxn‖ = . (.)

Taking into account that

yn – xn = γn(Snxn – xn) + δn(JrnGxn – xn),

we have

δn‖JrnGxn – xn‖ =
∥∥yn – xn – γn(Snxn – xn)

∥∥
≤ ‖yn – xn‖ + γn‖Snxn – xn‖
≤ ‖yn – xn‖ + ‖Snxn – xn‖.

From (.), (.) and condition (ii), it follows that

lim
n→∞‖JrnGxn – xn‖ = . (.)

Note that

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖.

So, in terms of (.) and Lemma ., we have

lim
n→∞‖xn – Sxn‖ = . (.)

Also, note that

‖xn – Jrnxn‖ ≤ ‖xn – JrnGxn‖ + ‖JrnGxn – Jrnxn‖
≤ ‖xn – JrnGxn‖ + ‖Gxn – xn‖.

From (.) and (.), we have

lim
n→∞‖xn – Jrnxn‖ = . (.)

Furthermore, we claim that limn→∞ ‖xn – Jrxn‖ =  for a fixed number r such that ε >
r > . In fact, taking into account the resolvent identity in Proposition ., we have

‖Jrnxn – Jrxn‖ =
∥∥∥∥Jr

(
r
rn
xn +

(
 –

r
rn

)
Jrnxn

)
– Jrxn

∥∥∥∥
≤

(
 –

r
rn

)
‖xn – Jrnxn‖

≤ ‖xn – Jrnxn‖. (.)
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Thus, we get from (.) and (.)

‖xn – Jrxn‖ ≤ ‖xn – Jrnxn‖ + ‖Jrnxn – Jrxn‖
≤ ‖xn – Jrnxn‖ + ‖xn – Jrnxn‖
= ‖xn – Jrnxn‖ →  as n→ ∞.

That is,

lim
n→∞‖xn – Jrxn‖ = . (.)

Define amappingWx = (–θ –θ)Jrx+θSx+θGx, where θ, θ ∈ (, ) are two constants
with θ + θ < . Then by Lemma ., we have that Fix(W ) = Fix(Jr)∩ Fix(S)∩ Fix(G) = F .
We observe that

‖xn –Wxn‖ =
∥∥( – θ – θ)(xn – Jrxn) + θ(xn – Sxn) + θ(xn –Gxn)

∥∥
≤ ( – θ – θ)‖xn – Jrxn‖ + θ‖xn – Sxn‖ + θ‖xn –Gxn‖.

From (.), (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s – limt→ xt with xt being the fixed point of the contraction

x �→ tf (x) + ( – t)Wx.

Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Thus, we have

xt – xn = ( – t)(Wxt – xn) + t
(
f (xt) – xn

)
.

By Lemma ., we conclude that

‖xt – xn‖

=
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥

≤ ( – t)‖Wxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Wxt –Wxn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖xt – xn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
= ( – t)

[‖xt – xn‖ + ‖xt – xn‖‖Wxn – xn‖ + ‖Wxn – xn‖
]

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t

〈
xt – xn, J(xt – xn)

〉
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=
(
 – t + t

)‖xt – xn‖ + fn(t)

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖, (.)

where

fn(t) = ( – t)
(
‖xt – xn‖ + ‖xn –Wxn‖

)‖xn –Wxn‖ → , as n→ ∞. (.)

It follows from (.) that

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
fn(t). (.)

Letting n → ∞ in (.) and noticing (.), we derive

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

M, (.)

where M >  is a constant such that ‖xt – xn‖ ≤ M for all t ∈ (, ) and n ≥ . Taking
t →  in (.), we have

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ .

On the other hand, we have

〈
f (q) – q, J(xn – q)

〉
=

〈
f (q) – q, J(xn – q)

〉
–

〈
f (q) – q, J(xn – xt)

〉
+

〈
f (q) – q, J(xn – xt)

〉
–

〈
f (q) – xt , J(xn – xt)

〉
+

〈
f (q) – xt , J(xn – xt)

〉
–

〈
f (xt) – xt , J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
=

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+

〈
xt – q, J(xn – xt)

〉
+

〈
f (q) – f (xt), J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
.

It follows that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+ ‖xt – q‖ lim sup

n→∞
‖xn – xt‖ + ρ‖q – xt‖ lim sup

n→∞
‖xn – xt‖

+ lim sup
n→∞

〈
f (xt) – xt , J(xn – xt)

〉
.

