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Abstract
In this paper, a new concept of the common property (E.A) for two hybrid pairs of
mappings is introduced in Menger PM-spaces. Utilizing this concept, some common
fixed point theorems, which shed some new light on the study of fixed point results
for hybrid pairs in Menger PM-spaces, are obtained under strict contractive
conditions. The corresponding results in metric spaces which generalize many known
results are also obtained. Finally, an example is also given to exemplify our main
results.
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1 Introduction
The concept of a probabilistic metric space was initiated and studied by Menger which
is a generalization of the metric space notion [, ]. The theory of a probabilistic metric
space is an active field and has applications in many other branches of mathematics such
as cluster analysis, mathematical statistics and chaos theory [, ]. It has also been applied
to quantum particle physics in connection with both string and ε∞ theory [].
Fixed point theory in a probabilistic metric space is an important branch of probabilistic

analysis, which is closely related to the existence and uniqueness of solutions of differential
equations and integral equations [, ]. Many results on the existence of fixed points or
solutions of nonlinear equations under various types of conditions inMenger spaces have
been extensively studied by many scholars (see, e.g., [, ]).
Jungck [] introduced the concept of compatiblemappings inmetric spaces and proved

some common fixed point theorems. In [], the concept of weakly compatible map-
pings was given. The concept of compatible mappings in a Menger space was initiated by
Mishra [], and since then many fixed point results for compatible mappings and weakly
compatible mappings have been studied [–]. The study for noncompatible mappings
is also interesting. This was initiated and studied by Pant first in metric spaces [–].
In , Aamri and Moutawakil defined a new property for a pair of mappings, i.e., the
so-called property (E.A), which is a generalization of noncompatibility []. Using this
property, some common fixed point theorems under strict contractive conditions in met-
ric spaces have been given. In , Kamran introduced the concept of the property (E.A)
in a hybrid case in metric spaces and obtained some coincidence and fixed points theo-
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rems for hybrid strict contractions []. However, Sintunavarat and Kumam pointed out
that one condition in one of their main results is superfluous []. Liu et al. defined the
concept of the common property (E.A) for single-valued as well as hybrid pairs of map-
pings inmetric spaces and obtainedmany interesting results []. Utilizing these concepts,
many authors studied the existence of coincidence and fixed points in symmetric spaces
[–].
On the other hand, fixed point results for mappings under strict contractive conditions

in probabilistic metric spaces are not very fruitful. In , Fang defined the property
(E.A) for two single-valued mappings in Menger PM-spaces and studied the existence of
common fixed points in such spaces []. In , Ali et al. obtained some common fixed
point results for strict contractions in Menger PM-spaces using the common property
(E.A) for two pairs of single-valued mappings [].
The purpose of this paper is to introduce the concept of the common property (E.A)

for two hybrid pairs of mappings in Menger PM-spaces and study the existence of coin-
cidence and common fixed points for pairs of mappings satisfying such a property under
strict contractive conditions.We also obtain some corresponding results under strict con-
tractive conditions in metric spaces.

2 Preliminaries
A mapping F : R → R

+ is called a distribution function if it is nondecreasing left-
continuous with supt∈R F(t) =  and inft∈R F(t) = .
We will denote by D the set of all distribution functions, whileH will always denote the

specific distribution function defined by

H(t) =

⎧⎨
⎩
, t ≤ ,

, t > .

Let F,F ∈ D . The algebraic sum F ⊕ F is defined by

(F ⊕ F)(t) = sup
t+t=t

min
{
F(t),F(t)

}

for all t ∈ R.
Let f and g be two functions defined onRwith positive values. The notation f > g means

that f (t)≥ g(t) for all t ∈R, and there exists at least one t ∈R such that f (t) > g(t).
A mapping � : [, ]× [, ] → [, ] is called a triangular norm (for short, a t-norm) if

the following conditions are satisfied:
() �(a, ) = a;
() �(a,b) = �(b,a);
() �(a, c) ≥ �(b,d) for a≥ b, c≥ d;
() �(a,�(b, c)) = �(�(a,b), c).

Definition . [] A triplet (X,F ,�) is called a Menger probabilistic metric space (for
short, aMenger PM-space) if X is a nonempty set, � is a t-norm and F is a mapping from
X ×X into D satisfying the following conditions (we denote F (x, y) by Fx,y):
(MS-) Fx,y(t) =H(t) for all t ∈ R if and only if x = y;
(MS-) Fx,y(t) = Fy,x(t) for all t ∈ R;
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(MS-) Fx,y(t + s)≥ �(Fx,z(t),Fz,y(s)) for all x, y, z ∈ X and t, s≥ .

