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Abstract
In this paper, we present some extensions of Banach contraction principle to partial
cone metric spaces over a non-normal solid cone, which improve many recent fixed
point results in cone metric spaces and partial cone metric spaces. An example is
given to support the usability of our results.
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1 Introduction
The Banach contraction principle is the most celebrated fixed point theorem, which has
been extended in various directions. In , Huang and Zhang [] introduced cone met-
ric spaces and extended the Banach contraction principle to cone metric spaces over a
normal solid cone, being unaware that cone metric spaces already existed under the name
of K-metric spaces and K-normed spaces that were introduced and used in the middle of
the th century in [–]. Furthermore, Huang and Zhang defined the convergence via
interior points of the cone. Such an approach allows the investigation of the case that the
cone is not necessarily normal, for example, the authors in [–] established many fixed
point results and common fixed point results in cone metric spaces over a non-normal
cone. In , based on the definition of cone metric spaces and partial metric spaces,
which were introduced by Matthews [], Sonmez [, ] defined a partial cone met-
ric space and considered the extensions of Banach contraction principle to partial cone
metric spaces.
It is worth mentioning that in most of the preceding references concerned with fixed

point results of contractions in cone metric spaces and partial cone metric spaces, the
contractions are always assumed to be restricted with a constant. In [], Agarwal consid-
ered a contraction restricted with a positive linearmapping and proved the following fixed
point theorem in cone metric spaces.

Theorem  (See []) Let (X,d) be a complete cone metric space over Rn
+ and T : X → X. If

there exists a linear bounded mapping L : Rn
+ → Rn

+ with the spectral radius r(L) <  such
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that

d(Tx,Ty) � Ld(x, y), ∀x, y ∈ X. ()

Then T has a unique fixed point x∗ ∈ X.

It is clear that Rn
+ is a normal solid cone of Rn endowed with the usual norm. Motivated

by [–, , ], we in this paper shall extend Theorem  to partial cone metric spaces
over a non-normal solid cone of an abstract normed vector space.

2 Preliminaries
Let E be a topological vector space. A cone of E is a nonempty closed subset P of E such
that

(i) ax + by ∈ P for each x, y ∈ P and each a,b ≥ , and
(ii) P ∩ (–P) = {θ}, where θ is the zero element of E.
Each cone P of E determines a partial order � on E by x � y ⇐⇒ y – x ∈ P for each

x, y ∈ X.
A cone P of a topological vector space E, is solid [] if intP �= ∅, where intP is the interior

of P. For each x, y ∈ E with y–x ∈ intP, we write x y. A cone P of a normed vector space
(E,‖ · ‖), is normal [] if there exists N >  such that x � y implies that ‖x‖ ≤ N‖y‖ for
each x, y ∈ P, and the minimal N is called a normal constant of P.

Lemma  Let P be a solid cone of a normed vector space (E,‖ ·‖), and let {un} be a sequence
in E. Then un

‖·‖→ θ implies that for each ε ∈ intP, there exists a positive integer n such that
ε ± un ∈ intP, i.e., un  ε for all n ≥ n.

Proof For each ε ∈ intP, there exists some ε >  such that ‖x‖ < ε implies that ε ± x ∈ intP
for each x ∈ E. If un

‖·‖→ θ , then for this ε, there exists a positive integer n such that ‖un‖ < ε

for each n ≥ n, and hence ε ± un ∈ intP for each n ≥ n, i.e., –εun  ε for each n ≥ n.
The proof is complete. �

Remark  The converse of Lemma  is true provided that P is normal. In fact, for each
ε > , there exists some ε ∈ intP such that ‖ε‖ < ε

N+ , where N denotes the normal con-
stant of P. Note that for this ε, there exists a positive integer n such that –ε  un  ε for
each n ≥ n, and so θ  un + ε ≤ ε. Then ‖un‖ ≤ ‖un + ε‖ + ‖ε‖ ≤ (N + )‖ε‖ < ε for
each n≥ n by the normality of P. This forces that un

‖·‖→ θ .

