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Abstract
In this paper, we prove the existence of a solution of the mixed equilibrium problem
MEP(f ,ϕ ,C) by using the KKMmapping in a Banach space setting. Then, by virtue of
this result, we introduce a hybrid iterative scheme for finding a common element of
the set of solutions ofMEP(f ,ϕ ,C) and the set of common fixed points of a countable
family of quasi-φ-asymptotically nonexpansive multivalued mappings. Furthermore,
we prove that the sequences generated by the hybrid iterative scheme converge
strongly to a common element of the set of solutions ofMEP(f ,ϕ ,C) and the set of
common fixed points of a countable family of quasi-φ-asymptotically nonexpansive
multivalued mappings.
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1 Introduction
Let E be a Banach space with the norm ‖ · ‖ and the dual E∗. We denote by N and R the
sets of positive integers and real numbers, respectively. Also, we denote the normalized
duality mapping from E to E∗ by J defined by

Jx =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. Let C be a nonempty, closed and
convex subset of a Banach space E. The bifunction f : C × C → R is said to be relaxed
ξ -monotone if there exists a function ξ : E → R positively homogeneous of degree p, that
is, ξ (tz) = tpξ (z) for all t >  and z ∈ E, where p >  is a constant such that

f (x, y) + f (y,x) ≤ ξ (y – x) for all x, y ∈ C. (.)

If ξ = , then f is monotone, i.e.,

f (x, y) + f (y,x) ≤  for all x, y ∈ C.
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Example . Let E =R and C = [, ]. A bifunction f : C ×C →R is defined by

f (x, y) = y(y – x), ∀x, y ∈ [, ].

It is easy to see that f (x, y) + f (y,x) = (x – y) ≥ . If we put ξ (x) = x for all x ∈ R, then f is
relaxed ξ -monotone, but not monotone.

Let us consider the bifunction f : C × C → R and a function ϕ : C → R. The mixed
equilibrium problem (in short,MEP(f ,ϕ,C)) is to find x̃ ∈ C such that

f (x̃, y) + ϕ(y) – ϕ(x̃) ≥ , ∀y ∈ C. (.)

Problem (.) was studied by Ceng and Yao [], Cholamjiak and Suantai [] in Hilbert
spaces and Banach spaces, resp. By using the well-known KKM technique, they gave the
existence and uniqueness of solutions of theMEP(f ,ϕ,C) when f is monotone.
In the case of f (x, y) = 〈Ax,η(y,x)〉, where A : C → E∗ and η : C × C → E, problem (.)

is reduced to the following variational-like inequality problem (in short, VLIP(A,ϕ,C)),
which is to find x̃ ∈ C such that

〈
A(x̃),η(y, x̃)

〉
+ ϕ(y) – ϕ(x̃) ≥ , ∀y ∈ C. (.)

Problem (.) was studied by Fang and Huang []. By using the KKM technique and η-ξ
monotonicity of themappingA, they obtained the existence of solutions of the variational-
like inequality problem (.) in a real reflexive Banach space.
In particular, if ϕ ≡ , problem (.) is reduced to the well-known equilibrium problem

(in short, EP(f ,C)), which is to find x̃ ∈ C such that

f (x̃, y) ≥ , ∀y ∈ C. (.)

The EP(f ,C) includes fixed point problems, optimization problems, variational inequal-
ity problems and Nash equilibrium problems as special cases (see also [–]).
Let S be amapping from C into itself. Amapping S is said to be Lipschitz if there exists a

constant L >  such that ‖Sx– Sy‖ ≤ L‖x – y‖ for all x, y ∈ C. S is said to be nonexpansive,
when L = . A point p ∈ C is said to be a fixed point of S if Sp = p. A point p ∈ C is said to be
an asymptotic fixed point of S if there exists a sequence {xn} ⊂ C such that xn ⇀ x ∈ E and
limn→∞ ‖xn – Sxn‖ = . Denote the set of all fixed points of S and the set of all asymptotic
fixed points of S by F(S) and F̂(S), respectively.
Now, we assume that E is a smooth, strictly convex and reflexive Banach space. The

Lyapunov function φ : E × E →R
+ is defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Amapping S : C → C is said to be relatively nonexpansive (see also [–]) if the following
conditions are satisfied:
() F(S) is nonempty;
() φ(p,Sx)≤ φ(p,x) for all x ∈ C, p ∈ F(S);
() F̂(S) = F(S).
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Lemma . [] Let C be a nonempty, closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, and let T be a relatively nonexpansive mapping from C into
itself. Then F(T) is closed and convex.

In , Takahashi and Zembayashi [] introduced the following iterative scheme
which is called the shrinking projection method:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, C = C,
yn = J–[αnJx + ( – αn)JSxn],
un ∈ C such that
f (un, y) + 

rn 〈y – un, Jun – Jwn〉 ≥ , ∀y ∈ C,
Cn+ = {v ∈ Cn : φ(v,un) ≤ φ(v,xn)},
xn+ =�Cn+x, n≥ ,

(.)

where J is the duality mapping on E, �C is the generalized projection from E onto C and
S is relatively nonexpansive single-valued mapping. They proved that the sequence {xn}
converges strongly to a common element of the set of fixed points of a relatively nonex-
pansive single-valued mapping and the set of solutions of an equilibrium problem under
appropriate conditions in a uniformly smooth and uniformly convex Banach space.
In the case of single-valued mapping, many authors such as in references [, , –]

studied the problem of finding a common element of the set of fixed points of a nonexpan-
sive or relatively nonexpansivemapping and the set of solutions of an equilibriumproblem
in the framework of Hilbert spaces and Banach spaces.
Let N(C) and CB(C) denote the family of nonempty subsets and nonempty closed

bounded subsets of C, respectively. The Hausdorff metric on CB(C) is defined by

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}

for all A,B ∈ CB(C), where d(x,D) = inf{‖x– y‖, y ∈ D}. Homaeipour and Razani [] have
defined the relatively nonexpansive multivalued mapping as follows.
A multivalued mapping S : C →N(C) is said to be relatively nonexpansive if the follow-

ing conditions are satisfied:
() F(S) is nonempty;
() φ(p, z) ≤ φ(p,x) for all x ∈ C, p ∈ F(S), z ∈ Sx;
() F̂(S) = F(S).

It is obvious that the class of relatively nonexpansivemultivaluedmappings contains prop-
erly the class of relatively nonexpansive multivalued mappings (for example, see []).
They introduced the following iterative sequence for finding a fixed point of the relatively
nonexpansive multivalued mapping S : C →N(C):

{
x ∈ C,
xn+ =�C(αnJ(xn) + ( – αn)J(zn)), zn ∈ Sxn,∀n≥ ,

(.)

where {αn} ⊂ [, ]. Moreover, they proved weak and strong convergence theorems for a
single relatively nonexpansive multivalued mapping in a uniformly convex and uniformly
smooth Banach space E.
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A multivalued mapping S : C → CB(C) is said to be quasi-φ-nonexpansive [, ] if
F(S) �= ∅ and

φ(p, z) ≤ φ(p,x), ∀x ∈ C,p ∈ F(S), z ∈ Sx.