Remark. In [], it is pointed out that if (X,F ,�) satisfies the condition sup<t< �(t, t) =
, then (X,F ,�) is a Hausdorff topological space in the (ε,λ)-topology T , i.e., the family
of sets {Ux(ε,λ) : ε > ,λ ∈ (, ]} (x ∈ X) is a basis of neighborhoods of a point x for T ,
where Ux(ε,λ) = {y ∈ X : Fx,y(ε) >  – λ}.

By virtue of this topology T , a sequence {xn} is said to be T -convergent to x ∈ X (we
write xn

T→ x) if for any given ε >  and λ ∈ (, ], there exists a positive integerN =N(ε,λ)
such that Fxn ,x(ε) >  – λ whenever n≥ N , which is equivalent to limn→∞ Fxn ,x(t) =  for all
t > ; {xn} is called a T -Cauchy sequence in (X,F ,�) if for any given ε >  and λ ∈ (, ],
there exists a positive integer N = N(ε,λ) such that Fxn ,xm (ε) >  – λ whenever n,m ≥ N ;
(X,F ,�) is said to be T -complete if each T -Cauchy sequence in X is T -convergent in X.
Note that in a Menger PM-space, when we write limn→∞ xn = x, it means that xn

T→ x.
Let (X,F ) be a PM-space and A be a nonempty subset of X. Then the function

DA(t) = sup
s<t

inf
x,y∈A

Fx,y(s), t ∈R,

is called the probabilistic diameter of A. If supt>DA(t) = , then A is said to be probabilis-
tically bounded.
Let (X,d) be ametric space,CB(X) be the family of all nonempty bounded closed subsets

of X and δ be the Hausdorff metric induced by d, that is,

δ(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

for any A,B ∈ CB(X), where d(x,A) = infy∈A d(x, y).
Let (X,F ,�) be a Menger space and � be the family of all nonempty probabilistically

bounded T -closed subsets of X. For any A,B ∈ �, define the distribution functions as
follows:

F̃ (A,B)(t) = F̃A,B(t) = sup
s<t

�
(
inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B supx∈A

Fx,y(s)
)
, s, t ∈R,

F (x,A)(t) = Fx,A(t) = sup
s<t

sup
y∈A

Fx,y(s), s, t ∈R,

where F̃ is called theMenger-Hausdorff metric induced by F .

Remark . []
() (CB(X), δ) is a metric space. If (X,d) is complete, then (CB(X), δ) is complete.
() Let (X,d) be a metric space. Define a mapping F : X ×X → D by

F (x, y)(t) = Fx,y(t) =H
(
t – d(x, y)

)
, ∀x, y ∈ X, t ∈R.

Then (X,F ,�min) is a Menger PM-space induced by (X,d) with
�min(a,b) =min{a,b}, ∀a,b ∈ [, ]. If (X,d) is complete, then (X,F ,�min) is
T -complete.
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() If we define F̃ : CB(X)×CB(X)→ D as follows:

F̃ (A,B)(t) = F̃A,B(t) =H
(
t – δ(A,B)

)
, ∀A,B ∈ CB(X), t ∈R,

then F̃ is the Menger-Hausdorff metric induced by F . Moreover, if (X,F ,�) is a
T -complete Menger PM-space with the t-norm � ≥ �m, where �m(a,b) = max{a + b –
, }, ∀a,b ∈ [, ], then (�, F̃ ,�) is also a T -complete Menger PM-space.

The following lemmas play an important role in proving our main results in Section .

Lemma . [] Let (X,F ,�) be a Menger PM-space. Then for any A,B,C ∈ � and any
x, y ∈ X, we have the following:

(i) F̃A,B(t) =  if and only if A = B;
(ii) Fx,A(t) =  if and only if x ∈ A;
(iii) For any x ∈ A, Fx,B(t) ≥ F̃A,B(t) for all t ≥ ;
(iv) Fx,A(t + t) ≥ �(Fx,y(t),Fy,A(t)) for all t, t ≥ ;
(v) Fx,A(t + t) ≥ �(Fx,B(t),FA,B(t)) for all t, t ≥ ;
(vi) F̃A,C(t + t) ≥ �(F̃A,B(t), F̃B,C(t)) for all t, t ≥ .

Lemma . [] Let (X,F ,�) be a Menger PM-space with a continuous t-norm � on
[, ]× [, ], x, y ∈ X, {xn}, {yn} ⊂ X and xn

T→ x, yn
T→ y.Then lim infn→∞ Fxn ,yn (t) ≥ Fx,y(t)

for all t > . Particularly, if Fx,y(·) is continuous at the point t, then limn→∞ Fxn ,yn (t) =
Fx,y(t).

Imitating the proof of Lemma . and using Lemma ., we can easily obtain the follow-
ing two lemmas.