Taking into account that xt → q as t → , we have

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
. (.)
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Since X has a uniformly Frechet differentiable norm, the duality mapping J is norm-to-
norm uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable, and hence (.) holds. From (.), we get (xn+ –q)–(xn–q) → . Notic-
ing the norm-to-norm uniform continuity of J on bounded subsets of X, we deduce from
(.) that

lim sup
n→∞

〈
f (q) – q, J(xn+ – q)

〉
= lim sup

n→∞

(〈
f (q) – q, J(xn – q)

〉
+

〈
f (q) – q, J(xn+ – q) – J(xn – q)

〉)
= lim sup

n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n → ∞. Utilizing Lemma ., from (.) and the
convexity of ‖ · ‖, we get

‖yn – q‖ ≤ βn‖xn – q‖ + γn‖Snxn – q‖ + δn‖JrnGxn – q‖

≤ βn‖xn – q‖ + γn‖xn – q‖ + δn‖xn – q‖

= ‖xn – q‖,

and

‖xn+ – q‖ = ∥∥αn
(
f (xn) – f (q)

)
+ ( – αn)(yn – q) + αn

(
f (q) – q

)∥∥

≤ ∥∥αn
(
f (xn) – f (q)

)
+ ( – αn)(yn – q)

∥∥ + αn
〈
f (q) – q, J(xn+ – q)

〉
≤ αn

∥∥f (xn) – f (q)
∥∥ + ( – αn)‖yn – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
≤ αnρ‖xn – q‖ + ( – αn)‖xn – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(xn+ – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we obtain that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let ΠC be a sunny nonexpansive retraction from X
onto C. Let A ⊂ X ×X be an accretive operator in X such that D(A)⊂ C ⊂ ⋂

r> R(I + rA).
Let V : C → C be an α-strictly pseudocontractive mapping. Let f : C → C be a contraction
with coefficient ρ ∈ (, ). Let {Si}∞i= be a countable family of nonexpansive mappings of C
into itself such that F =

⋂∞
i= Fix(Si) ∩ Fix(V ) ∩ A– �= ∅. For arbitrarily given x ∈ C, let

{xn} be the sequence generated by
⎧⎨
⎩yn = βnxn + γnSnxn + δnJrn (( – l)I + lV )xn,

xn+ = αnf (xn) + ( – αn)yn, ∀n≥ ,
(.)

where  < l < α

κ
, and {αn}, {βn}, {γn} and {δn} are the sequences in [, ] such that βn + γn +

δn =  for all n ≥ . Suppose that the following conditions hold:
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(i)
∑∞

n= αn =∞ and  ≤ αn ≤  – ρ , ∀n≥ n for some integer n ≥ ;
(ii) lim infn→∞ γn >  and lim infn→∞ δn > ;
(iii) limn→∞(| αn+

–(–αn+)βn+
– αn

–(–αn)βn | + | δn+
–βn+

– δn
–βn

|) = ;
(iv) limn→∞ |rn+ – rn| =  and rn ≥ ε >  for all n≥ ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Assume that
∑∞

n= supx∈D ‖Sn+x – Snx‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =⋂∞

i= Fix(Si). Then

xn → q ⇐⇒ αn
(
f (xn) – xn

) → ,

where q ∈ F solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Proof In Theorem ., we put B = I – V , B =  and μ = l, where  < l < α

κ
. Then GSVI

(.) is equivalent to the VIP of finding x∗ ∈ C such that

〈
Bx∗, J

(
x – x∗)〉 ≥ , ∀x ∈ C.

In this case, B : C → X is α-inverse strongly accretive. It is not hard to see that Fix(V ) =
VI(C,B). As a matter of fact, we have, for l > ,

u ∈VI(C,B) ⇔ 〈
Bu, J(y – u)

〉 ≥ , ∀y ∈ C

⇔ 〈
u – lBu – u, J(u – y)

〉 ≥ , ∀y ∈ C

⇔ u =ΠC(u – lBu)

⇔ u =ΠC(u – lu + lVu)

⇔ 〈
u – lu + lVu – u, J(u – y)

〉 ≥ , ∀y ∈ C

⇔ 〈
u –Vu, J(u – y)

〉 ≤ , ∀y ∈ C

⇔ u = Vu

⇔ u ∈ Fix(V ).

Accordingly, we know that F =
⋂∞

i= Fix(Si)∩Ω ∩A– =
⋂∞

i= Fix(Si)∩Fix(V )∩A–, and

ΠC(I –μB)ΠC(I –μB)xn

=ΠC(I –μB)xn

=ΠC
(
( – l)xn + lVxn

)
=

(
( – l)I + lV

)
xn.

So, the scheme (.) reduces to (.). Therefore, the desired result follows from Theo-
rem .. �

Remark . Theorem . improves, extends, supplements and develops Jung [, Theo-
rem .], Ceng and Yao [, Theorem .] and Cai and Bu [, Theorem .] in the following
aspects.
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(i) The problem of finding a point q ∈ ⋂∞
i= Fix(Si) ∩ Ω ∩ A– in our Theorem . is

more general and more subtle than any of the problems of finding a point q ∈ A– in
[, Theorem .], the problem of finding a point q ∈ Fix(T) in [, Theorem .], and the
problem of finding a point q ∈ ⋂∞

i= Fix(Ti)∩ Ω in [, Theorem .].
(ii) The iterative scheme in [, Theorem .] is extended to develop the iterative scheme