The following example shows that the converse of Lemma  may not be true if P is non-
normal.

Example  Let E = C
R
[, ] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞ and P = {u ∈ E : u(t) ≥

, t ∈ [, ]}, which is a non-normal solid cone []. Let un(t) = sinnt
n . Clearly, ‖un‖ = , and

so un
‖·‖
� θ . On the other hand, let vn(t) ≡ 

n , then vn ∈ P, vn
‖·‖→ θ and –vn � un � vn. By

Lemma , for each ε ∈ intP, there exists a positive integer n such that θ � vn  ε for all
n≥ n, and hence –ε  un  ε for all n≥ n.

Let X be a nonempty set and P be a cone of a topological vector space E. A cone metric
[] on X is a mapping p : X ×X → P such that for each x, y, z ∈ X,

http://www.fixedpointtheoryandapplications.com/content/2013/1/250


Jiang and Li Fixed Point Theory and Applications 2013, 2013:250 Page 3 of 9
http://www.fixedpointtheoryandapplications.com/content/2013/1/250

(d) d(x, y) = θ ⇐⇒ x = y;
(d) d(x, y) = d(y,x);
(d) d(x, y) � d(x, z) + d(z, y).

The pair (X,d) is called a cone metric space over P. A partial cone metric [, ] on X is
a mapping p : X ×X → P such that for each x, y, z ∈ X,
(p) p(x, y) = p(x,x) = p(y, y) ⇐⇒ x = y;
(p) p(x, y) = p(y,x);
(p) p(x,x)� p(x, y);
(p) p(x, y) � p(x, z) + p(z, y) – p(z, z).

The pair (X,p) is called a partial cone metric space over P.
Each cone metric is certainly a partial cone metric. The following example shows that

there does exist some partial cone metric which is not a cone metric.

Example  Let E = C
R
[, ] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞, and X = P = {u ∈ E :

u(t) ≥ , t ∈ [, ]}. Define a mapping p : X ×X → P by

p(x, y) =

⎧⎨
⎩x, x = y,

x + y, otherwise.

For each x, y ∈ X, p(x, y) = p(y,x) = x and p(x,x) = p(x, y) = x when x = y, and p(x, y) =
p(y,x) = x + y and p(x,x) = x � x + y = p(x, y) when x �= y, i.e., (p) and (p) are satis-
fied. For each x, y ∈ X, p(x, y) = p(x,x) = p(y, y) = x whenever x = y, and x = y whenever
p(x,x) = p(y, y), i.e., (p) is satisfied. For each x, y, z ∈ X,

p(x, y) = x = p(x, z) + p(y, z) – p(z, z), when x = y = z,

p(x, y) = x � x + y + z = p(x, z) + p(y, z) – p(z, z), when x = y, y �= z,

p(x, y) = x + y = p(x, z) + p(y, z) – p(z, z), when x �= y, y = z,

p(x, y) = x + y = p(x, z) + p(y, z) – p(z, z), when x �= y,x = z,

p(x, y) = x + y � x + y + z = p(x, z) + p(y, z) – p(z, z), when x �= y, y �= z,x �= z,

i.e., (p) is satisfied for each x, y, z ∈ X. Hence p is partial cone metric, but not a cone
metric, since p(x,x) �= θ for each x ∈ X with x �= θ .

Each partial cone metric p on X over a solid cone generates a topology τp on X, which
has a base of the family of open p-balls {Bp(x, ε) : x ∈ X, θ  ε}, where Bp(x, ε) = {y ∈ X :
p(x, y)  p(x,x) + ε} for each x ∈ X and each ε ∈ intP.

Definition  Let (X,p) be a partial cone metric space over a solid cone P of a topological
vector space E.