Lemma . Let (X,F ,�) be a Menger PM-space with a continuous t-norm � on [, ]×
[, ] and (�, F̃ ,�) be the induced Menger PM-space, x ∈ X, P ∈ �, {xn} ⊂ X, {Pn} ⊂ �

and xn
T→ x, Pn

T→ P. Then lim infn→∞ Fxn ,Pn (t) ≥ Fx,P(t) for all t > . Particularly, if Fx,P(·)
is continuous at the point t, then limn→∞ Fxn ,Pn (t) = Fx,P(t).

Lemma . Let (X,F ,�) be a Menger PM-space with a continuous t-norm � on [, ]×
[, ] and (�, F̃ ,�) be the induced Menger PM-space, P,Q ∈ �, {Pn}, {Qn} ⊂ � and Pn

T→
P, Qn

T→ Q. Then lim infn→∞ F̃Pn ,Qn (t) ≥ F̃P,Q(t) for all t > . Particularly, if F̃P,Q(·) is con-
tinuous at the point t, then limn→∞ F̃Pn ,Qn (t) = F̃P,Q(t).

We recall the definition of compatibility in a hybrid case and weakly compatibility in
both single-valued and hybrid case in Menger PM-spaces.

Definition . [] Let (X,F ,�) be a Menger PM-space and (�, F̃ ,�) be the induced
Menger PM-space. Then f : X → X and F : X → � are said to be compatible if fFx ∈ � for
all x ∈ X and limn→∞ F̃fFxn ,Ffxn (t) =  for all t >  whenever {xn} is a sequence in X such that
limn→∞ fxn = a ∈ A and limn→∞ Fxn = A ∈ �.

Definition . [] Let (X,F ,�) be a Menger PM-space. Then f : X → X and F : X → X
are said to beweakly compatible if they commute at their coincidence points, i.e., fFx = Ffx
whenever fx = Fx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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Definition . [] Let (X,F ,�) be a Menger PM-space, (�, F̃ ,�) be the induced
Menger PM-space. Then f : X → X and F : X → � are said to be weakly compatible if
they commute at their coincidence points, i.e., fFx = Ffx whenever fx ∈ Fx.

In the sequel, we will denote by C(f ,F) the set of all coincidence points of f and F .
We first give the definition of the property (E.A) for a hybrid pair of mappings inMenger

PM-spaces.

Definition . Let (X,F ,�) be a Menger PM-space, (�, F̃ ,�) be the induced Menger
PM-space, f : X → X be a self-mapping and F : X → � be a multivalued mapping. A pair
of mappings (f ,F) is said to satisfy the property (E.A) if there exists a sequence {xn} in X
and some a ∈ X and A ∈ � such that limn→∞ fxn = a ∈ A = limn→∞ Fxn.

Remark . Similar to the arguments in [], by this definition, we can also see that in
a hybrid case, any noncompatible mappings satisfy the property (E.A). But the following
example shows that the converse is not true.

Example . Let X = [,+∞). Define F : X × X → D and F̃ : CB(X) × CB(X) → D as
follows:

F (x, y)(t) = Fx,y(t) =H
(
t – d(x, y)

)
, ∀x, y ∈ X, t ∈R,

F̃ (A,B)(t) = F̃A,B(t) =H
(
t – δ(A,B)

)
, ∀A,B ∈ CB(X), t ∈ R.

Then by Remark ., we know that (X,F ,�min) and (�, F̃ ,�min) are both Menger PM-
spaces. Define f : X → X and F : X → � as fx = x,Fx = [,  + x] and take xn = 

n . Then
fxn

T→ , Fxn
T→ [, ], which implies that limn→∞ fxn =  ∈ [, ] = limn→∞ Fxn, and so

(f ,F) satisfies the property (E.A). On the other hand, suppose that {xn} is an arbitrary se-
quence in X satisfying limn→∞ fxn = a ∈ A = limn→∞ Fxn for some a ∈ X and A ∈ �. Then
fFxn = Ffxn = [, +xn], which implies that limn→∞ F̃fFxn ,Ffxn (t) = F̃[,+xn],[,+xn](t) =  for
all t > . So, f and F are compatible mappings.

We now give the definition of the common property (E.A) for two hybrid pairs of map-
pings in Menger PM-spaces.

Definition. Let (X,F ,�) be aMenger PM-space and (�, F̃ ,�) be the inducedMenger
PM-space, f , g : X → X and F ,G : X → �. Two pairs of mappings (f ,F) and (g,G) are said
to satisfy the common property (E.A) if there exist two sequences {xn}, {yn} in X and some
u ∈ X and A,B ∈ � such that

lim
n→∞Fxn = A, lim

n→∞Gyn = B, lim
n→∞ fxn = lim

n→∞ gyn = u ∈ A∩ B.

