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Abstract
In this paper, we propose some new iterative algorithms with variable coefficients for
finding a common element of the set of solutions of a generalized equilibrium
problem, the set of solutions of the variational inequality problem for a monotone,
Lipschitz-continuous mapping and the set of common fixed points of a finite family
of asymptotically κ-strict pseudocontractive mappings in the intermediate sense.
Some strong convergence theorems of these iterative algorithms are obtained
without some boundedness conditions which are not easy to examine in advance.
The results of the paper improve and extend some recent ones announced by many
others. The algorithms with variable coefficients introduced in this paper are of
independent interests.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H .
Recall that a mapping S : C → C is called nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping S : C → C is called asymptotically nonexpansive [] if there exists a sequence
{kn} ⊂ [,∞) with kn →  as n→ ∞ such that

∥∥Snx – Sny
∥∥ ≤ kn‖x – y‖ for all x, y ∈ C, and all integers n≥ .

S : C → C is called asymptotically nonexpansive in the intermediate sense [] if it is con-
tinuous, and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥∥Snx – Sny
∥∥ – ‖x – y‖) ≤ . (.)
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In fact, we see that (.) is equivalent to

∥∥Snx – Sny
∥∥ ≤ ‖x – y‖ + cn for all x, y ∈ C, and all integers n≥ , (.)

where cn ∈ [,∞) with cn →  as n→ ∞.
Recall that S is called an asymptotically κ-strict pseudocontractive mapping with the

sequence {γn} [] if there exists a constant κ ∈ [, ) and a sequence {γn} ⊂ [,∞) with
γn →  as n→ ∞ such that

∥∥Snx – Sny
∥∥ ≤ ( + γn)‖x – y‖ + κ

∥∥(
I – Sn

)
x –

(
I – Sn

)
y
∥∥ (.)

for all x, y ∈ C, and all integers n ≥ .
A mapping S is called an asymptotically κ-strict pseudocontraction in the intermediate

sense with the sequence {γn} [] if

lim sup
n→∞

sup
x,y∈C

{∥∥Snx – Sny
∥∥ – ( + γn)‖x – y‖ – κ

∥∥(
I – Sn

)
x –

(
I – Sn

)
y
∥∥} ≤ , (.)

where κ ∈ [, ) and γn ∈ [,∞) such that γn →  as n → ∞. In fact, (.) is reduced to
the following:

∥∥Snx – Sny
∥∥ ≤ ( + γn)‖x – y‖ + κ

∥∥(
I – Sn

)
x –

(
I – Sn

)
y
∥∥ + cn, ∀x, y ∈ C, (.)

where cn ∈ [,∞) with cn →  as n→ ∞.

Example . [] Let X = R and C = [, ], where R is the set of real numbers. For each
x ∈ C, we define T : C → C by

Tx =

⎧⎨
⎩
kx, if x ∈ [,  ],

, if x ∈ (  , ].

Then:
() T is an asymptotically κ-strict pseudocontraction in the intermediate sense.
() T is not continuous. Therefore, T is not an asymptotically κ-strict

pseudocontractive and asymptotically nonexpansive in the intermediate sense.

Recall that a mapping A of C into H is said to be L-Lipschitz-continuous if there exists
a positive constant L such that

‖Ax –Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

A mapping A of C into H is called monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A mapping A of C into H is said to be β-inverse strongly monotone if there exists a
positive constant β such that

〈Ax –Ay,x – y〉 ≥ β‖Ax –Ay‖, ∀x, y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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It is obvious that if A is β-inverse-strongly monotone, then A is monotone and Lipschitz-
continuous.
Let mapping A from C to H be monotone and Lipschitz-continuous. The variational

inequality problem is to find a u ∈ C such that

〈Au, v – u〉 ≥ , ∀v ∈ C.

The set of solutions of the variational inequality problem is denoted by VI(C,A).
Let F be a bifunction ofC×C intoR, whereR is the set of real numbers. The equilibrium

problem for the bifunction F is to find x ∈ C such that

F(x, y)≥ , ∀y ∈ C. (.)