(i) A sequence {xn} in X converges [] to x ∈ X (denote by xn
τp→ x), if for each

ε ∈ intP, there exists a positive integer n such that p(xn,x) p(x,x) + ε for each
n ≥ n. A sequence {xn} in X strongly converges [] to x ∈ X (denote by xn

s-τp→ x), if
limn→∞ p(xn,x) = limn→∞ p(xn,xn) = p(x,x).

(ii) A sequence {xn} in X is θ -Cauchy, if for each ε ∈ intP, there exists a positive integer
n such that p(xn,xm) ε for all m,n≥ n. The partial cone metric space (X,p) is

http://www.fixedpointtheoryandapplications.com/content/2013/1/250


Jiang and Li Fixed Point Theory and Applications 2013, 2013:250 Page 4 of 9
http://www.fixedpointtheoryandapplications.com/content/2013/1/250

θ -complete, if each θ -Cauchy sequence {xn} of X converges to a point x ∈ X such
that p(x,x) = θ .

It follows from Lemma  and Remark  that each strongly convergent sequence {xn} of
a partial cone metric space X is convergent whenever E is a normed vector space, and
the converse is true provided that P is a normal. The following example will show that
there exists some sequence of a partial cone metric, which is convergent but not strongly
convergent if P is non-normal.

Example  Let (X,p), E and P be the same ones as those in Example , and let un(t) =
+sinnt
n+ . Then un

τp→ θ , but un
s-τp
� θ . In fact, it is clear that un ∈ P, p(un, θ ) = un, un � v and

vn
‖·‖→ θ , where v(t) ≡ 

n+ . Then by Lemma , for each ε ∈ intP, there exists a positive
integer n such that θ � p(un, θ ) � vn  ε for all n ≥ n, i.e., un

τp→ θ . On the other hand,
‖p(un, θ ) – p(θ , θ )‖ = ‖un‖ = , and hence un

s-τp
� θ .

Definition  Let (X,p) be a partial cone metric space over a solid cone P of a normed
vector space (E,‖ · ‖). A sequence {xn} in X is Cauchy [, ], if there exists u ∈ P with
‖u‖ <∞ such that limm,n→∞ p(xn,xm) = u. The partial conemetric space (X,p) is complete
[, ], if each Cauchy sequence {xn} of X strongly converges to a point x ∈ X such that
p(x,x) = u.

If P is a normal solid cone of a normed vector space (E,‖ · ‖), then each complete partial
cone metric space is θ -complete by Lemma  and Remark . But the converse is not true,
the following example shows that a partial cone metric space which is θ -complete, is not
necessarily complete.

Example  Let X = {(x,x, . . . ,xk) : xi ≥ ,xi ∈ Q, i = , , . . . ,k}, E = Rk with the norm
‖x‖ =

√∑k
i= xi , P = Rk

+, where Q denotes the set of rational numbers. Define a mapping
p : X ×X → P as follows:

p(x, y) = (x ∨ y,x ∨ y, . . . ,xk ∨ yk), ∀x, y ∈ X.

Clearly, (X,p) is a partial conemetric space, p(x,x) = x for each x ∈ X, p(x, θ ) = θ ⇐⇒ x = θ ,
P is normal.
Let {yn} be a sequence in (X,p), where yn = (yn, yn, . . . , ynk). If {yn} is θ -Cauchy, then

by Remark  and the normality of P, limm,n→∞ p(yn, ym) = θ , and so for each ε > , there
exists n such that ‖p(yn, ym)‖ < ε for each m,n ≥ n. Thus, yni ∨ ymi = p(yni, ymi) < ε

for each m,n ≥ n and each  ≤ i ≤ k. This means limn→∞ yni =  for each  ≤ i ≤ k,
i.e., limn→∞ yn = θ . Therefore, limn→∞ p(yn, θ ) = limn→∞ yn = θ = p(θ , θ ), i.e., yn