Example . Let (X,d) be a metric space, X = [, +∞), (X,F ,�) and (�, F̃ ,�) be two
Menger PM-spaces induced by (X,d) and (CB(X), δ), respectively (as in Remark .). De-
fine f , g : X → X and F ,G : X → � as follows:

fx =  +
x

, gx =  +

x

, Fx = [,  + x], Gx =

[
,  +

x


]
, ∀x ∈ X.
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Consider the sequence {xn} = { + 
n }, {yn} = { + 

n } and denote A = [, ], B = [, ].
Since F̃Fxn ,A(t) = H(t – δ(Fxn,A)), while δ(Fxn,A) = 

n →  (n → ∞), we have
F̃Fxn ,A(t) → , ∀t > , i.e., Fxn

T→ A. Similarly, we have F̃Gyn ,B(t)→ , ∀t > , i.e., Gyn
T→ B.

On the other hand, since Ffxn ,(t) =H(t–d(fxn, )), while d(fxn, ) = 
n →  (n→ ∞), we

have Ffxn ,(t) → , ∀t > , i.e., fxn
T→  ∈ A ∩ B as n → ∞. Similarly, we have Fgyn ,(t) → ,

∀t > , i.e., gyn
T→  ∈ A∩B as n→ ∞. Thus, the pairs of mappings (f ,F) and (g,G) satisfy

the common property (E.A).

3 Main results
In this section, we will give the main results of this paper. We first present the following
common fixed point theorem for two hybrid pairs of mappings in Menger PM-spaces.

Theorem . Let (X,F ,�) be aMenger PM-space with� a continuous t-norm on [, ]×
[, ] and (�, F̃ ,�) be the induced Menger PM-space. Suppose that f , g : X → X and F ,G :
X → � are mappings satisfying the following conditions:

(i) (f ,F) and (g,G) satisfy the common property (E.A);
(ii) f (X) and g(X) are T -closed subsets of X ;
(iii) For any x, y ∈ X with Fx �=Gy and some  ≤ k < ,

F̃Fx,Gy >min
{
Ffx,gy, 

k
[Ffx,Fx ⊕ Ffx,Gy], 

k
[Fgy,Gy ⊕ Fgy,Fx]

}
, (.)

where af (t) means f (at). Then (f ,F) and (g,G) each has a coincidence point. Moreover, if
ffv = fv for v ∈ C(f ,F) and ggv = gv for v ∈ C(g,G), then f , g , F and G have a common fixed
point in X.

Proof Since (f ,F) and (g,G) satisfy the common property (E.A), there exist {xn}, {yn} ⊂ X
and some u ∈ X, A,B ∈ � such that

lim
n→∞Fxn = A, lim

n→∞Gyn = B, lim
n→∞ fxn = lim

n→∞ gxn = u ∈ A∩ B. (.)

Since f (X) is T -closed, there exists some v ∈ X such that u = fv. We claim that fv ∈ Fv.
Suppose this is not true, that is, fv /∈ Fv. Then from u = fv ∈ B, we have B �= Fv. Thus, there
exists some t >  such that

F̃Fv,B
(
t
k

)
> F̃Fv,B(t). (.)

(Otherwise, ∀t > , FFv,B(t) = FFv,B( tk ) = · · · = FFv,B(( k )
nt) →  as n → ∞, that is, FFv,B(t) =

, ∀t > , which is a contradiction.)
Without loss of generality, we can assume that t is a continuous point of F̃Fv,B(·). In

fact, by the left continuity of the distribution function, we know that there exists some
δ >  such that

F̃Fv,B
(
t
k

)
> F̃Fv,B(t), ∀t ∈ (t – δ, t].

Since the distribution function is nondecreasing, the discontinuous points are at most a
countable set. Thus, when t is not a continuous point of F̃Fv,B, we can always choose a
point t in (t – δ, t] to replace t.

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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Noting that limn→∞ fxn = u /∈ Fv and u ∈ B = limn→∞ Gyn, we have Fv �= limn→∞ Gyn, so
there exists some n ∈ N such that for all n≥ n, Gyn �= Fv.
From (.) we know that

F̃Fv,Gyn (t)

≥ min

{
Ffv,gyn (t), [Ffv,Fv ⊕ Ffv,Gyn ]

(

k
t

)
, [Fgyn ,Gyn ⊕ Fgyn ,Fv]

(

k
t

)}
. (.)

It is easy to verify that

lim inf
n→∞ [Ffv,Fv ⊕ Ffv,Gyn ]

(

k
t

)
≥ Ffv,Fv

(

k
t

)
. (.)

In fact, for any δ ∈ (, k t), we have

[Ffv,Fv ⊕ Ffv,Gyn ]
(

k
t

)
≥ min

{
Ffv,Fv

(

k
t – δ

)
,Ffv,Gyn (δ)

}
.

Since fv = u ∈ B = limn→∞ Gyn, by Lemma . and Lemma .(ii), we get

lim inf
n→∞ [Ffv,Fv ⊕ Ffv,Gyn ]

(

k
t

)
≥ Ffv,Fv

(

k
t – δ

)
.