The set of solutions of the equilibrium problem for the bifunction F is denoted by EP(F).
Let B : C → H be a nonlinear mapping. Then Blum and Oettli [], Moudafi and Thera

[] and Takahashi and Takahashi [] considered the following generalized equilibrium
problem:

Find x ∈ C such that F(x, y) + 〈Bx, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by GEP(F ,B). In the case of B = , GEP(F ,B) =
EP(F). In the case of F ≡ , GEP(F ,B) =VI(C,B).
Problem (.) is very general in the sense that it includes, as special cases, optimization

problems, variational inequalities, minimax problems, the Nash equilibrium problems in
noncooperative games, and other; see, for instance, [–].
For solving the equilibrium problem, let us assume that the bifunction F satisfies the

following conditions (cf. [, ]):
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t→+

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.
In , Kangtunyakarn and Suantai [] introduced the followingmapping the sequence

{Kn} generated by a finite family of nonexpansive mappings T,T, . . . ,TN and the se-
quence {λn,i}Ni= in [, ]

Un, = λn,T + ( – λn,)I,

Un, = λn,TUn, + ( – λn,)Un,,

Un, = λn,TUn, + ( – λn,)Un,,

. . . ,

Un,N– = λn,N–TN–Un,N– + ( – λn,N–)Un,N–,

Kn =Un,N = λn,NTNUn,N– + ( – λn,N )Un,N–.

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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Recently, utilizing Kn-mapping in (.), Jaiboon et al. [] introduced the following it-
erative algorithm based on a hybrid relaxed extragradient method for finding a common
element of the set of solutions of a generalized equilibrium problem, the set of solutions of
the variational inequality problem for an inverse-strongly monotone mapping and the set
of common fixed points of a finite family of nonexpansive mappings. To be more precise,
they obtained the following theorem.

Theorem . [, Theorem .] Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A)-(A), let {Ti}Ni= be a finite
family of a nonexpansivemapping fromH into itself, let A be a β-inverse-stronglymonotone
mapping of C into H , and let B be a ξ -inverse-strongly monotone mapping of C into H such
that � =

⋂N
i= Fix(Ti) ∩ GEP(F ,A) ∩ VI(C,B) �= ∅. Let {xn}, {yn}, {vn}, {zn} and {un} be the

sequences generated by x ∈ H , C = C, x = PCx, un ∈ C, and let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(un, y) + 〈Axn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – δnBun),

vn = εnxn + ( – εn)PC(yn – λnByn),

zn = αnxn + ( – αn)Knvn,

Cn+ = {z ∈ Cn : ‖zn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n ∈N,

where {Kn} is the sequence generated by (.), and αn ⊂ (, ) satisfy the following condi-
tions:

(i) {εn} ⊂ [, e] for some e with ≤ e <  and limn→∞ αn = ;
(ii) {δn}, {λn} ⊂ [a,b] for some a, b with  < a < b < ξ ;
(iii) {rn} ⊂ [c,d] for some c, d with  < c < d < β .

Then {xn} and {un} converge strongly to P⋂N
i= Fix(Ti)∩GEP(F ,A)∩VI(C,B)x.

Considering the common fixed point problems of a finite family of asymptotically
κ-strict pseudocontractive mappings, Qin et al. [] introduced the following algorithm.
Let x ∈ C and {αn}∞n= be a sequence in (, ). The sequence {xn} is generated in the fol-
lowing way:

x = αx + ( – α)Sx,

x = αx + ( – α)Sx,

. . . ,

xN = αN–xN– + ( – αN–)SNxN–,

xN+ = αNxN + ( – αN )SxN ,

. . . ,

xN = αN–xN– + ( – αN–)SNxN–,

xN+ = αNxN + ( – αN )SxN ,

. . . .

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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Since for each n ≥ , it can be written as n = (h – )N + i, where i = i(n) ∈ {, , . . . ,N},
h = h(n) ≥  is a positive integer and h(n) → ∞, as n → ∞. Hence, we can rewrite the
table above in the following compact form:

xn = αn–xn– + ( – αn–)Sh(n)i(n) xn–, ∀n≥ .