τp→ θ , and
hence (X,p) is θ -complete since θ ∈ X.
Let yni = i( + 

n )
n for each n and each  ≤ i ≤ k, and ẽ = (e, e, . . . ,ke). It is clear that

limm,n→∞ p(yn, ym) = ẽ, and hence {yn} is a Cauchy sequence in (X,p). If there exists
x ∈ X such that p(x,x) = ẽ, then x = ẽ, which contradicts to the fact that ẽ /∈ X since
e /∈ Q. This means p(x,x) �= ẽ for each x ∈ X, and so there does not exist x ∈ X such that
limm,n→∞ p(yn, ym) = p(x,x). Therefore, (X,p) is not complete.

http://www.fixedpointtheoryandapplications.com/content/2013/1/250
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3 Extensions of Banach contraction principle
In this section, we present some extensions of Banach contraction principle in the setting
of partial cone metric spaces over a non-normal solid cone of an abstract normed vector
space.

Theorem  Let (X,p) be a θ -complete partial cone metric space over a solid cone P of a
normed vector space (E,‖ · ‖) and T : X → X. If there exists a linear bounded mapping
L : P → P with the spectral radius r(L) <  such that

p(Tx,Ty) � Lp(x, y), ∀x, y ∈ X. ()

Then T has a unique fixed point x∗ ∈ X. In addition, for each x ∈ X, let

xn = Txn– = Tnx, ∀n, ()

then there exists a positive integer n such that yn
τp→ x∗, where {yn} is a subsequence of {xn}

defined by yn = Tnnx.

Proof By r(L) <  and Gelfand’s formula, there exists  < β <  such that

lim
n→∞

n
√∥∥Ln∥∥ = r(L) ≤ β ,

which implies that there exists a positive integer n such that

∥∥Ln∥∥ ≤ βn, ∀n≥ n. ()

Clearly,

yn = Tnnx = TnT (n–)nx = Tnyn–, ∀n. ()

By (), () and L(P) ⊂ P,

p(yn, yn+) = p
(
Tnx(n–)n ,T

nxnn
) � Lnp(yn–, yn)� · · · � Lnnp(y, y), ∀n,

and so by (p),

p(yn, ym) � p(yn, yn+) + p(yn+, yn+) + · · · + p(ym–, ym) �
m–∑
i=n

Linp(y, y),

∀m > n. ()

By (),

∥∥∥∥∥
m–∑
i=n

Likp(y, y)

∥∥∥∥∥ ≤ ∥∥p(y, y)∥∥ m–∑
i=n

∥∥Ln∥∥i ≤ ∥∥p(y, y)∥∥ m–∑
i=n

β in

=
‖p(y, y)‖(βnn – β (m+)n )

 – βn
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/250
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which implies that
∑m–

i=n Likp(y, y)
‖·‖→ θ (n→ ∞) by β < . Then by () and Lemma , for

each ε ∈ intP, there exists a positive integer n such that

p(yn, ym) �
m–∑
i=n

Likp(y, y) ε, ∀m,n≥ n,

which implies that {yn} is a θ -Cauchy sequence in (X,p). Moreover by the θ -completeness
of (X,p), there exists some x∗ ∈ X such that yn

τp→ x∗ and p(x∗,x∗) = θ , and so there exists
a positive integer n ≥ n such that

p
(
yn,x∗)  ε


, ∀n≥ n. ()

Since r(L) < , then (I – L)(P) ⊂ P. Thus, by (p), (), () and (),

p
(
Tnx∗,x∗) � p

(
yn+,Tnx∗) + p

(
yn+,x∗)

� Lnp
(
yn,x∗) + p

(
yn+,x∗)