Letting δ → , by the left continuity of the distribution function, we obtain (.). Similarly,
we can prove that

lim inf
n→∞ [Fgyn ,Gyn ⊕ Fgyn ,Fv]

(

k
t

)
≥ Ffv,Fv

(

k
t

)
. (.)

Noting that t is the continuous point of F̃Fv,B(·), by Lemma ., we have

lim
n→∞ F̃Fv,Gyn (t) = F̃Fv,B(t).

Thus, letting n→ ∞ in (.) and using (.) and (.), we obtain

F̃Fv,B(t) ≥ min

{
,Ffv,Fv

(

k
t

)
,Ffv,Fv

(

k
t

)}
= Ffv,Fv

(

k
t

)
,

that is,

F̃Fv,B(t) ≥ Ffv,Fv
(

k
t

)
.

But since fv ∈ B, by Lemma .(iii), (.) implies that

Ffv,Fv
(
t
k

)
> F̃Fv,B(t),

which is a contradiction. So, we get fv ∈ Fv.

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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On the other hand, since g(X) is T -closed, there exists some w ∈ X such that u = gw. We
claim that gw ∈ Gw. Suppose this is not true, that is, gw /∈Gw. Noting that u = gw ∈ A, we
have A �=Gw. Similarly, we know that there exists some s >  such that

F̃A,Gw
(
s
k

)
> F̃A,Gw(s). (.)

Similarly, without loss of generality, we can assume that s is a continuous point of
F̃A,Gw(·).
Noting that limn→∞ gyn = u /∈ Gw and u ∈ A = limn→∞ Fxn, we have limn→∞ Fxn �= Gw,

so there exists some n ∈N such that for all n≥ n, Fxn �=Gw.
From (.) we know that

F̃Fxn ,Gw(s)

≥ min

{
Ffxn ,gw(s), [Ffxn ,Fxn ⊕ Ffxn ,Gw]

(

k
s

)
, [Fgw,Gw ⊕ Fgw,Fxn ]

(

k
s

)}
. (.)

It is easy to verify that

lim inf
n→∞ [Fgw,Gw ⊕ Fgw,Fxn ]

(

k
s

)
≥ Fgw,Gw

(

k
s

)
. (.)

In fact, for any δ ∈ (, k s), we have

[Fgw,Gw ⊕ Fgw,Fxn ]
(

k
s

)
≥ min

{
Fgw,Gw

(

k
s – δ

)
,Fgw,Fxn (δ)

}
.

Since gw = u ∈ A = limn→∞ Fxn, by Lemma . and Lemma .(ii), we get

lim inf
n→∞ [Fgw,Gw ⊕ Fgw,Fxn ]

(

k
s

)
≥ Fgw,Gw

(

k
s – δ

)
.

Letting δ → , by the left continuity of the distribution function, we obtain (.). Similarly,
we can prove that

lim inf
n→∞ [Ffxn ,Fxn ⊕ Ffxn ,Gw]

(

k
s

)
≥ Fgw,Gw

(

k
s

)
. (.)

Noting that s is the continuous point of F̃A,Gw(·), by Lemma ., we have

lim
n→∞ F̃Fxn ,Gw(s) = F̃A,Gw(s).

Thus, letting n→ ∞ in (.) and using (.) and (.), we obtain

F̃A,Gw(s) ≥ min

{
,Fgw,Gw

(

k
s

)
,Fgw,Gw

(

k
s

)}
= Fgw,Gw

(

k
s

)
,

that is,

F̃A,Gw(s) ≥ Fgw,Gw
(

k
s

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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But since gw ∈ A, by Lemma .(iii), (.) implies that

Fgw,Gw
(
s
k

)
> F̃A,Gw(s),

which is a contradiction. So, we get gw ∈ Gw. Therefore, we have proved u = fv ∈ Fv, and
u = gw ∈Gw, i.e., v is a coincidence point of (f ,F) and w is a coincidence point of (g,G).
Since v ∈ C(f ,F) and w ∈ C(g,G), we have u = fv = ffv = fu ∈ Fv and u = gw = ggw = gu ∈

Gw. Next, we prove that Fv = Fu and Gw =Gu.
First, we assert that Fv = Gw. In fact, suppose that Fv �= Gw. Then by (.), there exists

some t >  such that

F̃Fv,Gw(t) >min

{
Ffv,gw(t), [Ffv,Fv ⊕ Ffv,Gw]

(

k
t

)
, [Fgw,Gw ⊕ Fgw,Fv]

(

k
t

)}
.

This implies that

 = Fu,Gw(t) ≥ F̃Fv,Gw(t) > ,

which is a contradiction, and thus we have Fv =Gw.
Similarly, we can prove that Fu =Gw. In fact, suppose that Fu �=Gw. Then by (.), there

exists some t >  such that

F̃Fu,Gw(t) >min

{
Ffu,gw(t), [Ffu,Fu ⊕ Ffu,Gw]

(

k
t

)
, [Fgw,Gw ⊕ Fgw,Fu]

(

k
t

)}
.