S : C → CB(C) is said to be quasi-φ-asymptotically nonexpansive [, ] if F(S) �= ∅ and
there exists a real sequence ln ⊂ [, +∞) with ln →  such that

φ(p, zn) ≤ lnφ(p,x), ∀x ∈ C,p ∈ F(S), zn ∈ Snx.

We remark from the above definitions that the class of quasi-φ-asymptotically nonex-
pansive multivalued mappings contains properly the class of quasi-φ-nonexpansive mul-
tivalued mappings as a subclass, and the class of quasi-φ-nonexpansive multivalued map-
pings contains properly the class of relatively nonexpansive mappings as a subclass.
Recently, Yi [] introduced the following modifying Halpern iterative sequence for a

quasi-φ-asymptotically nonexpansive multivalued mapping S. Let {xn} be the sequence
generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C, C = C,
yn = J–[αnJx + ( – αn)Jzn], zn ∈ Snxn,
Cn+ = {v ∈ Cn : φ(v, yn) ≤ αnφ(v,x) + ( – αn)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where ζn = (ln–) supp∈F(S) φ(p,xn) and {αn} ⊂ (, ). Under suitable conditions, the author
proved that {xn} converges strongly to �F(S)x.
Motivated and inspired by the above results, we investigate the problem of finding a

common element of the set of solutions ofMEP(f ,ϕ,C) and the set of commonfixed points
of a countable family of quasi-φ-asymptotically nonexpansive multivalued mappings in
Banach spaces.
The rest of the paper is organized as follows. In Section , we provide necessary con-

cepts and lemmas. In Section , we derive the existence and uniqueness of solutions of the
auxiliary problems for the MEP(f ,ϕ,C) when the bifunction f is relaxed ξ -monotone by
using the well-known KKM technique. In Section , we prove that our proposed hybrid
iterative scheme converges strongly to a common element of the set of MEP(f ,ϕ,C) and
the set of common fixed points of a countable family of quasi-φ-asymptotically nonex-
pansive multivalued mappings. In Section , we give an application for a system of mixed
equilibrium problems. The last section is the conclusions.

2 Preliminaries
Throughout this paper, let E be a real Banach space and E∗ be its dual space.Wewrite xn ⇀

x (respectively xn ⇀∗ x) to indicate that the sequence {xn} weakly (respectively weak∗)
converges to x; as usual xn → x will symbolize strong convergence. Let S(E) = {x ∈ E :
‖x‖ = } denote the unit sphere of a Banach space E.
A Banach space E is said to have a Gâteaux differentiable norm (we also say that E is

smooth) if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)
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exists for each x, y ∈ S(E). A Banach space E is said to have a uniformly Gâteaux differen-
tiable norm if for each y in S(E), the limit (.) is uniformly attained for x ∈ S(E); a Fréchet
differentiable norm if for each x ∈ S(E), the limit (.) is attained uniformly for y ∈ S(E);
a uniformly Fréchet differentiable norm (we also say that E is uniformly smooth) if the
limit (.) is attained uniformly for (x, y) ∈ S(E)× S(E).
A Banach space E is said to strictly convex if ‖x+y‖

 <  for x, y ∈ S(E), x �= y; uniformly
convex if, for any ε ∈ (, ], there exists δ >  such that for any x, y ∈ S(E), ‖x – y‖ ≥ ε

implies ‖ x+y
 ‖ ≤  – δ.

Remark . The following basic properties for the Banach space E and for the normalized
duality mapping J can be found in Cioranescu [].

(i) E (E∗, resp.) is uniformly convex if and only if E (E∗, resp.) is uniformly smooth.
(ii) If E is smooth, then J is single-valued and norm-to-weak continuous.
(iii) If E is reflexive, then J is onto.
(iv) If E is strictly convex, then Jx∩ Jy �= ∅ for all x, y ∈ E.
(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any

sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x ∈ E.
(vi) If E is a strictly convex reflexive Banach space, then J– is hemicontinuous, that is,

J– is norm-to-weak∗-continuous.

Recall the Lyapunov function φ defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

It follows from the definition of the function φ that

φ
(
x, J–

(
λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z), ∀λ ∈ [, ] and x, y, z ∈ E. (.)

Following Alber [], the generalized projection �C from E onto C is defined by

�Cx = argmin
y∈C φ(y,x), ∀x ∈ C.

If E is a Hilbert space, then φ(y,x) = ‖y– x‖ and �C is the metric projection of H onto C.
We known the following lemma for generalized projection.

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space, and let C
be a nonempty, closed and convex subset of E. Then the following conclusions hold:

(i) φ(x, y) =  if and only if x = y for all x, y ∈ E;
(ii) φ(x,�Cy) + φ(�Cy, y) ≤ φ(x, y) for all x ∈ C, for all y ∈ E;
(iii) if x ∈ E and z ∈ C, then z =�Cx ⇔ 〈z – y, Jx – Jz〉 ≥  for all y ∈ C.

Now, let us recall the following useful concepts and results.

Definition . Let B be a subset of a topological vector space X. AmappingG : B→ X is
called a KKMmapping if co{x,x, . . . ,xm} ⊂ ⋃m

i=G(xi) for xi ∈ B and i = , , . . . ,m, where
coA denotes the convex hull of the set A.

http://www.fixedpointtheoryandapplications.com/content/2013/1/251
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Lemma . [] Let B be a nonempty subset of a Hausdorff topological vector space X ,
and let G : B → X be a KKMmapping. If G(x) is closed for all x ∈ B and is compact for at
least one x ∈ B, then

⋂
x∈B G(x) �= ∅.

Definition . A multivalued mapping S : C → CB(C) is said to be closed if for any se-
quence {xn} ⊂ C with xn → x ∈ C and d(y,S(xn))→ , d(y,S(x)) = .

The following lemmas can be found in [].

Lemma . [, Lemma .] Let E be a real uniformly smooth and strictly convex Banach
space with the Kadec-Klee property, and let C be a nonempty, closed and convex subset of E.
Let {xn} and {yn} be two sequences in C such that xn → p and φ(xn, yn) → , then yn → p.

Lemma . [, Lemma .] Let E be a real uniformly smooth and strictly convex Banach
space with the Kadec-Klee property, and let C be a nonempty, closed and convex subset of
E. Let S : C → CB(C) be a closed and quasi-φ-asymptotically nonexpansive multivalued
mapping with nonnegative real sequences {ln} ⊂ [,∞), if ln → , then the fixed point set
F(S) of S is a closed and convex subset of C.