For finding a common element of the set of solutions of a generalized equilibrium prob-
lem and the set of common fixed points of a finite family of asymptotically κ-strict pseu-
docontractive mappings in the intermediate sense, utilizing the method in (.) and some
hybrid method, Hu and Cai [] got the following strong convergence theorem with the
help of some boundedness assumptions.

Theorem . [, Theorem .] Let C be a nonempty closed convex subset of a real Hilbert
space H , and let N ≥  be an integer. Let φ be a bifunction from C × C to R satisfying
(A)-(A), and let A be an α-inverse-strongly monotone mapping of C into H . Let, for each
≤ i≤N ,Ti : C → C be a uniformly continuous asymptotically κi-strict pseudocontractive
mapping in the intermediate sense for some  ≤ κi <  with the sequences {γn,i} ⊂ [,∞)
such that limn→∞ γn,i =  and {cn,i} ⊂ [,∞) such that limn→∞ cn,i = . Let κ = max{κi :
 ≤ i ≤ N}, γn = max{γn,i :  ≤ i ≤ N} and cn = max{cn,i :  ≤ i ≤ N}. Assume that F =⋂N

i= Fix(Ti)∩GEP(φ,A) is nonempty and bounded. Let {αn} and {βn} be the sequences in
[, ] such that  < a ≤ αn ≤ ,  < δ ≤ βn ≤  – κ for all n ∈ N and  < b ≤ rn ≤ c < α. Let
{xn} and {un} be the sequences generated by the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

un ∈ C such that φ(un, y) + 〈Axn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

zn = ( – βn)un + βnTh(n)
i(n) un,

yn = ( – αn)un + αnzn,

Cn = {v ∈H : ‖yn – v‖ ≤ ‖xn – v‖ + θn},
Qn = {v ∈ C : 〈xn – v,x – xn〉 ≥ },
xn+ = PCn∩Qnx, ∀n ∈N∪ {},

where θn = γh(n)ρ

n + ch(n) → , as n → ∞, where ρn = sup{‖xn – v‖ : v ∈F} <∞. Then {xn}

and {un} converge strongly to PFx.

Motivated and inspired by Jaiboon et al. [], Hu and Cai [], Hu and Wang [] and
Ge [, ], we introduce some new algorithms with variable coefficients based on the
hybrid-type method and extragradient-type method for finding a common element of the
set of solutions of a generalized equilibrium problem, the set of solutions of the variational
inequality problem for amonotone, Lipschitz-continuousmapping and the set of common
fixed points of a finite family of asymptotically κ-strict pseudocontractive mappings in
the intermediate sense in real Hilbert spaces. Some strong convergence theorems of these
iterative algorithms are obtained without some boundedness conditions. The results of
the paper improve and extend some recent ones announced by Inchan [], Jaiboon et al.
[], Hu and Cai [], Ceng and Yao [], Kumam et al. [] and others. The algorithms
with variable coefficients introduced in this paper are of independent interests.
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2 Preliminaries
Throughout this paper,
• xn → xmeans that {xn} converges strongly to x;
• Fix(S) = {x ∈ C : Sx = x} denotes the set of fixed points of a self-mapping S on a set C;
• Br(x) := {x ∈H : ‖x – x‖ ≤ r};
• N is the set of positive integers;
• R is the set of real numbers.
For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx, such

that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

PC is called themetric projection ofH ontoC.We know that PC is a nonexpansivemapping
from H onto C. Recall that the inequality holds

〈x – PCx,PCx – y〉 ≥ , ∀x ∈H , y ∈ C. (.)

Moreover, it is easy to see that it is equivalent to

‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉, ∀x, y ∈H .

It is also equivalent to

‖x – y‖ ≥ ‖x – PCx‖ + ‖y – PCx‖, ∀x ∈H , y ∈ C. (.)

Lemma. [] Let C be a nonempty closed convex subsets of a real Hilbert space H .Given
x ∈H and y ∈ C. Then y = PCx if and only if the inequality

〈x – y, y – z〉 ≥ , ∀z ∈ C

holds.

Lemma . [] Let A : C → H be a monotone mapping. In the context of the variational
inequality problem, the characterization of projection (.) implies that

u ∈ � ⇔ u = PC(u – λAu), ∀λ > .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H .Given
x, y, z ∈ H and given also a real number a, the set

{
v ∈ C : ‖y – v‖ ≤ ‖x – v‖ + 〈z, v〉 + a

}

is convex and closed.