(.) of Theorem . by virtue of the iterative schemes of [, Theorem .] and [, Theo-
rem.]. The iterative scheme (.) of Theorem. ismore advantageous andmore flexible
than the iterative scheme of [, Theorem .], because it can be applied to solving three
problems (i.e., GSVI (.), fixed point problem and zero point problem) and involves sev-
eral parameter sequences {rn}, {αn}, {βn}, {γn} and {δn}.
(iii) Our Theorem . extends and generalizes Ceng and Yao [, Theorem .] from a

nonexpansive mapping to a countable family of nonexpansive mappings, and Jung [,
Theorems .] to the setting of a countable family of nonexpansive mappings and GSVI
(.) for two inverse-strongly accretive mappings. In the meantime, our Theorem . ex-
tends and generalizes Cai and Bu [, Theorem .] to the setting of an accretive operator.
(iv) The iterative scheme (.) in Theorem . is very different from any in [, The-

orem .], [, Theorem .] and [, Theorem .], because the mapping G in [, Theo-
rem .] and the mapping Jrn in [, Theorem .] are replaced by the same composite
mapping JrnG in the iterative scheme (.) of our Theorem ..
(v) Cai andBu’s proof in [, Theorem.] depends on the argument techniques in [], the

inequality in -uniformly smooth Banach spaces (see Proposition .) and the inequality in
smooth and uniform convex Banach spaces (see Proposition .). Because the composite
mapping JrnG appears in the iterative scheme (.) of our Theorem ., the proof of our
Theorem . depends on the argument techniques in [], the inequality in -uniformly
smooth Banach spaces (see Proposition .), the inequality in smooth and uniform convex
Banach spaces (see Proposition .), the inequalities in uniform convex Banach spaces (see
Lemmas . and . in Section  of this paper), and the resolvent identity for accretive
operators (see Proposition .).
(vi) It is worth emphasizing that the assumption of asymptotic regularity on {xn} in [,

Theorem .] is dropped by Theorem ., and there is no assumption of the convergence
of parameter sequences to zero in our Theorem ..

4 Composite Mann iterative algorithms in uniformly convex Banach spaces
having uniformly Gâteaux differentiable norms

In this section, we introduce our composite Mann iterative algorithms in uniformly con-
vex Banach spaces having uniformly Gâteaux differentiable norms and show the strong
convergence theorems. First, we give some useful lemmas whose proofs will be omitted
because they can be obtained by standard argument.

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X, and
let the mapping Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive with
αi + λi ≥  for i = , . Then, for μi ∈ (, ] we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤

{√
 – αi

λi
+ ( –μi)

(
 +


λi

)}
‖x – y‖, ∀x, y ∈ C,
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for i = , . In particular, if  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then I – μiBi is nonexpansive for
i = , .

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X . Let
ΠC be a sunny nonexpansive retraction from X onto C, and let the mapping Bi : C → X
be λi-strictly pseudocontractive and αi-strongly accretive with αi + λi ≥  for i = , . Let
G : C → C be the mapping defined by

G(x) =ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then G : C → C is nonexpansive.

We now state and prove the main result of this section.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. Let ΠC be a sunny non-
expansive retraction from X onto C. Let A ⊂ X × X be an accretive operator in X such
that D(A) ⊂ C ⊂ ⋂

r> R(I + rA). Let Bi : C → X be λi-strictly pseudocontractive and αi-
strongly accretive with λi + αi ≥  for i = , . Let f : C → C be a contraction with coeffi-
cient ρ ∈ (, ). Let {Si}∞i= be a countable family of nonexpansive mappings of C into itself
such that F =

⋂∞
i= Fix(Si) ∩ Ω ∩ A– �= ∅, where Ω is the fixed point set of the mapping

G = ΠC(I –μB)ΠC(I –μB) with  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . For arbitrarily
given x ∈ C, let {xn} be the sequence generated by

⎧⎨
⎩yn = αnf (xn) + βnxn + γnSnxn + δnJrnGxn,

xn+ = σnGxn + ( – σn)yn, ∀n≥ ,
(.)

where {αn}, {βn}, {γn}, {δn} and {σn} are the sequences in (, ) such that αn +βn +γn + δn = 
for all n ≥ . Suppose that the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) {γn}, {δn} ⊂ [c,d] for some c,d ∈ (, );
(iii)

∑∞
n=(|σn – σn–| + |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|) <∞;

(iv)
∑∞

n= |rn – rn–| < ∞ and rn ≥ ε >  for all n ≥ ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

Proof First of all, take a fixed p ∈ F arbitrarily. Then we obtain p =Gp, p = Snp and Jrnp = p
for all n ≥ . By Lemma ., we get from (.)

‖yn – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖
≤ αn

(
ρ‖xn – p‖ + ∥∥f (p) – p

∥∥)
+ βn‖xn – p‖ + γn‖xn – p‖ + δn‖xn – p‖

=
(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥,
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and hence

‖xn+ – p‖ ≤ σn‖Gxn – p‖ + ( – σn)‖yn – p‖
≤ σn‖xn – p‖ + ( – σn)

[(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥]
=

(
 – ( – σn)αn( – ρ)

)‖xn – p‖ + ( – σn)αn
∥∥f (p) – p

∥∥
=

(
 – ( – σn)αn( – ρ)

)‖xn – p‖ + ( – σn)αn( – ρ)
‖f (p) – p‖

 – ρ

≤max

{
‖xn – p‖, ‖f (p) – p‖

 – ρ

}
. (.)