3 Existence results of mixed equilibrium problem
In this chapter, we prove the existence theorem for MEP(f ,ϕ,C) by using the KKM tech-
nique.
Before solving mixed equilibrium problem (.), let us assume the following conditions

for a bifunction f : C ×C →R:
(A) f (x,x) =  for all x ∈ C;
(A) f is relaxed ξ -monotone, i.e.,

f (x, y) + f (y,x) ≤ ξ (y – x);

(A) for all y ∈ C, f (·, y) is upper hemicontinuous, i.e., for all x, y, z ∈ C,

lim sup
t↓

f
(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for all x ∈ C, f (x, ·) is convex and lower-semicontinuous.

Lemma . Let C be a nonempty, closed and convex subset of a real smooth, strictly convex
and reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A)-(A),
and let ϕ be a lower semicontinuous and convex function from C to R. Let z ∈ C. Then the
following problems (.) and (.) are equivalent:

Find x̃ ∈ C such that f (x̃, y) + ϕ(y) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉 ≥ ϕ(x̃),

∀y ∈ C. (.)

Find x̃ ∈ C such that ϕ(y) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉 + ξ (y – x)≥ f (y, x̃) + ϕ(x̃),

∀y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/251


Wangkeeree and Preechasilp Fixed Point Theory and Applications 2013, 2013:251 Page 7 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/251

Proof Let x̃ ∈ C be a solution of problem (.). It follows from (A) that

 ≤ f (x̃, y) + ϕ(y) – ϕ(x̃) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉

= f (x̃, y) + f (y, x̃) – f (y, x̃) + ϕ(y) – ϕ(x̃) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉

≤ ξ (y – x̃) – f (y, x̃) + ϕ(y) – ϕ(x̃) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉, ∀y ∈ C. (.)

Thus x̃ ∈ C is a solution of problem (.).
Conversely, let x̃ ∈ C be a solution of problem (.). For any t ∈ (, ], we put

yt = ( – t)x̃ + ty. (.)

Then yt ∈ C, because of the convexity of C. Since x̃ ∈ C is a solution of problem (.), it
follows that

f (yt , x̃) ≤ ϕ(yt) – ϕ(x̃) +


‖yt‖ – 


‖x̃‖ – 〈yt – x̃, Jz〉 + ξ (yt – x)

= ϕ(yt) – ϕ(x̃) +


‖yt‖ – 


‖x̃‖ – 〈yt – x̃, Jz〉 + tpξ (y – x). (.)

Using (A) and (A), we have

 = f (yt , yt) ≤ ( – t)f (yt , x̃) + tf (yt , y),

and so

t
(
f (yt , x̃) – f (yt , y)

) ≤ f (yt , x̃). (.)

The convexity of the function ϕ implies that

ϕ(yt) = ϕ
(
( – t)x̃ + ty

) ≤ ( – t)ϕ(x̃) + tϕ(y). (.)

It follows from (.)-(.) and the convexity of 
‖ · ‖ that

 = f (yt , yt)

≤ ( – t)f (yt , x̃) + tf (yt , y)

≤ ( – t)
[
ϕ(yt) – ϕ(x̃) +



‖yt‖ – 


‖x̃‖ – 〈yt – x̃, Jz〉 + tpξ (y – x̃)

]
+ tf (yt , y)

≤ tf (yt , y) + ( – t)
[
( – t)ϕ(x̃) + tϕ(y) – ϕ(x̃) +

( – t)


‖x̃‖ + t

‖y‖

–


‖x̃‖ – t〈y – x̃, Jz〉 + tpξ (y – x̃)

]

≤ tf (yt , y) + ( – t)t
[
ϕ(y) – ϕ(x̃) +



‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉 + tp–ξ (y – x̃)

]
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/251
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This implies that

 ≤ f (yt , y) + ( – t)
[
ϕ(y) – ϕ(x̃) +



‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉 + tp–ξ (y – x̃)

]
. (.)

Taking the upper limit t →  in (.), by (A) and p > , we get that

ϕ(x̃) ≤ f (x̃, y) + ϕ(y) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉, ∀y ∈ C.

Therefore, x̃ is also a solution of problem (.). This completes the proof. �

Lemma . Let C be a nonempty, bounded, closed and convex subset of a real smooth,
strictly convex and reflexive Banach space E, let f be a bifunction fromC×C toR satisfying
(A) and (A), and let ϕ be a lower semicontinuous and convex function from C to R. Let
z ∈ C. Assume that

(i) ξ : E →R is weakly upper semicontinuous; that is, for any net {xβ}, xβ converges to x
in σ (E,E∗), which implies that ξ (x)≤ lim inf ξ (xβ ).

Then the solution set of problem (.) is nonempty; that is, there exists x̃ ∈ C such that

f (x̃, y) + ϕ(y) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉 ≥ ϕ(x̃), ∀y ∈ C. (.)

Proof Let z ∈ C. Define two set-valued mappings Fz,Gz : C → C as follows:

Fz(y) =
{
x ∈ C : f (x, y) + ϕ(y) +



‖y‖ – 


‖x‖ – 〈y – x, Jz〉 ≥ ϕ(x)

}

and

Gz(y) =
{
x ∈ C : ϕ(y) +



‖y‖ – 


‖x‖ – 〈y – x, Jz〉 + ξ (y – x)≥ f (y,x) + ϕ(x)

}

for every y ∈ C. It is easily seen that y ∈ Fz(y) and y ∈ Gz(y), and hence Fz(y) and Gz(y) are
nonempty.
(a) We claim that Fz is a KKM mapping. If Fz is not a KKM mapping, then there exist

{y, . . . , yn} ⊂ K and μi > , i = , . . . ,n, such that

n∑
i=

μi = , y =
n∑
i=

μiyi /∈
n⋃
i=

Fz(yi). (.)

By the definition of Fz, we have

f (y, yi) + ϕ(yi) – ϕ(y) +


‖yi‖ – 


‖y‖ – 〈yi – y, Jz〉 <  (.)

for all i = , . . . ,n. It follows from (A), (A), the convexity of ϕ and 
‖ · ‖ that

 = f (y, y) + ϕ(y) – ϕ(y) +


‖y‖ – 


‖y‖ – 〈y – y, Jz〉

≤
n∑
i=

μi

(
f (y, yi) + ϕ(yi) – ϕ(y) +



‖yi‖ – 


‖y‖ – 〈yi – y, Jz〉

)
< , (.)

which is a contradiction. This implies that Fz is a KKMmapping.

http://www.fixedpointtheoryandapplications.com/content/2013/1/251
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(b) We claim that Gz is a KKMmapping. It is sufficient to show that

Fz(y) ⊂Gz(y), ∀y ∈ C.