� p
(
yn,x∗) + p

(
yn+,x∗)  ε, ∀n≥ n,

which together with the arbitrary property of ε implies that p(Tnx∗,x∗) = θ , and hence
Tnx∗ = x∗ by (p) and (p), i.e., x∗ is a fixed point of Tn . Let x ∈ X be a fixed point of
Tn , i.e., Tnx = x. Note that ‖Ln‖ <  by (), then the inverse of I –Ln exists, denote it by
(I – Ln )–. Moreover by Neumann’s formula, (I – Ln )–(P) ⊂ P. By (), we have p(x,x∗) =
p(Tnx,Tnx∗) � Lnp(x,x∗), and hence (I – Ln )p(x,x∗) � θ . Act it with (I – Ln )–, then
p(x,x∗) � θ . This implies that p(x,x∗) = θ , and hence x = x∗ by (p) and (p). Hence x∗ is
the unique fixed point of Tn .
Note that x∗ is a fixed point of Tn , then Tn (Tx∗) = T(Tnx∗) = Tx∗, i.e., Tx∗ is also a

fixed point of Tn . By the uniqueness of fixed point of Tn , we have Tx∗ = x∗, i.e., x∗ is also
a fixed point of T . Let y be a fixed point of T . It is clear that y is also a fixed point of Tn ,
and so y = x∗ by the uniqueness of fixed point of Tn . Hence x∗ is the unique fixed point
of T . The proof is complete. �

Remark  It is clear that Theorem  is exactly a special case of Theorem with E =Rn and
P =Rn

+. Let Lu = cu for some constant c ∈ [, ), then r(L) = c < , and so Theorem  of [],
Theorem  of [] and Theorem  of [] directly follow from Theorem . In addition,
the normality of P necessarily assumed in [, , , ] has been removed in Theorem .
Therefore, Theorem  indeed improves the corresponding results in [, , , ].

The following example shows the usability of Theorem .

Example  Let (X,p), E and P be the same ones as those in Example . Let (Tx)(t) =
(Lx)(t)

∫ t
 x(s)ds for each x ∈ X, where t ∈ [,a], a > . Clearly, θ is the unique fixed point

of T .
For each x, y ∈ X, p(Tx,Ty) =

∫ t
 x(s)ds = Lp(x, y) whenever x = y, and p(Tx,Ty) =

∫ t
 [x(s)+

y(s)]ds = Lp(x, y) whenever x �= y, i.e., () is satisfied. It is clear that (Lnx)(t) ≤ tn
n! ‖x‖∞ for

each t ∈ [,a], and hence ‖Lnx‖∞ ≤ an
n! ‖x‖∞. Note that (Lnx)′(t) = (Ln–x)(t), then

∥∥Lnx∥∥ =
∥∥Lnx∥∥∞ +

∥∥(
Lnx

)′∥∥∞ ≤
(
an

n!
+

an

(n – )!

)
‖x‖∞ ≤

(
an

n!
+

an

(n – )!

)
‖x‖,

http://www.fixedpointtheoryandapplications.com/content/2013/1/250
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which implies that ‖Ln‖ ≤ an
n! + an

(n–)! . Therefore by Gelfand’s formula, r(L) =
limn→∞ n√‖Ln‖ =  since limn→∞ 

n√n! = , and hence T has a unique fixed point in X by
Theorem .
However, the existence of fixed point of T cannot derive from the fixed point results in

[–, ], since P is non-normal, and p is not a cone metric by Example  and Example
, and there does not exist a constant c ∈ [, ) such that p(Tx,Ty) � cp(x, y).

Theorem  Let (X,p) be a θ -complete partial cone metric space over a solid cone P of a
normed vector space (E,‖ · ‖) and T : X → X. If there exist four nonnegative constants c,
c, c and c with c + c + c + c <  such that

p(Tx,Ty) � cp(x, y) + cp(x,Tx) + cp(y,Ty) + c
[
p(x,Ty) + p(y,Tx)

]
, ∀x, y ∈ X. ()

Then T has a unique fixed point x∗ ∈ X, and for each x ∈ X, xn
τp→ x∗, where xn is defined

by ().