By induction, we have

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
, ∀n≥ ,

which implies that {xn} is bounded and so are the sequences {yn}, {Gxn}, {f (xn)}.
Let us show that

lim
n→∞‖xn+ – xn‖ = . (.)

As a matter of fact, observe that yn can be rewritten as follows

yn = βnxn + ( – βn)zn,

where zn =
αnf (xn)+γnSnxn+δnJrnGxn

–βn
. Observe that

‖zn – zn–‖

=
∥∥∥∥αnf (xn) + γnSnxn + δnJrnGxn

 – βn
–

αn–f (xn–) + γn–Sn–xn– + δn–Jrn–Gxn–
 – βn–

∥∥∥∥
=

∥∥∥∥yn – βnxn
 – βn

–
yn– – βn–xn–

 – βn–

∥∥∥∥
=

∥∥∥∥yn – βnxn
 – βn

–
yn– – βn–xn–

 – βn
+
yn– – βn–xn–

 – βn
–
yn– – βn–xn–

 – βn–

∥∥∥∥
≤

∥∥∥∥yn – βnxn
 – βn

–
yn– – βn–xn–

 – βn

∥∥∥∥ +
∥∥∥∥yn– – βn–xn–

 – βn
–
yn– – βn–xn–

 – βn–

∥∥∥∥
=


 – βn

∥∥yn – βnxn – (yn– – βn–xn–)
∥∥ +

∣∣∣∣ 
 – βn

–


 – βn–

∣∣∣∣‖yn– – βn–xn–‖

=


 – βn

∥∥yn – βnxn – (yn– – βn–xn–)
∥∥ +

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖

=


 – βn

∥∥αnf (xn) + γnSnxn + δnJrnGxn – αn–f (xn–) – γn–Sn–xn– – δn–Jrn–Gxn–
∥∥

+
|βn – βn–|

( – βn–)( – βn)
‖yn– – βn–xn–‖

≤ 
 – βn

[
αn

∥∥f (xn) – f (xn–)
∥∥ + γn‖Snxn – Sn–xn–‖ + δn‖JrnGxn – Jrn–Gxn–‖
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+ |αn – αn–|
∥∥f (xn–)∥∥ + |γn – γn–|‖Sn–xn–‖ + |δn – δn–|‖Jrn–Gxn–‖

]
+

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖. (.)

On the other hand, repeating the same arguments as those of (.) in the proof of Theo-
rem ., we can deduce that for all n≥ ,

‖Jrn+Gxn+ – JrnGxn‖ ≤ ‖xn – xn+‖ +M|rn – rn+|, ∀n≥ , (.)

where supn≥{ ε (‖Jrn+Gxn+–Gxn‖+‖JrnGxn–Gxn+‖)} ≤M for someM > . Taking into
account  < lim infn→∞ βn ≤ lim supn→∞ βn < , wemay assume, without loss of generality,
that {βn} ⊂ [ĉ, d̂]. So, from (.) and (.), we have

‖zn – zn–‖

≤ 
 – βn

[
αn

∥∥f (xn) – f (xn–)
∥∥ + γn

(‖Snxn – Snxn–‖ + ‖Snxn– – Sn–xn–‖
)

+ δn
(‖xn– – xn‖ +M|rn– – rn|

)
+ |αn – αn–|

∥∥f (xn–)∥∥ + |γn – γn–|‖Sn–xn–‖

+ |δn – δn–|‖Jrn–Gxn–‖
]
+

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖

≤ 
 – βn

[
αnρ‖xn – xn–‖ + γn

(‖xn – xn–‖ + ‖Snxn– – Sn–xn–‖
)

+ δn
(‖xn– – xn‖ +M|rn– – rn|

)
+ |αn – αn–|

∥∥f (xn–)∥∥ + |γn – γn–|‖Sn–xn–‖

+ |δn – δn–|‖Jrn–Gxn–‖
]
+

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖

=


 – βn

{(
 – βn – αn( – ρ)

)‖xn – xn–‖ + γn‖Snxn– – Sn–xn–‖ + δnM|rn– – rn|

+ |αn – αn–|
∥∥f (xn–)∥∥ + |γn – γn–|‖Sn–xn–‖ + |δn – δn–|‖Jrn–Gxn–‖

}
+

|βn – βn–|
( – βn–)( – βn)

‖yn– – βn–xn–‖

=
(
 –

αn( – ρ)
 – βn

)
‖xn – xn–‖ + γn

 – βn
‖Snxn– – Sn–xn–‖ + δnM

 – βn
|rn– – rn|

+


 – βn

[|αn – αn–|
∥∥f (xn–)∥∥ + |γn – γn–|‖Sn–xn–‖ + |δn – δn–|‖Jrn–Gxn–‖

]