This implies that

Fu,Fu(t)≥ F̃Fu,Gw(t) > Fu,Fu
(

k
t

)
,

which is a contradiction, and thus we have Fu = Gw. Combining these two facts yields
Fv = Fu.
Next, we assert that Fv = Gu. Suppose that Fv �= Gu. Again by (.), there exists some

t >  such that

F̃Fv,Gu(t) >min

{
Ffv,gu(t), [Ffv,Fv ⊕ Ffv,Gu]

(

k
t

)
, [Fgu,Gu ⊕ Fgu,Fv]

(

k
t

)}
.

This implies that

Fu,Gu(t) ≥ F̃Fv,Gu(t) > Fu,Gu
(

k
t

)
,

which is a contradiction, and so we have Fv =Gu. Combining this with Fv =Gw, we obtain
Gw =Gu.
Thus, we have u = fu ∈ Fu and u = gu ∈ Gu, that is, u is the common fixed point of f , g ,

F and G. This completes the proof. �

From the proof of Theorem ., we can similarly prove the following result.
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Theorem . Let (X,F ,�) be a Menger PM-space with � a continuous t-norm on
[, ]× [, ] and let (�, F̃ ,�) be the inducedMenger PM-space. Suppose that f , g : X → X
and F ,G : X → � are mappings satisfying the conditions (i)-(ii) of Theorem . and the
following:

(iii)′ For any x, y ∈ X with Fx �=Gy and some  ≤ k < ,

F̃Fx,Gy >min
{
Ffx,gy, 

k
[Ffx,Fx ⊕ Fgy,Gy], [Ffx,Gy ⊕ Fgy,Fx]

}
, (.)

where af (t) means f (at). Then (f ,F) and (g,G) each has a coincidence point. Moreover, if
ffv = fv for v ∈ C(f ,F) and ggv = gv for v ∈ C(g,G), then f , g , F and G have a common fixed
point in X.

Setting f = g in Theorem ., we obtain the following corollary.

Corollary . Let (X,F ,�) be aMenger spacewith� a continuous t-norm on [, ]×[, ]
and let (�, F̃ ,�) be the induced Menger space. Suppose that f : X → X and F ,G : X → �

are mappings satisfying the following conditions:
(i) (f ,F) and (f ,G) satisfy the common property (E.A);
(ii) f (X) is a T -closed subset of X ;
(iii) For any x, y ∈ X with Fx �=Gy and some  ≤ k < ,

F̃Fx,Gy >min
{
Ffx,fy, 

k
[Ffx,Fx ⊕ Ffx,Gy], 

k
[Ffy,Gy ⊕ Ffy,Fx]

}
, (.)

where af (t)means f (at). Then f , F and G have a coincidence point.Moreover, if ffv = fv for
v ∈ C(f ,F) and v ∈ C(f ,G), then f , F and G have a common fixed point in X.

Setting f = g and F =G, we have the following corollary.

Corollary . Let (X,F ,�) be aMenger spacewith� a continuous t-normon [, ]×[, ]
and let (�, F̃ ,�) be the induced Menger space. Suppose that f : X → X and F : X → � are
mappings satisfying the following conditions:

(i) (f ,F) satisfies the property (E.A);
(ii) f (X) is a T -closed subset of X ;
(iii) For any x, y ∈ X with x �= y and some  ≤ k < ,

F̃Fx,Fy >min
{
Ffx,fy, 

k
[Ffx,Fx ⊕ Ffx,Fy], 

k
[Ffy,Fy ⊕ Ffy,Fx]

}
, (.)

where af (t) means f (at). Then f and F have a coincidence point. Moreover, if ffv = fv for
v ∈ C(f ,F), then f and F have a common fixed point in X.

If f , g , F and G are all single-valued mappings, then we have the following corollary.

Corollary . Let (X,F ,�) be a Menger space with � a continuous t-norm on [, ] ×
[, ]. Suppose that f , g,F ,G : X → X are self-mappings satisfying the following conditions:

(i) (f ,F) and (g,G) satisfy the common property (E.A);
(ii) f (X) and g(X) are T -closed subsets of X ;

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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(iii) For any x, y ∈ X with Fx �=Gy and some  ≤ k < ,

F̃Fx,Gy >min
{
Ffx,gy, 

k
[Ffx,Fx ⊕ Ffx,Gy], 

k
[Fgy,Gy ⊕ Fgy,Fx]

}
, (.)

where af (t) means f (at). Then (f ,F) and (g,G) each has a coincidence point. Moreover, if
ffv = fv for v ∈ C(f ,F) and ggv = gv for v ∈ C(g,G), then f , g , F and G have a common fixed
point in X.