Lemma. [] Let H be a real Hilbert space.Then for all x, y, z ∈ H and all α,β ,γ ∈ [, ]
with α + β + γ = , we have

‖αx + βy + γ z‖ = α‖x‖ + β‖y‖ + γ ‖z‖ – αβ‖x – y‖ – αγ ‖x – z‖ – βγ ‖y – z‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and let
S : C → C be an asymptotically κ-strict pseudocontraction in the intermediate sense with
the sequence {γn}. Then

∥∥Snx – Sny
∥∥ ≤ 

 – κ

(
κ‖x – y‖ +

√(
 + ( – κ)γn

)‖x – y‖ + ( – κ)cn
)

for all x, y ∈ C and n≥ .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let F be a bifunction of C ×C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there
exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let F be a bifunction of C × C into R satisfying (A)-(A). Let r >  and x ∈ H . Define a
mapping Tr(x) :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all z ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., ‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉 for all x, y ∈H ;
() Fix(Tr) = EP(F);
() EP(F) is closed and convex.

By Ibaraki et al. [, Theorem .], we have the following lemma.

Lemma . [] Let {Kn} be a sequence of nonempty closed convex subsets of a real Hilbert
space H such that Kn+ ⊂ Kn for each n ∈ N. If K∗ =

⋂∞
n=Kn is nonempty, then for each

x ∈H , {PKnx} converges strongly to PK∗x.

A set-valuedmappingT :H → H is calledmonotone if for all x, y ∈H , f ∈ Tx and g ∈ Ty
imply that 〈x–y, f – g〉 ≥ . Amonotonemapping T :H → H is maximal if its graphG(T)
is not properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping T is maximal if and only if for (x, f ) ∈ H ×H , 〈x – y, f – g〉 ≥  for all
(y, g) ∈ G(T) implies that f ∈ Tx. Let A : C →H be a monotone and Lipschitz-continuous
mapping, and let NCv be the normal cone to C at v ∈ C, i.e., NC = {w ∈ H : 〈v – u,w〉 ≥
,∀u ∈ C}. Define

Tv =

⎧⎨
⎩
Av +NCv, if v ∈ C,

∅, if v /∈ C.

It is known that in this case, T is maximal monotone, and  ∈ Tv if and only if v ∈ �,
see [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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3 Results and proofs
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let N ≥  be an integer. Let F be a bifunction from C × C to R satisfying (A)-(A),
let A : C → H be a monotone, L-Lipschitz-continuous mapping, and let B : C → H be
a β-inverse-strongly monotone mapping. Let, for each  ≤ i ≤ N , Si : C → C be a uni-
formly continuous asymptotically κi-strict pseudocontractive mapping in the intermedi-
ate sense with the sequences {γn,i} ⊂ [,∞) such that limn→∞ γn,i =  and {cn,i} ⊂ [,∞)
such that limn→∞ cn,i = . Let κ = max{κi :  ≤ i ≤ N}, γn = max{γn,i :  ≤ i ≤ N} and
cn = max{cn,i :  ≤ i ≤ N}. Assume that F =

⋂N
i= Fix(Si) ∩ VI(C,A) ∩ GEP(F ,B) �= ∅. Let

{xn}, {un}, {yn}, {tn} and {zn} be the sequences generated by the following algorithm with
variable coefficients

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

un ∈ C such that F(un, y) + 〈Bxn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

tn = PC(un – λnAyn),

zn = ( – αn – β̂n)xn + αntn + β̂nSh(n)i(n) tn,

C = C,

Cn = {z ∈ Cn– : ‖zn – z‖ ≤ ‖xn – z‖ – (αn – κ)β̂n‖tn – Sh(n)i(n) tn‖ + θn},
xn+ = PCnx

(.)

for every n ∈ N, where β̂n = βn
+‖xn–x‖ , θn = βn(γh(n)( + r) + ch(n)), {αn} ⊂ (a, ), {βn} ⊂

(b,  – a), {λn} ⊂ (b/L, ( – a)/L) and {rn} ⊂ [d, e] for some a ∈ (κ , ), b ∈ (,  – a) and  <
d < e < β , the positive real number r is chosen so thatF ∩Br (x) �= ∅. Then the sequences
{xn}, {un}, {yn}, {tn} and {zn} converge strongly to a point of F .