+
|βn – βn–|

( – βn–)( – βn)
‖yn– – βn–xn–‖

≤
(
 –

αn( – ρ)
 – βn

)
‖xn – xn–‖ + ‖Snxn– – Sn–xn–‖ +M|rn– – rn|

+


 – βn

[|αn – αn–|
∥∥f (xn–)∥∥ + |γn – γn–|‖Sn–xn–‖ + |δn – δn–|‖Jrn–Gxn–‖

]

+
|βn – βn–|

( – βn–)( – βn)
∥∥αn–f (xn–) + γn–Sn–xn– + δn–Jrn–Gxn–

∥∥
≤

(
 –

αn( – ρ)
 – βn

)
‖xn – xn–‖ +M

[|rn– – rn| + |αn – αn–|
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+ |βn – βn–| + |γn – γn–|
+ |δn – δn–|

]
+ ‖Snxn– – Sn–xn–‖, (.)

where supn≥{ 
(–d̂)

(‖f (xn)‖ + ‖Snxn‖ + ‖JrnGxn‖ + M)} ≤ M for some M > . In the
meantime, observe that

xn+ – xn = σn(Gxn –Gxn–) + (σn – σn–)(Gxn– – zn–) + ( – σn)(zn – zn–).

This together with (.) implies that

‖xn+ – xn‖
≤ σn‖Gxn –Gxn–‖ + |σn – σn–|‖Gxn– – zn–‖ + ( – σn)‖zn – zn–‖

≤ σn‖xn – xn–‖ + |σn – σn–|‖Gxn– – zn–‖ + ( – σn)
{(

 –
αn( – ρ)
 – βn

)
‖xn – xn–‖

+M
[|rn – rn–| + |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|

]
+ ‖Snxn– – Sn–xn–‖

}

≤
(
 –

( – σn)αn( – ρ)
 – βn

)
‖xn – xn–‖ + |σn – σn–|‖Gxn– – zn–‖ +M

[|rn – rn–|

+ |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|
]
+ ‖Snxn– – Sn–xn–‖

≤
(
 –

( – σn)αn( – ρ)
 – βn

)
‖xn – xn–‖ +M

[|rn – rn–| + |σn – σn–| + |αn – αn–|

+ |βn – βn–| + |γn – γn–| + |δn – δn–|
]
+ ‖Snxn– – Sn–xn–‖, (.)

where supn≥{M + ‖Gxn – zn‖} ≤ M for some M > . Since (–σn)αn(–ρ)
–βn

≥ ( – σn)αn( –
ρ), we obtain from conditions (i) and (v) that

∑∞
n=

(–σn)αn(–ρ)
–βn

= ∞. Thus, applying
Lemma . to (.), we deduce from conditions (iii), (iv) and the assumption on {Sn} that

lim
n→∞‖xn+ – xn‖ = .

Next, we show that ‖xn –Gxn‖ →  as n→ ∞.
Indeed, according to Lemma ., we have from (.)

‖yn – p‖

=
∥∥αn

(
f (xn) – f (p)

)
+ βn(xn – p) + γn(Snxn – p) + δn(JrnGxn – p) + αn

(
f (p) – p

)∥∥

≤ ∥∥αn
(
f (xn) – f (p)

)
+ βn(xn – p) + γn(Snxn – p) + δn(JrnGxn – p)

∥∥

+ αn
〈
f (p) – p, J(yn – p)

〉
≤ αn

∥∥f (xn) – f (p)
∥∥ + βn‖xn – p‖ + γn‖Snxn – p‖ + δn‖JrnGxn – p‖

+ αn
〈
f (p) – p, J(yn – p)

〉
≤ αnρ‖xn – p‖ + βn‖xn – p‖ + γn‖xn – p‖ + δn‖xn – p‖
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+ αn
∥∥f (p) – p

∥∥‖yn – p‖
=

(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖
≤ ‖xn – p‖ + αn

∥∥f (p) – p
∥∥‖yn – p‖. (.)

Utilizing Lemma ., we get from (.) and (.)

‖xn+ – p‖ = ∥∥σn(Gxn – p) + ( – σn)(yn – p)
∥∥

≤ σn‖Gxn – p‖ + ( – σn)‖yn – p‖ – σn( – σn)g
(‖Gxn – yn‖

)
≤ σn‖xn – p‖ + ( – σn)

[‖xn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖]
– σn( – σn)g

(‖Gxn – yn‖
)

≤ ‖xn – p‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖ – σn( – σn)g
(‖Gxn – yn‖

)
,

which hence yields

σn( – σn)g
(‖Gxn – yn‖

)
≤ ‖xn – p‖ – ‖xn+ – p‖ + αn

∥∥f (p) – p
∥∥‖yn – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (p) – p

∥∥‖yn – p‖.

Since αn →  and ‖xn+ – xn‖ → , from condition (v) and the boundedness of {xn} and
{yn}, it follows that

lim
n→∞ g

(‖Gxn – yn‖
)
= .