Remark . We would like to point out here that in the condition (iii), we use ‘for any
x, y ∈ X with Fx �= Gy’ instead of ‘for any x, y ∈ X with x �= y’ as in Theorem . of []
when we consider two pairs of mappings. Moreover, comparing our Corollary . with
Theorem . of [], one can find that we use the condition ‘ffv = fv for v ∈ C(f ,F) and
ggv = gv for v ∈ C(g,G)’ instead of weakly compatibility condition for two hybrid pairs. In
fact, in a hybrid case, even if (f ,F) and (g,G) are weakly compatible, we still cannot obtain
the conclusion.

Remark . Similarly, some other corresponding corollaries can be obtained from The-
orem .. For simplicity, we omit them here. Also, it is worth mentioning that in all of the
above theorems and corollaries, we do not need any condition on the continuity or the
containment of the ranges of involved mappings.

4 Common fixed point results in metric spaces
In this section, we use the results in Section  to get some corresponding results in metric
spaces.

Theorem. Let (X,d) be ametric space. Suppose that f , g : X → X and F ,G : X → CB(X)
are mappings satisfying the following conditions:

(i) (f ,F) and (g,G) satisfy the common property (E.A);
(ii) f (X) and g(X) are closed subsets of X ;
(iii) For any x, y ∈ X with Fx �=Gy and some  ≤ k < ,

δ(Fx,Gy)

<max

{
d(fx, gy),

k

[
d(fx,Fx) + d(fx,Gy)

]
,
k

[
d(gy,Gy) + d(gy,Fx)

]}
. (.)

Then (f ,F) and (g,G) each has a coincidence point.Moreover, if ffv = fv for v ∈ C(f ,F) and
ggv = gv for v ∈ C(g,G), then f , g , F and G have a common fixed point in X.

Proof Let (X,F ,�min) be the induced Menger space by (X,d) and (�, F̃ ,�min) be the in-
ducedMenger space by (CB(X), δ). Then byRemark ., it is easy to see that Theorem.(i)
and (ii) imply Theorem .(i) and (ii). Now we show that Theorem .(iii) implies Theo-
rem .(iii).
We first verify that for any x, y ∈ X with Fx �=Gy and t > , the following holds:

F̃Fx,Gy(t) ≥ min

{
Ffx,gy(t), [Ffx,Fx ⊕ Ffx,Gy]

(

k
t
)
, [Fgy,Gy ⊕ Fgy,Fx]

(

k
t
)}

. (.)

If t > δ(Fx,Gy), then F̃Fx,Gy(t) = , and thus (.) obviously holds.

http://www.fixedpointtheoryandapplications.com/content/2013/1/25


Wu et al. Fixed Point Theory and Applications 2013, 2013:25 Page 12 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/25

If t ≤ δ(Fx,Gy), we consider the following three cases:
Case (I): t < d(fx, gy). In this case, Ffx,gy(t) = , and thus (.) holds.
Case (II): t < k

 [d(fx,Fx) + d(fx,Gy)], that is, 
k t < d(fx,Fx) + d(fx,Gy). Then for any

t, t >  with t + t = 
k t, we have d(fx,Fx) > t or d(fx,Gy) > t, which implies that

Ffx,Fx(t) =  or Ffx,Gy(t) = . Hence,

[Ffx,Fx ⊕ Ffx,Gy]
(

k
t
)
= sup

t+t= t
k

min
{
Ffx,Fx(t),Ffx,Gy(t)

}
= ,

and so (.) holds.
Case (III): t < k

 [d(gy,Gy) + d(gy,Fx)]. Similar to Case (II), we can prove that [Fgy,Gy ⊕
Fgy,Fx]( k t) = , so (.) holds.
From the above discussions, we conclude that (.) is always true.
Next, by (.), there exists some t >  such that

δ(Fx,Gy) < t <max

{
d(fx, gy),

k

[
d(fx,Fx) + d(fx,Gy)

]
,
k

[
d(gy,Gy) + d(gy,Fx)

]}
.

This implies that F̃Fx,Gy(t) =  and

min

{
Ffx,gy(t), [Ffx,Fx ⊕ Ffx,Gy]

(

k
t

)
, [Fgy,Gy ⊕ Fgy,Fx]

(

k
t

)}
= ,

which yields that

F̃Fx,Gy(t) >min

{
Ffx,gy(t), [Ffx,Fx ⊕ Ffx,Gy]

(

k
t

)
, [Fgy,Gy ⊕ Fgy,Fx]

(

k
t

)}
. (.)

Combining (.) with (.), we know that (.) holds. �

Similarly, from Theorem ., we can obtain the following theorem.