Proof We divide the proof into eight steps.
Step . We claim that the sequences {xn}, {un}, {yn}, {tn} and {zn} are well defined.
Indeed, by Lemma ., we have un = Trn (xn–rnBxn), where {Trn} is a sequence defined as

in Lemma .. From the definition of Cn and Lemma ., it is easy to see that Cn is convex
and closed for each n ∈N. So, it is sufficient to prove thatF ∩Br (x) ⊂ Cn for each n ∈N.
Let p ∈ F ∩ Br (x) be an arbitrary element. Then we see that p = Trn (p – rnBp). Since

B : C → H is a β-inverse-strongly monotone mapping and rn < β , it follows from un =
Trn (xn – rnBxn) and Lemma . that

‖un – p‖ = ∥∥Trn (xn – rnBxn) – Trn (p – rnBp)
∥∥

≤ ∥∥(xn – rnBxn) – (p – rnBp)
∥∥

=
∥∥(xn – p) – rn(Bxn – Bp)

∥∥

= ‖xn – p‖ – rn〈xn – p,Bxn – Bp〉 + rn‖Bxn – Bp‖

≤ ‖xn – p‖ – rn(β – rn)‖Bxn – Bp‖

≤ ‖xn – p‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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Putting x = un – λnAyn and y = p in (.), we have

‖tn – p‖ ≤ ‖un – λnAyn – p‖ – ‖un – λnAyn – tn‖

= ‖un – p‖ – ‖un – tn‖ + λn〈Ayn,p – tn〉
= ‖un – p‖ – ‖un – tn‖ + λn

(〈Ayn –Ap,p – yn〉 + 〈Ap,p – yn〉
)

+ λn〈Ayn, yn – tn〉.

Since A : C →H is a monotone mapping and p ∈VI(C,A), further, we have

‖tn – p‖ ≤ ‖un – p‖ – ‖un – tn‖ + λn〈Ayn, yn – tn〉
= ‖un – p‖ – ‖un – yn‖ – 〈un – yn, yn – tn〉 – ‖yn – tn‖

+ λn〈Ayn, yn – tn〉
= ‖un – p‖ – ‖un – yn‖ – ‖yn – tn‖ + 〈un – λnAyn – yn, tn – yn〉. (.)

Since yn = PC(un – λnAun) and A is L-Lipschitz-continuous, by Lemma ., we have

〈un – λnAyn – yn, tn – yn〉
= 〈un – λnAun – yn, tn – yn〉 + λn〈Aun –Ayn, tn – yn〉
≤ λn〈Aun –Ayn, tn – yn〉
≤ λnL‖un – yn‖‖tn – yn‖. (.)

So, it follows from (.), (.) and {λn} ⊂ (b/L, ( – a)/L), we obtain

‖tn – p‖ ≤ ‖un – p‖ – ‖un – yn‖ – ‖yn – tn‖ + λnL‖un – yn‖‖tn – yn‖
≤ ‖un – p‖ – ‖un – yn‖ – ‖yn – tn‖ + λ

nL
‖un – yn‖ + ‖tn – yn‖

= ‖un – p‖ – (
 – λ

nL
)‖un – yn‖

≤ ‖un – p‖. (.)

By the definition of Si, for all n ∈ N, x ∈ C, ≤ i≤N we have

∥∥Sni x – p
∥∥ ≤ ( + γn,i)‖x – p‖ + κi

∥∥x – Sni x
∥∥ + cn,i

≤ ( + γn)‖x – p‖ + κ
∥∥x – Sni x

∥∥ + cn, (.)

where cn ∈ [,∞) with cn →  as n → ∞. So, from zn = ( – αn – β̂n)xn + αntn + β̂nSh(n)i(n) tn,
(.), (.), (.) and Lemma ., we deduce that