Utilizing the properties of g , we have

lim
n→∞‖Gxn – yn‖ = , (.)

which together with (.) and (.) implies that

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖
= ‖xn – xn+‖ + σn‖Gxn – yn‖ →  as n → ∞.

That is,

lim
n→∞‖xn – yn‖ = . (.)

Since

‖xn –Gxn‖ ≤ ‖xn – yn‖ + ‖yn –Gxn‖,

it immediately follows from (.) and (.) that

lim
n→∞‖xn –Gxn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/249


Ceng and Wen Fixed Point Theory and Applications 2013, 2013:249 Page 30 of 37
http://www.fixedpointtheoryandapplications.com/content/2013/1/249

On the other hand, observe that yn can be rewritten as follows:

yn = αnf (xn) + βnxn + γnSnxn + δnJrnGxn

= αnf (xn) + βnxn + (γn + δn)
γnSnxn + δnJrnGxn

γn + δn

= αnf (xn) + βnxn + enẑn,

where en = γn + δn and ẑn =
γnSnxn+δnJrnGxn

γn+δn
. Utilizing Lemma ., we have

‖yn – p‖ = ∥∥αn
(
f (xn) – p

)
+ βn(xn – p) + en(ẑn – p)

∥∥

≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + en‖ẑn – p‖ – βneng
(‖ẑn – xn‖

)
= αn

∥∥f (xn) – p
∥∥ + βn‖xn – p‖ – βneng

(‖ẑn – xn‖
)

+ en
∥∥∥∥γnSnxn + δnJrnGxn

γn + δn
– p

∥∥∥∥


= αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

∥∥∥∥ γn

γn + δn
(Snxn – p) +

δn

γn + δn
(JrnGxn – p)

∥∥∥∥


≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

[
γn

γn + δn
‖Snxn – p‖ + δn

γn + δn
‖JrnGxn – p‖

]

≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ – βneng
(‖ẑn – xn‖

)
+ en

[
γn

γn + δn
‖xn – p‖ + δn

γn + δn
‖xn – p‖

]

= αn
∥∥f (xn) – p

∥∥ + ( – αn)‖xn – p‖ – βneng
(‖ẑn – xn‖

)
≤ αn

∥∥f (xn) – p
∥∥ + ‖xn – p‖ – βneng

(‖ẑn – xn‖
)
,

which hence implies that

βneng
(‖ẑn – xn‖

) ≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – ‖yn – p‖

≤ αn
∥∥f (xn) – p

∥∥ +
(‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

Utilizing (.), conditions (i), (ii), (v) and the boundedness of {xn}, {yn} and {f (xn)}, we
get

lim
n→∞ g

(‖ẑn – xn‖
)
= .

From the properties of g, we have

lim
n→∞‖ẑn – xn‖ = . (.)
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Utilizing Lemma . and the definition of ẑn, we have

‖ẑn – p‖ =
∥∥∥∥γnSnxn + δnJrnGxn

γn + δn
– p

∥∥∥∥


=
∥∥∥∥ γn

γn + δn
(Snxn – p) +

δn

γn + δn
(JrnGxn – p)

∥∥∥∥


≤ γn

γn + δn
‖Snxn – p‖ + δn

γn + δn
‖JrnGxn – p‖

–
γnδn

(γn + δn)
g

(‖JrnGxn – Snxn‖
)

≤ ‖xn – p‖ – γnδn

(γn + δn)
g

(‖JrnGxn – Snxn‖
)
,

which leads to

γnδn

(γn + δn)
g

(‖JrnGxn – Snxn‖
) ≤ ‖xn – p‖ – ‖ẑn – p‖

≤ (‖xn – p‖ + ‖ẑn – p‖)‖xn – ẑn‖.

Since {xn} and {ẑn} are bounded, we deduce from (.) and condition (ii) that

lim
n→∞ g

(‖Snxn – JrnGxn‖
)
= .

From the properties of g, we have

lim
n→∞‖Snxn – JrnGxn‖ = . (.)

Furthermore, yn can also be rewritten as follows:

yn = αnf (xn) + βnxn + γnSnxn + δnJrnGxn

= βnxn + γnSnxn + (αn + δn)
αnf (xn) + δnJrnGxn

αn + δn

= βnxn + γnSnxn + dnz̃n,

where dn = αn+δn and z̃n =
αnf (xn)+δnJrnGxn

αn+δn
. Utilizing Lemma . and the convexity of ‖ ·‖,

we have

‖yn – p‖

=
∥∥βn(xn – p) + γn(Snxn – p) + dn(z̃n – p)

∥∥

≤ βn‖xn – p‖ + γn‖Snxn – p‖ + dn‖z̃n – p‖ – βnγng
(‖xn – Snxn‖

)
= βn‖xn – p‖ + γn‖Snxn – p‖ + dn

∥∥∥∥αnf (xn) + δnJrnGxn
αn + δn

– p
∥∥∥∥


– βnγng
(‖xn – Snxn‖

)
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= βn‖xn – p‖ + γn‖Snxn – p‖ + dn
∥∥∥∥ αn