Theorem. Let (X,d) be ametric space. Suppose that f , g : X → X and F ,G : X → CB(X)
are mappings satisfying the following conditions:

(i) (f ,F) and (g,G) satisfy the common property (E.A);
(ii) f (X) and g(X) are closed subsets of X ;
(iii) For any x, y ∈ X with Fx �=Gy and some  ≤ k < ,

δ(Fx,Gy)

<max

{
d(fx, gy),

k

[
d(fx,Fx) + d(gy,Gy)

]
,


[
d(fx,Gy) + d(gy,Fx)

]}
. (.)

Then (f ,F) and (g,G) each has a coincidence point.Moreover, if ffv = fv for v ∈ C(f ,F) and
ggv = gv for v ∈ C(g,G), then f , g , F and G have a common fixed point in X.

Remark. Note thatwhen k = , then (.) becomes (.) inTheorem. of []. Similar
to Remark ., we should state ‘for any x, y ∈ X with Fx �=Gy’ here instead of ‘for any x, y ∈ X
with x �= y’ as in []. Moreover, we only need ‘ffv = fv for v ∈ C(f ,F) and ggv = gv for

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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v ∈ C(g,G)’ to guarantee the existence of common fixed points of f , g , F and G. In fact,
the condition ‘f is F-weakly commuting for v ∈ C(f ,F) and g is G-weakly commuting for
v ∈ C(g,G)’ is superfluous in Theorem . of [].

Remark . By Corollary .-Corollary . and Remark ., we can also obtain some
other corresponding corollaries for common fixed point theorems inmetric spaces, which
are the generalizations of many known results (e.g., [, ]). For the sake of simplicity, we
omit them here.

5 An application
In this section, we will provide an example to exemplify the validity of the main result of
this paper.

Example . ConsiderX = (–, ) and define Fx,y(t) = t
t+|x–y| for all x, y ∈ X with t > . Also,

let CB(X) be the family of nonempty bounded closed subsets of X and define F̃A,B(t) =
t

t+δ(A,B) for all A,B ∈ CB(X) with t > . Then (X,F ,�) and (�, F̃ ,�) are bothMenger PM-
spaces with �(a,b) = min{a,b}, where � is the family of all nonempty probabilistically
bounded T -closed subsets of X. Define f , g : X → X and F ,G : X → � as follows:

fx =

⎧⎨
⎩


 , if x ∈ (–,– 

 )∪ (  , );
x
 , if x ∈ [– 

 ,

 ],

gx =

⎧⎨
⎩
–

 , if x ∈ (–,– 
 )∪ (  , );

– x
 , if x ∈ [– 

 ,

 ],

Fx =

⎧⎪⎪⎨
⎪⎪⎩
[,  ], if x ∈ (–,– 

 )∪ (  , );

[ x , ], if x ∈ [– 
 , ];

[, x ], if x ∈ [,  ],

Gx =

⎧⎪⎪⎨
⎪⎪⎩
[–

 , ], if x ∈ (–,– 
 )∪ (  , );

[,– x
 ], if x ∈ [– 

 , ];

[– x
 , ], if x ∈ [,  ].

Consider the sequences {xn = 
n+ } and {yn = –

n+ } in X, then

lim
n→∞ fxn = lim

n→∞ gyn =  and lim
n→∞Fxn = lim

n→∞Gyn = {},

which shows that (f ,F) and (g,G) satisfy the common property (E.A). Also, f (X) and g(X)
are T -closed subsets of X. By a routine calculation, one can verify the inequality (.) for
any x, y ∈ X with Fx �=Gy and some  ≤ k < .
In fact, if x ∈ (–,– 

 )∪ (  , ) and y ∈ [– 
 , ], then for t > , we have

F̃Fx,Gy(t) =
t

t + 
 +

y

>

t
t + 

 +
y

= Ffx,gy(t)

≥ min
{
Ffx,gy(t), 

k
[Ffx,Fx ⊕ Ffx,Gy](t), 

k
[Fgy,Gy ⊕ Fgy,Fx](t)

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/25
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If x ∈ (–,– 
 )∪ (  , ) and y ∈ [,  ], then for t > , we have

F̃Fx,Gy(t) =
t

t + 

>

t
t + 

 +
y

= Ffx,gy(t)

≥ min
{
Ffx,gy(t), 

k
[Ffx,Fx ⊕ Ffx,Gy](t), 

k
[Fgy,Gy ⊕ Fgy,Fx](t)

}
.

Similarly, it is easy to verify (.) for other cases. Thus, all the conditions of Theorem .
are satisfied and  is the unique coincidence point of (f ,F) and (g,G). Furthermore, noting
that ff  = f  and gg = g,  remains the common fixed point of (f ,F) and (g,G).

It is worth pointing out that many theorems in some corresponding published papers
cannot be applied to this example since Theorem . does not require any condition on
the containment of the ranges of involved mappings, and in this example we also do not
require such containment.
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