For any given y ∈ C, taking x ∈ Fz(y), then

f (x, y) + ϕ(y) – ϕ(x) +


‖y‖ – 


‖x‖ – 〈y – x, Jz〉 ≥ . (.)

It follows from the relaxed ξ -monotonicity of f that

ϕ(y) +


‖y‖ – 


‖x‖ – 〈y – x, Jz〉 + ξ (y – x) ≥ f (y,x) + ϕ(x).

It follows that x ∈Gz(y) and so

Fz(y) ⊂Gz(y), ∀y ∈ C.

This implies that Gz is also a KKMmapping.
(c)We show thatGz(y) is weakly closed for all y ∈ C. Let {un} be a sequence inGz(y) such

that un ⇀ u as n→ ∞. It then follows from un ∈ Gz(y) that

ϕ(y) +


‖y‖ – 


‖un‖ – 〈y – un, Jz〉 + ξ (y – un) ≥ f (y,un) + ϕ(un), ∀y ∈ C. (.)

By (A), the weak lower semicontinuity of ϕ and ‖ · ‖, and the weak upper semicontinuity
of ξ , we obtain from (.) that

f (y,u) + ϕ(u) ≤ lim inf
n→∞ f (y,un) + lim inf

n→∞ ϕ(un)

≤ lim inf
n→∞

{
f (y,un) + ϕ(un)

}
≤ lim sup

n→∞

{
ϕ(y) +



‖y‖ – 


‖un‖ – 〈y – un, Jz〉 + ξ (y – un)

}

≤ ϕ(y) +


‖y‖ – lim inf

n→∞


‖un‖ – lim inf

n→∞ 〈y – un, Jz〉
+ lim sup

n→∞
ξ (y – un)

= ϕ(y) +


‖y‖ – 


‖u‖ – 〈y – u, Jz〉 + ξ (y – u).

This shows that u ∈Gz(y) and hence Gz(y) is weakly closed for all y ∈ C.
(d) We prove that Gz(y) is weakly compact. Since C is a closed, bounded and convex

subset of a reflexive Banach space E, it is weakly compact. Again, since Gz(y) is a weakly
closed subset of C, we also have Gz(y) is weakly compact.
By using (a)-(d) and Lemma . and Lemma . that

⋂
y∈C

Fz(y) =
⋂
y∈C

Gz(y) �= ∅.

Hence, there exists x ∈ C satisfying inequality (.). This completes the proof. �
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Proposition . Let C be a nonempty, closed and convex subset of a real smooth, strictly
convex and reflexive Banach space E, ψ : C → R be a convex function. The following two
inequalities are equivalent:

there exists x̃ ∈ C such that ψ(x̃) =  and ψ(y) + 〈y – x̃, Jx̃〉 ≥ , ∀y ∈ C (.)

and

there exists x̃ ∈ C such that ψ(x̃) =  and ψ(y) +


‖y‖ – 


‖x̃‖ ≥ , ∀y ∈ C. (.)

Proof Let x̃ satisfy (.). It is well known that

〈y – x, Jx〉 ≤ 

‖y‖ – 


‖x‖, ∀x, y ∈ E.

Then

 ≤ ψ(y) + 〈y – x̃, Jx̃〉
= ψ(y) + 〈y – x̃, Jx̃〉
≤ ψ(y) +



‖y‖ – 


‖x̃‖.

Let x̃ satisfy (.). For any t ∈ (, ], let yt = ( – t)x̃ + ty. Then yt ∈ C because of the
convexity of C, and so

ψ(yt) +


‖yt‖ – 


‖x̃‖ – 〈yt – x̃, Jz〉 ≥ .

Notice that in a real smooth, strictly convex reflexive Banach space E, the duality mapping
J is single-valued, -, and onto. Since 

‖ · ‖ is continuous and Gâteaux differentiable,
from the mean value theorem, there exists αt ∈ (, ) such that



‖yt‖ – 


‖x̃‖ = 〈yt – x̃, Jwαt 〉,

where wαt = αt x̃ + ( – αt)yt . Hence

 ≤ ψ(y) +


‖y‖ – 


‖x̃‖

= ψ(yt) + 〈yt – x̃, Jwαt 〉
≤ ( – t)ψ(x̃) + tψ(y) + t〈y – x̃, Jwαt 〉
= tψ(y) + t〈y – x̃, Jwαt 〉.

Dividing t in the above inequality, we get

 ≤ ψ(y) + 〈y – x̃, Jwαt 〉.
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By the existence of wαt , wαt → x̃ as t → . Since J is norm-to-weak∗ continuous, we have
that

 ≤ ψ(y) + 〈y – x̃, Jx̃〉.

This completes the proof. �

Remark . If x̃ ∈ C is a solution of (.), then

f (x̃, y) + ϕ(y) +


‖y‖ – 


‖x̃‖ – 〈y – x̃, Jz〉 ≥ ϕ(x̃), ∀y ∈ C.

For any fixed z ∈ E, we put ψx̃(y) = f (x̃, y) + ϕ(y) – ϕ(x̃) – 〈y – x̃, Jz〉 for all y ∈ C. Obviously,
ψx̃(x̃) =  and ψx̃ is a convex function, since the linearity of a duality mapping and the
convexity of f (x̃, ·) and ϕ. Hence

ψx̃(y) +


‖y‖ – 


‖x̃‖ ≥ , ∀y ∈ C.

It then follows from Proposition . that x̃ is a solution of the following problem:

f (x̃, y) + ϕ(y) + 〈y – x̃, Jx̃ – Jz〉 ≥ ϕ(x̃), ∀y ∈ C.

The existence result relaxes the results of Ceng and Yao [] and Cholamjiak and Suantai
[], because of the ξ -monotonicity of f .

Lemma . Let C be a closed, bounded and convex subset of a uniformly smooth, strictly
convex Banach space E, let f be a bifunction from C ×C to R satisfying (A)-(A), and let
ϕ be a lower semicontinuous and convex function from C to R. Suppose further that

(i) ξ : E →R is weakly upper semicontinuous;
(ii) ξ (y – x) + ξ (x – y) ≤ .

Define a mapping Tr(z) : E → C as follows:

Tr(z) =
{
x ∈ C : f (x, y) + ϕ(y) +


r
〈y – x, Jx – Jz〉 ≥ ϕ(x),∀y ∈ C

}
. (.)

Then
() Tr is single-valued;
() Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ E,

〈
Tr(x) – Tr(y), JTr(x) – JTr(y)

〉 ≤ 〈
Tr(x) – Tr(y), Jx – Jy

〉
;

() F(Tr) =MEP(f ,ϕ,C);
() MEP(f ,ϕ,C) is closed and convex;
() φ(p,Trx) + φ(Trx,x)≤ φ(p,x).