‖zn – p‖ = ∥∥( – αn – β̂n)(xn – p) + αn(tn – p) + β̂n
(
Sh(n)i(n) tn – p

)∥∥

≤ ( – αn – β̂n)‖xn – p‖ + αn‖tn – p‖ + β̂n
∥∥Sh(n)i(n) tn – p

∥∥

– αnβ̂n
∥∥tn – Sh(n)i(n) tn

∥∥

≤ ( – αn – β̂n)‖xn – p‖ + αn‖tn – p‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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+ β̂n
(
( + γh(n))‖tn – p‖ + κ

∥∥tn – Sh(n)i(n) tn
∥∥ + ch(n)

)
– αnβ̂n

∥∥tn – Sh(n)i(n) tn
∥∥

= ( – αn – β̂n)‖xn – p‖ + (αn + β̂n)‖tn – p‖

+ β̂n
(
γh(n)‖tn – p‖ + ch(n)

)
– (αn – κ)β̂n

∥∥tn – Sh(n)i(n) tn
∥∥

≤ ( – αn – β̂n)‖xn – p‖ + (αn + β̂n)‖xn – p‖

– (αn – κ)β̂n
∥∥tn – Sh(n)i(n) tn

∥∥ + β̂n
(
γh(n)‖tn – p‖ + ch(n)

)
= ‖xn – p‖ – (αn – κ)β̂n

∥∥tn – Sh(n)i(n) tn
∥∥ + β̂n

(
γh(n)‖xn – p‖ + ch(n)

)
. (.)

Further, it follows from the definition of β̂n that

‖zn – p‖ ≤ ‖xn – p‖ – (αn – κ)β̂n
∥∥tn – Sh(n)i(n) tn

∥∥

+ βn
γh(n)(‖xn – x‖ + ‖p – x‖) + ch(n)

 + ‖xn – x‖
≤ ‖xn – p‖ – (αn – κ)β̂n

∥∥tn – Sh(n)i(n) tn
∥∥ + βn

(
γh(n)

(
 + r

)
+ ch(n)

)
≤ ‖xn – p‖ – (αn – κ)β̂n

∥∥tn – Sh(n)i(n) tn
∥∥ + θn, (.)

where θn = βn(γh(n)( + r) + ch(n)). Therefore, we have

F ∩ Br (x) ⊂ Cn, ∀n ∈N.

Step . We claim that the sequence {xn} converges strongly to an element in C, say x∗.
Since {Cn} is a decreasing sequence of closed convex subset ofH such that C∗ =

⋂∞
n=Cn

is a nonempty and closed convex subset of H , it follows from Lemma . that {xn+} =
{PCnx} converges strongly to PC∗x, say x∗.
Step . We claim that limn→∞ zn = x∗, limn→∞ tn = x∗ and limn→∞ ‖tn – Sh(n)i(n) tn‖ = .
Indeed, the definition of xn+ shows that xn+ ∈ Cn, i.e.,

‖zn – xn+‖ ≤ ‖xn – xn+‖ – (αn – κ)β̂n
∥∥tn – Sh(n)i(n) tn

∥∥ + θn. (.)

Note that γh(n) → , ch(n) → , xn → x∗ as n→ ∞ and αn > a > κ , ∀n ∈N, we have θn → ,
‖zn – xn+‖ → , ‖zn – xn‖ →  and zn → x∗ as n→ ∞. Further, it follows from (.) that

(a – κ)
b

 + ‖xn – x‖
∥∥tn – Sh(n)i(n) tn

∥∥ ≤ ‖xn – xn+‖ + θn.

Thus, limn→∞ ‖tn – Sh(n)i(n) tn‖ = . Since zn = ( – αn – β̂n)xn + αntn + β̂nSh(n)i(n) tn, we have

zn – xn = (αn + β̂n)(tn – xn) + β̂n
(
Sh(n)i(n) tn – tn

)
.

That is,

tn – xn =


αn + β̂n
(zn – xn) –

β̂n

αn + β̂n

(
Sh(n)i(n) tn – tn

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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Considering  < a < αn + β̂n, ∀n ∈N, we have

tn – xn → , tn → x∗, as n→ ∞. (.)