αn + δn

(
f (xn) – p

)
+

δn

αn + δn
(JrnGxn – p)

∥∥∥∥


– βnγng
(‖xn – Snxn‖

)
≤ βn‖xn – p‖ + γn‖xn – p‖ + dn

[
αn

αn + δn

∥∥f (xn) – p
∥∥ +

δn

αn + δn
‖JrnGxn – p‖

]

– βnγng
(‖xn – Snxn‖

)
≤ αn

∥∥f (xn) – p
∥∥ +

(
βn + γn

)‖xn – p‖ + δn‖xn – p‖ – βnγng
(‖xn – Snxn‖

)
= αn

∥∥f (xn) – p
∥∥ + ( – αn)‖xn – p‖ – βnγng

(‖xn – Snxn‖
)

≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – βnγng
(‖xn – Snxn‖

)
,

which hence implies that

βnγng
(‖xn – Snxn‖

) ≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – ‖yn – p‖

≤ αn
∥∥f (xn) – p

∥∥ +
(‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

Utilizing (.), conditions (i), (ii), (v) and the boundedness of {xn}, {yn} and {f (xn)}, we
get

lim
n→∞ g

(‖xn – Snxn‖
)
= .

From the properties of g, we have

lim
n→∞‖xn – Snxn‖ = . (.)

Thus, from (.) and (.), we get

‖xn – JrnGxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – JrnGxn‖ →  as n → ∞.

That is,

lim
n→∞‖xn – JrnGxn‖ = . (.)

In terms of (.) and Lemma ., we have

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖ →  as n→ ∞.

That is,

lim
n→∞‖xn – Sxn‖ = . (.)

Furthermore, repeating the same arguments as those of (.) in the proof of Theorem .,
we can conclude that

lim
n→∞‖xn – Jrxn‖ =  (.)

for a fixed number r such that ε > r > .
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Define amappingWx = (–θ –θ)Jrx+θSx+θGx, where θ, θ ∈ (, ) are two constants
with θ + θ < . Then by Lemma ., we have that Fix(W ) = Fix(Jr)∩ Fix(S)∩ Fix(G) = F .
We observe that

‖xn –Wxn‖ =
∥∥( – θ – θ)(xn – Jrxn) + θ(xn – Sxn) + θ(xn –Gxn)

∥∥
≤ ( – θ – θ)‖xn – Jrxn‖ + θ‖xn – Sxn‖ + θ‖xn –Gxn‖.

From (.), (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s – limt→ xt with xt being the fixed point of the contraction

x �→ tf (x) + ( – t)Wx.

Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Repeating the same argu-
ments as those of (.) in the proof of Theorem ., we can obtain that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
.

Since X has a uniformly Gâteaux differentiable norm, the duality mapping J is norm-to-
weak∗ uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable, and hence (.) holds. From (.), we get (yn –q) – (xn –q) → . Notic-
ing the norm-to-weak∗ uniform continuity of J on bounded subsets of X, we deduce from
(.) that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉
= lim sup

n→∞

(〈
f (q) – q, J(xn – q)

〉
+

〈
f (q) – q, J(yn – q) – J(xn – q)

〉)
= lim sup

n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. Indeed, observe that

‖yn – q‖

=
∥∥αn

(
f (xn) – f (q)

)
+ βn(xn – q) + γn(Snxn – q) + δn(JrnGxn – q) + αn

(
f (q) – q

)∥∥

≤ ∥∥αn
(
f (xn) – f (q)

)
+ βn(xn – q) + γn(Snxn – q) + δn(JrnGxn – q)

∥∥

+ αn
〈
f (q) – q, J(yn – q)

〉
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≤ αn
∥∥f (xn) – f (q)

∥∥ + βn‖xn – q‖ + γn‖Snxn – q‖ + δn‖JrnGxn – q‖

+ αn
〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖ + βn‖xn – q‖ + γn‖xn – q‖ + δn‖xn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
= (αnρ + βn + γn + δn)‖xn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
,

and hence

‖xn+ – q‖

≤ σn‖Gxn – q‖ + ( – σn)‖yn – q‖

≤ σn‖xn – q‖ + ( – σn)
[(
 – αn( – ρ)

)‖xn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉]
=

(
 – ( – σn)αn( – ρ)

)‖xn – q‖ + ( – σn)αn
〈
f (q) – q, J(yn – q)

〉
=

(
 – ( – σn)αn( – ρ)

)‖xn – q‖ + ( – σn)αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we conclude from conditions (i), (v) and (.) that xn → q
as n→ ∞. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X, which has a uniformly Gâteaux differentiable norm. Let ΠC be a sunny nonex-
pansive retraction from X onto C. Let A ⊂ X × X be an accretive operator in X such that
D(A) ⊂ C ⊂ ⋂

r> R(I + rA). Let V : C → C be a self-mapping such that I – V : C → X
is λ-strictly pseudocontractive and α-strongly accretive with α + λ ≥ . Let f : C → C be
a contraction with coefficient ρ ∈ (, ). Let {Si}∞i= be a countable family of nonexpansive
mappings of C into itself such that F =