Proof If f (x, y) : C×C →R satisfies (A)-(A) and ϕ : C →R is convex lower semicontin-
uous, then for any r > , we known that rf (x, y) and rϕ are also. We have from Lemma .
and Remark . that Trz is nonempty for all z ∈ E.
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() For each z ∈ E, let x,x ∈ Tr(z). Then

f (x,x) + ϕ(x) +

r
〈x – x, Jx – Jz〉 ≥ ϕ(x) (.)

and

f (x,x) + ϕ(x) +

r
〈x – x, Jx – Jz〉 ≥ ϕ(x). (.)

Adding (.) and (.), we have

f (x,x) + f (x,x) +

r
〈x – x, Jx – Jz〉 + 

r
〈x – x, Jx – Jz〉 ≥ ,

and so

f (x,x) + f (x,x) +

r
〈x – x, Jx – Jx〉 ≥ . (.)

By the relaxed ξ -monotonicity of f , we know that

〈x – x, Jx – Jx〉 ≥ –rξ (y – x). (.)

In (.) exchanging the position of x and x, we get

f (x,x) + f (x,x) +

r
〈x – x, Jx – Jx〉 ≥ , (.)

and so

〈x – x, Jx – Jx〉 ≥ –rξ (y – x). (.)

Now, adding inequalities (.) and (.), by using (ii), we have

〈x – x, Jx – Jx〉 ≥ –
r

(
ξ (y – x) + ξ (y – x)

) ≥ .

Since J is monotone and E is strictly convex, we have x = x, and so Tr(z) is single-valued.
() For x, y ∈ C, we have that

f (Trx,Try) + ϕ(Try) – ϕ(Trx) +

r
〈Try – Trx, JTrx – Jx〉 ≥ 

and

f (Try,Trx) + ϕ(Trx) – ϕ(Try) +

r
〈Trx – Try, JTry – Jy〉 ≥ .

Adding the two inequalities above, we get that

f (Trx,Try) + f (Try,Trx) +

r
〈Try – Trx, JTrx – JTry – Jx + Jy〉 ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/251
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From (A), we obtain that

ξ (Try – Trx) +

r
〈Try – Trx, JTrx – JTry – Jx + Jy〉 ≥ . (.)

In (.), interchanging the position of Trx and Try, we get

ξ (Trx – Try) +

r
〈Trx – Try, JTry – JTrx – Jy + Jx〉 ≥ . (.)

Again adding (.) and (.), we get

ξ (Try – Trx) + ξ (Trx – Try) +

r
〈Try – Trx, JTrx – JTry – Jx + Jy〉 ≥ .

It follows from (ii) and r >  that

〈Trx – Try, JTrx – JTry〉 ≤ 〈Try – Trx, Jx – Jy〉.

() Indeed, we have the following:

p ∈ F(Tr) ⇔ p = Trp

⇔ f (p, y) + ϕ(y) – ϕ(p) +

r
〈y – p, Jp – Jp〉 ≥ , ∀y ∈ C

⇔ f (p, y) + ϕ(y) – ϕ(p) ≥ , ∀y ∈ C

⇔ p ∈MEP(f ,ϕ,C).

() We claim that MEP(f ,ϕ,C) is closed and convex. Indeed, from () we have
MEP(f ,ϕ,C) = F(Tr). From () we have, for all x, y ∈ C,

〈
Tr(x) – Tr(y), JTr(x) – JTr(y)

〉 ≤ 〈
Tr(x) – Tr(y), Jx – Jy

〉
.

Moreover, we have

φ(Trx,Try) + φ(Try,Trx) = ‖Trx‖ – 〈Trx, JTry〉 – 〈Try, JTrx〉 + ‖Try‖

= 〈Trx, JTrx – JTry〉 + 〈Try,Try – JTrx〉
= 〈Trx – Try, JTrx – JTry〉

and

φ(Trx, y) + φ(Try,x) – φ(Trx,x) – φ(Try, y)

= ‖Trx‖ – 〈Trx, Jy〉 + ‖y‖ + ‖Try‖ – 〈Try, Jx〉 + ‖x‖

= –‖Trx‖ + 〈Trx, Jx〉 – ‖x‖ – ‖Try‖ + 〈Try, Jy〉 – ‖y‖

= 〈Trx, Jx – Jy〉 – 〈Try, Jx – Jy〉
= 〈Trx – Try, Jx – Jy〉.
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Hence, we have

φ(Trx,Try) + φ(Try,Trx) ≤ φ(Trx, y) + φ(Try,x) – φ(Trx,x) – φ(Try, y). (.)

So, we have, for any x, y ∈ C,

φ(Trx,Try) + φ(Try,Trx) ≤ φ(Trx, y) + φ(Try,x).

Next, we show that F̂(Tr) =MEP(f ,ϕ,C). Let p ∈ F̂(Tr). Then there exists {un} ⊂ E such
that zn ⇀ p and limn→∞(un –Trun) = . Moreover, we get that Trun ⇀ p. Since the duality
mapping J is uniformly continuous on a bounded set, we get

lim
n→∞


r
‖Jun – JTrun‖ = .

From the definition of Tr , we have

f (Trun, y) +

r
〈y – Trun, JTrun – Jun〉 ≥ ϕ(Trun).

Since


r
〈y – Trun, JTrun – Jun〉

≥ ϕ(Trun) – ϕ(y) – f (Trun, y)

≥ ϕ(Trun) – ϕ(y) + f (y,Trun) – ξ (y – Trun).

By (A), the convexity and lower semicontinuity of ϕ(x) and the weak upper semicontinu-
ity of ξ , we can obtain that

 ≥ lim inf
n→∞

{
ϕ(Trun) – ϕ(y) + f (y,Trun) – ξ (y – Trun)

}
= lim inf

n→∞ ϕ(Trun) – ϕ(y) + lim inf
n→∞ f (y,Trun) – lim sup

n→∞
ξ (y – Trun)

≥ ϕ(p) – ϕ(y) + f (y,p) – ξ (y – p).

This implies that

ϕ(p) – ϕ(y) + f (y,p) – ξ (y – p) ≤ , ∀y ∈ C. (.)

Let y ∈ K and set pt = ty + ( – t)p for t ∈ (, ]. It follows from (A) and (A) that

 = f (pt ,pt)

≤ ( – t)f (pt ,p) + tf (pt , y). (.)

The convexity of the function ϕ implies that

ϕ(pt) = ϕ
(
( – t)p + ty

) ≤ ( – t)ϕ(p) + tϕ(y). (.)
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It follows from (.)-(.) that

 = f (pt ,pt) (.)

≤ ( – t)f (pt ,p) + tf (pt , y)

≤ tf (pt , y) + ( – t)
[
ϕ(pt) – ϕ(p) + tpξ (y – p)

]
≤ tf (pt , y) + ( – t)

[
( – t)ϕ(p) + tϕ(y) – ϕ(p) + tpξ (y – p)

]
= tf (pt , y) + ( – t)t

[
ϕ(y) – ϕ(p) + tp–ξ (y – p)

]
. (.)