Proof By (), () and (p),

p(xn,xn+)

= p(Txn–,Txn)

� cp(xn–,xn) + cp(xn–,xn) + cp(xn,xn+) + c
[
p(xn–,xn+) + p(xn,xn)

]
� cp(xn–,xn) + cp(xn–,xn) + cp(xn,xn+) + c

[
p(xn–,xn) + p(xn,xn+)

]
, ∀n,

and so

p(xn,xn+) � cp(xn–,xn), ∀n,

where c = c+c+c
–c–c

<  by c + c + c + c < . Moreover by (p),

p(xn,xm) �
m–∑
i=n

p(xi,xi+)�
m–∑
i=n

cip(x,x) � cnp(x,x)
 – c

, ∀m > n. ()

Since c < , then cnp(x,x)
–c

‖·‖→ θ , and hence by Lemma , for each ε ∈ intP, there exists a
positive integer n such that cnp(x,x)

–c  ε for all n≥ n. Thus, by (),

p(xn,xm) � cnp(x,x)
 – c

 ε, ∀m,n≥ n,

i.e., {xn} is a θ -Cauchy sequence. Therefore, by the θ -completeness of (X,p), there exists
x∗ ∈ X such that xn

τp→ x∗ and p(x∗,x∗) = θ , and so there exists a positive integer n ≥ n
such that

p
(
xn,x∗)  ( – c – c)ε

( + c + c)
, ∀n≥ n, ()

and

p(xn,xn+)  ( – c – c)ε
c

, ∀n≥ n. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/250
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By (p) and (),

p
(
Tx∗,x∗) � p

(
Tx∗,xn+

)
+ p

(
xn+,x∗)

� cp
(
x∗,xn

)
+ cp

(
x∗,Tx∗) + cp(xn,xn+)

+ c
[
p
(
x∗,xn+

)
+ p

(
xn,Tx∗)] + p

(
x∗,xn+

)
� cp

(
x∗,xn

)
+ cp

(
x∗,Tx∗) + cp(xn,xn+)

+ c
[
p
(
x∗,xn+

)
+ p

(
xn,x∗) + p

(
x∗,Tx∗)] + p

(
x∗,xn+

)
= (c + c)p

(
x∗,xn

)
+ (c + c)p

(
x∗,Tx∗)

+ cp(xn,xn+) + ( + c)p
(
x∗,xn+

)
, ∀n,

and so

p
(
Tx∗,x∗) � (c + c)p(x∗,xn) + cp(xn,xn+) + ( + c)p(x∗,xn+)

 – c – c
, ∀n.

Then by () and (),

p
(
Tx∗,x∗)  ε, ∀n≥ n,

which together with the arbitrary property of ε implies that p(Tx∗,x∗) = θ , and so Tx∗ = x∗

by (p) and (p). Let x be a fixed point of T . Then by () and (p),

p
(
x∗,x

)
= p

(
Tx∗,Tx

)
� cp

(
x∗,x

)
+ cp

(
x∗,Tx∗) + cp(x,Tx) + c

[
p
(
x∗,Tx

)
+ p

(
x,Tx∗)]

= (c + c)p
(
x∗,x

)
+ cp(x,x)� (c + c + c)p

(
x∗,x

)
.

This forces that p(x∗,x) = θ since c + c + c < , and so x = x∗ by (p) and (p). Hence x∗

is the unique fixed point of T . The proof is complete. �

Remark  Theorem  and Theorem  of [] are special cases of Theorem  in the setting
of cone metric spaces with c = c = , c = c and c = c = c = , respectively, and Theo-
rem  of [] and Theorem  of [] are special cases of Theorem with c = c = , c = c.
In addition, P is not necessarily normal in Theorem . Compared with the corresponding
results of [, ], the partial cone metric space X is only assumed to be θ -complete, but
not complete in Theorem  and Theorem .
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