⋂∞
i= Fix(Si) ∩ Fix(V ) ∩ A– �= ∅. For arbitrarily

given x ∈ C, let {xn} be the sequence generated by

⎧⎨
⎩yn = αnf (xn) + βnxn + γnSnxn + δnJrn (( – l)I + lV )xn,

xn+ = σn(( – l)I + lV )xn + ( – σn)yn, ∀n≥ ,
(.)

where – λ
+λ

(–
√

–α
λ
) ≤ l ≤ , and {αn}, {βn}, {γn}, {δn} and {σn} are the sequences in (, )

such that αn + βn + γn + δn =  for all n ≥ . Suppose that the following conditions hold:
(i) limn→∞ αn =  and

∑∞
n= αn = ∞;

(ii) {γn}, {δn} ⊂ [c,d] for some c,d ∈ (, );
(iii)

∑∞
n=(|σn – σn–| + |αn – αn–| + |βn – βn–| + |γn – γn–| + |δn – δn–|) <∞;

(iv)
∑∞

n= |rn – rn–| < ∞ and rn ≥ ε >  for all n ≥ ;
(v)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .
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Proof In Theorem., we put B = I–V , B =  andμ = l, where – λ
+λ

(–
√

–α
λ
) ≤ l ≤ .

Then GSVI (.) is equivalent to the VIP of finding x∗ ∈ C such that

〈
Bx∗, J

(
x – x∗)〉 ≥ , ∀x ∈ C.

In this case,B : C → X is λ-strictly pseudocontractive andα-strongly accretive. Repeating
the same arguments as those in the proof of Corollary ., we can infer that Fix(V ) =
VI(C,B). Accordingly, F =

⋂∞
i= Fix(Si)∩ Ω ∩A– =

⋂∞
i= Fix(Si)∩ Fix(V )∩A–, and

Gxn =
(
( – l)I + lV

)
xn, ∀n≥ .

So, the scheme (.) reduces to (.). Therefore, the desired result follows from Theo-
rem .. �

Remark . Theorem . improves, extends, supplements and develops Jung [, Theo-
rem .], Ceng and Yao [, Theorem .] and Cai and Bu [, Theorem .] in the following
aspects.
(i) The problem of finding a point q ∈ ⋂∞

i= Fix(Si) ∩ Ω ∩ A– in our Theorem . is
more general and more subtle than any of the problems of finding a point q ∈ A– in
[, Theorem .], the problem of finding a point q ∈ Fix(T) in [, Theorem .], and the
problem of finding a point q ∈ ⋂∞

i= Fix(Ti)∩ Ω in [, Theorem .].
(ii) The iterative scheme in [, Theorem.] is extended to develop the iterative scheme

(.) of Theorem . by virtue of the iterative schemes of [, Theorems .] and [, Theo-
rem .]. The iterative scheme (.) of Theorem . is more advantageous and more flex-
ible than the iterative scheme of [, Theorem .], because it can be applied to solving
three problems (i.e., GSVI (.), fixed point problem and zero point problem) and involves
several parameter sequences {σn}, {αn}, {βn}, {γn}, {δn} and {rn}.
(iii) Theorem . extends and generalizes Ceng and Yao [, Theorem .] from a non-

expansive mapping to a countable family of nonexpansive mappings, and Jung [, Theo-
rem .] to the setting of a countable family of nonexpansive mappings and GSVI (.) for
two strictly pseudocontractive and strongly accretive mappings. In the meantime, Theo-
rem . extends and generalizes Cai and Bu [, Theorem .] to the setting of an accretive
operator.
(iv) The iterative scheme (.) in Theorem . is very different from any in [, The-

orem .], [, Theorem .] and [, Theorem .] because the mapping Jrn in [, The-
orem .] and the mapping G in [, Theorem .] are replaced by the same composite
mapping JrnG in the iterative scheme (.) of Theorem ..
(v) Cai andBu’s proof in [, Theorem.] depends on the argument techniques in [], the

inequality in -uniformly smooth Banach spaces (see Proposition .) and the inequality
in smooth and uniform convex Banach spaces (see Proposition .). However, the proof
of Theorem . does not depend on the argument techniques in [], the inequality in -
uniformly smooth Banach spaces (see Proposition .), and the inequality in smooth and
uniform convex Banach spaces (see Proposition .). It depends on only the inequalities
in uniform convex Banach spaces (see Lemmas . and . in Section  of this paper) and
the resolvent identity for accretive operators (see Proposition .).
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(vi) The assumption of the uniformly convex and -uniformly smooth Banach space X
in [, Theorem .] is weakened to the one of the uniformly convex Banach space X hav-
ing a uniformly Gâteaux differentiable norm in Theorem .. Moreover, the assumption
of the uniformly smooth Banach space X in [, Theorem .] is replaced by the one of
the uniformly convex Banach space X having a uniformly Gâteaux differentiable norm in
Theorem .. It is worth emphasizing that the assumption of asymptotic regularity on {xn}
in [, Theorem .] is dropped by Theorem ..
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