Dividing by t, we have

 ≤ f (pt , y) + ( – t)
[
ϕ(y) – ϕ(p) + tp–ξ (y – p)

]
. (.)

By (A) and p > , taking the upper limit t →  in (.), we get

f (p, y) + ϕ(y) ≥ ϕ(p), ∀y ∈ C.

Hence, p ∈ MEP(f ,ϕ,C), and so F(Tr) = MEP(f ,ϕ,C) = F̂(Tr). Therefore, we have Tr is
a relatively nonexpansive mapping. From Lemma ., MEP(f ,ϕ,C) = F(Tr) is closed and
convex.
() From (.) we have, for all x, y ∈ E,

φ(Trx,Try) + φ(Try,Trx) ≤ φ(Trx, y) + φ(Try,x) – φ(Trx,x) – φ(Try, y).

Letting y = p ∈ F(Tr), we have

φ(p,Trx) + φ(Trx,x)≤ φ(p,x).

This completes the proof. �

4 Strong convergence theorems
Before proving the convergence theorem, we recall some definitions of a countable family
of multivalued mappings {Si : C → CB(C)}∞i=.

Definition . {Si}∞i= is said to be a family of uniformly quasi-φ-asymptotically nonex-
pansive mappings [] if F :=

⋂∞
i= F(Si) �= ∅ and there exists a sequence {ln} ⊂ [,∞) with

ln →  such that for each i ≥ ,

φ(p, zn,i) ≤ lnφ(p,x), ∀p ∈F , zn,i ∈ Sni x,∀n≥ .

Definition . Amapping S : C → CB(C) is said to be uniformly L-Lipschitz continuous
[] if there exists a constant L >  such that ‖xn – yn‖ ≤ L‖x– y‖ for all x, y ∈ C, xn ∈ Tnx,
yn ∈ Tny.

Theorem . Let E be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, and let C be a nonempty, bounded, closed and convex subset of E. Let
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f be a bifunction from C × C to R satisfying (A)-(A), and let ϕ be a lower semicontin-
uous and convex function from C to R. Let {Si : C → CB(C)}∞i= be a family of closed and
uniformly quasi-φ-asymptotically nonexpansive multivalued mappings with a sequence
{ln} ⊂ [,∞), ln → . Suppose that for each i ≥ , Si is uniformly Li-Lipschitz continuous
and F ∩MEP(f ,ϕ,C) �= ∅.
Let {xn} be a sequence in C generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, C = C,
wn = J–(αn,Jx +

∑∞
i= αn,iJzn,i), zn,i ∈ Sni xn,

un ∈ K such that
f (un, y) + ϕ(y) + 

rn 〈y – un, Jun – Jwn〉 ≥ ϕ(un), ∀y ∈ C,
Cn+ = {v ∈ Cn : φ(v,un) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where for each {rn}∞n= ⊂ [a,∞) for some a > , {αn,i}∞n=,i= ⊂ [, ], and ζn = supu∈F (ln –
)φ(u,xn). If

∑∞
i= αn,i = , ∀n ≥ , limn→∞ αn, = , then {xn} converges strongly as n → ∞

to ��x, where � :=F ∩MEP(f ,ϕ,C).

Proof We divide the proof into five steps. Firstly, we rewrite algorithm (.) as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C, C = C,
wn = J–(αn,Jx +

∑∞
i= αn,iJzn,i), zn,i ∈ Sni xn,

Cn+ = {v ∈ Cn : φ(v,Trnwn) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where Tr is the mapping defined by (.) for all r > .
Step . We first show that the sequence {xn} is well defined. It suffices to prove that Cn

is closed and convex and that � ⊂ Cn for all n ≥ . Suppose that Cn is closed and convex
for some n≥ . By the definition of φ, we have

Cn+ =
{
v ∈ Cn : φ(v,un) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn

}
=

{
v ∈ C : φ(v,un) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn

} ∩Cn

=
{
v ∈ C : αn,〈v, Jx〉 + ( – αn,)〈v, Jxn〉 – 〈v, Jun〉
≤ αn,‖x‖ + ( – αn,)‖xn‖ – ‖yn‖ + ζn

} ∩Cn.

This shows that Cn+ is closed and convex. The conclusions are proved.
Step . Next, we prove that � ⊂ Cn for all n ≥ . In fact, it is obvious that � ⊂ C := C.

Suppose � ⊂ Cn for some n ≥ . Hence, for any p ∈ �, it follows from Lemma .() that

φ(p,un) = φ(p,Trnwn) ≤ φ(p,wn)

= φ

(
p, J–

(
αn,Jx +

∞∑
i=

αn,iJzn,i

))

≤ αn,φ(p,x) +
∞∑
i=

αn,iφ(p, zn,i)
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≤ αn,φ(p,x) + ( – αn,)lnφ(p,xn)

≤ αn,φ(p,x) + ( – αn,)
{
φ(p,xn) + (ln – )φ(p,xn)

}
≤ αn,φ(p,x) + ( – αn,)

{
φ(p,xn) + (ln – ) sup

p∈F
φ(p,xn)

}
= αn,φ(p,x) + ( – αn,)φ(p,xn) + ζn. (.)

This shows that p ∈ � ⊂ Cn+. Hence � ⊂ Cn for all n≥ .
Step . We show that {xn} converges strongly to some point x̃. Since xn = �Cnx, from

Lemma .(iii), we have that

〈xn – y, Jx – Jxn〉 ≥ , ∀y ∈ Cn.

Also, since F ⊂ Cn, we have

〈xn – p, Jx – Jxn〉 ≥ , ∀p ∈F .

It follows from Lemma .(ii) that for each p ∈F and for each n≥ ,

φ(xn,x) = φ(�Cnx,x) ≤ φ(p,x) – φ(p,xn) ≤ φ(p,x).

Therefore, {φ(xn,x)} is bounded, and so is {xn}. Since xn = �Cnx and xn+ = �Cn+x ∈
Cn+ ⊂ Cn, we have

φ(xn,p) ≤ φ(xn+,p), ∀n≥ .

That is, {φ(xn,p)} is a nondecreasing sequence, and so limn→∞ φ(xn,p) exists. Since E is
reflexive, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ x̃ ∈ C. Since Cn is closed,
convex and Cn+ ⊂ Cn, we get that Cn is weakly closed and x̃ ∈ Cn for all n ≥ . Since
xni =�Cni

x, we have

φ(xni ,x) ≤ φ(x̃,x), ∀ni ≥ .

By the weak lower semicontinuity of ‖ · ‖, we have

lim inf
ni→∞ φ(xni ,x) = lim inf

ni→∞
(‖xni‖ – 〈xni , Jx〉 + ‖x‖

)
≥ ‖x̃‖ – 〈x̃, Jx〉 + ‖x‖

= φ(x̃,x),

and so

φ(x̃,x) ≤ lim inf
i→∞ φ(xni ,x) ≤ lim sup

i→∞
φ(xni ,x) ≤ φ(x̃,x).

Therefore limi→∞ φ(xni ,x) = (x̃,x), and so ‖xni‖ → ‖x̃‖. Since E has the Kadec-Klee
property and xni ⇀ x̃, we obtain that xni → x̃. Since the limit of {φ(xn,x)} exists, this
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together with limn→∞ φ(xni ,x) = φ(x̃,x) implies that limn→∞ φ(xn,x) = φ(x̃,x). If there
exists a subsequence {xnj} ⊂ {xn} such that xnj ⇀ x̂. Then by Lemma .(ii) we have that

φ(x̃, x̂) = lim
i,j→∞φ(xni ,xnj ) = lim

i,j→∞φ(xni ,�Cnj
x)

≤ lim
i,j→∞

{
φ(xni ,x) – φ(�Cnj

x,x)
}
= lim

i,j→∞
{
φ(xni ,x) – φ(xnj ,x)

}
= φ(x̃,x) – φ(x̃,x).

Hence x̃ = x̂, and so

lim
n→∞xn = x̃. (.)

This implies that

ζn = (ln – ) sup
p∈F

φ(p,xn) → . (.)

Step . We prove that x̃ ∈F . Since xn =�Cnx, by Lemma .(ii) we get that

φ(x,xn) ≤ φ(x,x) – φ(xn,x), ∀x ∈ Cn.

Since xn+ ∈ Cn+ ⊂ Cn, we get that

φ(xn+,xn) ≤ φ(xn+,x) – φ(xn,x).

Since limn→∞ φ(xn,x) = φ(x̃,x), we get that

lim
n→∞φ(xn+,xn) = . (.)

Since xn+ ∈ Cn+, we have from (.) that

φ(xn+,un) ≤ αn,φ(v,x) + ( – αn,)φ(xn+,xn) + ζn. (.)

By limn→∞ αn, = , (.) and (.), it implies that

lim
n→∞φ(xn+,un) = , (.)

which together with (.) and Lemma . give that

lim
n→∞un = x̃. (.)

Recall from (.) that

φ(p,un)≤ φ(p,wn) ≤ αn,φ(p,x) + ( – αn,)φ(p,xn) + ζn.

It follows from limn→∞ αn, = , (.), (.) and (.) that

lim
n→∞φ(p,wn) = φ(p, x̃).
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By Lemma ., we get that

φ(un,wn) ≤ φ(p,wn) – φ(p,un) →  as n→ ∞. (.)

It follows from Lemma . and limn→∞ un = x̃ that

lim
n→∞wn = x̃. (.)

From (.), we get that

‖Jwn – Jzn,i‖ = αn,‖Jx – Jzn,i‖, ∀i≥ .

Since limn→∞ αn, =  and the boundedness of {zn,i},

lim
n→∞‖Jwn – Jzn,i‖ = , ∀i≥ . (.)

Since Jwn → Jx̃, we have from the uniform continuity of J that Jzni → Jx̃ for all i ≥ .
Remark .(vi) gives that

zn,i ⇀ x̃, ∀i≥ . (.)

Again, since

∣∣‖zn,i‖ – ‖x̃‖∣∣ = ∣∣‖Jzn,i‖ – ‖Jx̃‖∣∣ ≤ ‖Jzn,i – Jx̃‖ →  as n→ ∞,∀i≥ , (.)

it follows from (.), (.) and the Kadec-Klee property of E that

lim
n→∞ zn,i = x̃, ∀i≥ . (.)

For all i≥ , we consider

d(Sizn,i, zn,i) ≤ d(Sizn,i, zn+,i) + ‖zn+,i – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn,i‖
≤ d

(
Sn+i xn,Sn+i xn+

)
+ ‖zn+,i – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn,i‖

≤ Li‖xn – xn+‖ + ‖zn+,i – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn,i‖
= (Li + )‖xn – xn+‖ + ‖zn+,i – xn+‖ + ‖xn – zn,i‖.

From (.) and (.), we get that d(Sizn,i, zn,i) →  as n → ∞ for all i ≥ . By (.) and
the closedness of Si, we have x̃ ∈ Six̃ for all i≥ , and so x̃ ∈F .
Step . We show that x̃ ∈MEP(f ,ϕ,C). Since un = Trnwn, we derive

f (un, y) + ϕ(y) +

rn

〈y – un, Jun – Jwn〉 ≥ ϕ(un), ∀y ∈ C.

From relaxed ξ -monotonicity of f , we have


rn

〈y – un, Jun – Jwn〉 + ϕ(y) – ϕ(un) ≥ –f (un, y) ≥ f (y,un) – ξ (y – un), ∀y ∈ C.
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Since Jun–Jwn
rn →  and un → x̃. By (A), the lower semicontinuity of ϕ and the upper semi-

continuity of ξ , we have

f (y, x̃) – ξ (y – x̃) ≤ lim inf
n→∞ f (y,un) – lim sup

n→∞
ξ (y – un)

≤ lim inf
n→∞

{
f (y,un) – ξ (y – un)

}
≤ lim inf

n→∞

{

rn

〈y – un, Jun – Jwn〉 + ϕ(y) – ϕ(un)
}

= ϕ(y) – lim sup
n→∞

ϕ(un)

= ϕ(y) – ϕ(x̃), ∀y ∈ C.

For all y ∈ C and t ∈ (, ], let yt = ty+ ( – t)x̃. Since C is convex, we have yt ∈ C, and then

f (yt , x̃) – ϕ(yt) + ϕ(x̃) ≤ ξ (yt – x̃).

Using (A) and (A), we have

 = f (yt , yt) ≤ ( – t)f (yt , x̃) + tf (yt , y). (.)

The convexity of the function ϕ implies that

ϕ(yt) = ϕ
(
( – t)x̃ + ty

) ≤ ( – t)ϕ(x̃) + tϕ(y). (.)

This implies that

 = f (yt , yt)

≤ ( – t)f (yt , x̃) + tf (yt , y)

≤ tf (yt , y) + ( – t)
[
ϕ(yt) – ϕ(x̃) + ξ (yt – x̃)

]
≤ tf (yt , y) + ( – t)t

[
ϕ(y) – ϕ(x̃) + tp–ξ (y – x̃)

]
.

This implies that

 ≤ f (yt , y) + ( – t)
[
ϕ(y) – ϕ(x̃) + tp–ξ (y – x̃)

]
. (.)

By (A) and p > , taking the upper limit t →  in (.), we get

f (x̃, y) + ϕ(y) – ϕ(x̃) ≥ , ∀y ∈ C.

Therefore, x̃ ∈MEP(f ,ϕ,C).
Step . Finally, we prove that x̃ =��x. Let w =��x. Then φ(w,x) ≤ φ(x̃,x).
Since w ∈ � ⊂ Cn, for all n≥  and xn ∈ �Cnx, we have

φ(xn,x) ≤ φ(w,x), ∀n≥ .
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Since xn → x̃, we get that

φ(x̃,x) = ‖x̃‖ – 〈x̃, Jx〉 + ‖x‖

= lim
n→∞

{‖xn‖ – 〈xn, Jx〉 + ‖x‖
}

= lim
n→∞φ(xn,x) ≤ φ(w,x).

Hence xn → x̃ =��x. �

In the case of f ≡  and ϕ ≡  in Theorem ., we have the following corollary.

Corollary . Let E be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, and let C be a nonempty, bounded, closed and convex subset of E.
Let {Si : C → CB(C)}∞i= be a family of closed and uniformly quasi-φ-asymptotically non-
expansive multivalued mappings with a sequence {ln} ⊂ [,∞), ln → . Suppose that for
each i ≥ , Si is uniformly Li-Lipschitz continuous and F �= ∅. Let {xn} be a sequence in C
generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C, C = C,
wn = J–(αn,Jx +

∑∞
i= αn,iJzn,i), zn,i ∈ Sni xn,

Cn+ = {v ∈ Cn : φ(v,wn) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where {αn} ⊂ [, ], and ζn = supu∈F(S)(ln – )φ(u,xn). If limn→∞ αn = , then {xn} converges
strongly as n → ∞ to ��x, where � := F(S)∩MEP(f ,ϕ,K ).

If Si = S, for all i≥ , then the following corollary follows from Theorem ..

Corollary . Let E be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, and let C be a nonempty, bounded, closed and convex subset of E. Let
f be a bifunction from C×C toR satisfying (A)-(A), and let ϕ be a lower semicontinuous
and convex function from C to R. Let S : C → CB(C) be a closed and uniformly L-Lipschitz
continuous quasi-φ-asymptotically nonexpansive multivalued mapping with a sequence
{ln} ⊂ [,∞), ln →  with F(S) ∩ MEP(f ,ϕ,C) �= ∅. Let {xn} be a sequence in C generated
by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, C = C,
wn = J–[αnJx + ( – αn)Jzn], zn ∈ Snxn,
un ∈ C such that
f (un, y) + ϕ(y) + 

rn 〈y – un, Jun – Jwn〉 ≥ ϕ(un), ∀y ∈ C,
Cn+ = {v ∈ Cn : φ(v,un) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where for each {rn}∞n= ⊂ [a,∞) for some a > , {αn} ⊂ [, ], and ζn = supu∈F(S)(ln –
)φ(u,xn). If limn→∞ αn = , then {xn} converges strongly as n → ∞ to ��x, where
� := F(S)∩MEP(f ,ϕ,K ).
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In the case of f ≡  and ϕ ≡  in Corollary ., we can omit the boundedness of C
(necessary for the existence of a mapping Tr), so we have the following corollary.

Corollary . [, Theorem .] Let E be a real uniformly smooth and strictly convex
Banach space with the Kadec-Klee property, let C be a nonempty, closed and convex subset
of E, and let S : C → CB(C) be a closed and uniformly L-Lipschitz continuous quasi-φ-
asymptotically nonexpansive multivaluedmapping with nonnegative real sequences {ln} ⊂
[,∞) and ln →  with F(S) being a nonempty bounded subset. Let {αn} be a sequence in
(, ). Let {xn} be the sequence generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C, C = C,
yn = J–[αnJx + ( – αn)Jzn], zn ∈ Snxn,
Cn+ = {v ∈ Cn : φ(v, yn) ≤ αnφ(v,x) + ( – αn)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where ζn = (ln – ) supp∈F(S) φ(p,xn). If αn → , then {xn} converges strongly to �F(S)x.

5 Application
We utilize Theorem . to study a modified Halpern iterative algorithm for a system of
mixed equilibrium problems.

Theorem . Let E be a real uniformly smooth and strictly convex Banach space with the
Kadec-Klee property, and let C be a nonempty, bounded, closed and convex subset of E. Let
fi : C ×C → R, i = , , . . . , be a countable family of bifunctions satisfying conditions (A)-
(A), and let ϕi : C →R, i = , , . . . , be a countable family of lower semicontinuous and con-
vex functions satisfying conditions (i)-(ii) as in Lemma .with � =

⋂∞
i=MEP(fi,ϕi,C) �= ∅.

Let {xn} be a sequence in C generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, C = C,
un,i ∈ C such that
fi(un,i, y) + ϕi(y) + 

r 〈y – un,i, Jun,i – Jxn,i〉 ≥ ϕ(un,i), ∀y ∈ C, r > , i ≥ ,
yn = J–(αn,Jx +

∑∞
i= αn,iJun,i),

Cn+ = {v ∈ Cn : φ(v, yn) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ ,

(.)

where {αn} ⊂ [, ], and ζn = supu∈F(S)(ln – )φ(u,xn). If limn→∞ αn = , then {xn} converges
strongly as n → ∞ to��x,which is a common solution of the system of mixed equilibrium
problems.

Proof For any i = , , . . . , we define a mapping Tr,i(z) : E → C as follows:

Tr,i(z) =
{
x ∈ C : fi(x, y) + ϕi(y) +


r
〈y – x, Jx – Jz〉 ≥ ϕi(x),∀y ∈ C

}
.

From Lemma ., we get that un,i = Tr,ixn and F(Tr,i) = MEP(fi,ϕi,C) for all i = , , . . . ,
and Tr,i is a countable family of closed quasi-φ-nonexpansive mappings. Thus, (.) can

http://www.fixedpointtheoryandapplications.com/content/2013/1/251


Wangkeeree and Preechasilp Fixed Point Theory and Applications 2013, 2013:251 Page 23 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/251

be written as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ C, C = C,
yn = J–(αn,Jx +

∑∞
i= αn,iJTr,ixn),

Cn+ = {v ∈ Cn : φ(v, yn) ≤ αn,φ(v,x) + ( – αn,)φ(v,xn) + ζn},
xn+ =�Cn+x, n≥ .

Therefore, the result can be obtained from Corollary .. �

6 Conclusion
In this paper, we establish the existence of a solution of the mixed equilibrium problem
MEP(f ,ϕ,C) by using the KKM mapping in a Banach space setting, when f is relaxed
ξ -monotone. Then, by virtue of this result, we introduce a hybrid iterative scheme and
prove that our proposed iterative scheme converges strongly to a common element of the
set of solutions of MEP(f ,ϕ,C) and the set of common fixed points of a countable family
of quasi-φ-asymptotically nonexpansive multivalued mappings.
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