Step . We claim that x∗ ∈ ⋂N
i= Fix(Si).

Indeed, for each n ∈N, ≤ i ≤N , we have

∥∥Sni x∗ – x∗∥∥ ≤ ∥∥Sni x∗ – Sni t(n–)N+i
∥∥ +

∥∥Sni t(n–)N+i – t(n–)N+i
∥∥ +

∥∥t(n–)N+i – x∗∥∥.
This together with Step  and Lemma . implies that

Sni x
∗ – x∗ → , as n→ ∞, (.)

where  ≤ i≤N . Since Si : C → C is uniformly continuous, by (.), we have

Sn+i x∗ = Si
(
Sni x

∗) → Six∗, as n→ ∞.

Hence, Six∗ = x∗, i.e., x∗ ∈ Fix(Si). Thus, we obtain x∗ ∈ ⋂N
i= Fix(Si).

Step . We claim that tn – yn → , tn – un → , yn → x∗ and un → x∗, as n→ ∞.
By (.), for p ∈F ∩ Br (x), we have

‖tn – p‖ ≤ ‖un – p‖ – (
 – λ

nL
)‖un – yn‖.

Therefore, from (.), we have

(
 – λ

nL
)‖un – yn‖ ≤ ‖un – p‖ – ‖tn – p‖

≤ ‖xn – p‖ – ‖tn – p‖

≤ (‖xn – p‖ + ‖tn – p‖)(‖xn – p‖ – ‖tn – p‖)
≤ (‖xn – p‖ + ‖tn – p‖)(‖xn – tn‖

)
.

This together with (.) and  <  – ( – a) <  – λ
nL implies that

un – yn → , as n → ∞. (.)

On the other hand, it follows from (.) that for p ∈F ∩ Br (x),

‖tn – p‖ ≤ ‖un – p‖ – ‖un – yn‖ – ‖yn – tn‖ + λnL‖un – yn‖‖tn – yn‖
≤ ‖un – p‖ – ‖un – yn‖ – ‖yn – tn‖ + ‖un – yn‖ + λ

nL
‖tn – yn‖

= ‖un – p‖ – (
 – λ

nL
)‖tn – yn‖.

Further, from (.), we have

(
 – λ

nL
)‖tn – yn‖ ≤ ‖un – p‖ – ‖tn – p‖

≤ ‖xn – p‖ – ‖tn – p‖

≤ (‖xn – p‖ + ‖tn – p‖)(‖xn – p‖ – ‖tn – p‖)
≤ (‖xn – p‖ + ‖tn – p‖)(‖xn – tn‖

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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This together with (.) and  < – (–a) < –λ
nL implies that tn – yn → , as n → ∞.

Further, from (.), Step  and Step , we have tn – un → , yn → x∗ and un → x∗, as
n→ ∞.
Step . We claim that x∗ ∈ VI(C,A).
Indeed, let

Tv =

⎧⎨
⎩
Av +NCv, if v ∈ C,

∅, if v /∈ C,

where NCv is the normal cone to C at v ∈ C. We have already mentioned in Section  that
in this case, T is maximal monotone, and  ∈ Tv if and only if v ∈ �, see [].
Let (v,w) ∈G(T), the graph of T . Then we have w ∈ Tv = Av +NCv, and hence, w –Av ∈

NCv. So, we have

〈v – t,w –Av〉 ≥ , ∀t ∈ C. (.)

Noticing tn = PC(un – λnAyn) and v ∈ C, by (.), we have

〈un – λnAyn – tn, tn – v〉 ≥ ,

and hence,

〈
v – tn,

tn – un
λn

+Ayn
〉
≥ . (.)

From (.), (.) and tn ∈ C, we have

〈v – tn,w〉 ≥ 〈v – tn,Av〉

≥ 〈v – tn,Av〉 –
〈
v – tn,

tn – un
λn

+Ayn
〉

≥ 〈v – tn,Av –Atn〉 + 〈v – tn,Atn –Ayn〉 –
〈
v – tn,

tn – un
λn

〉
.

(.)

Letting n → ∞ in (.), considering A : C → H is monotone, L-Lipschitz-continuous,
{λn} ⊂ (b/L, ( – a)/L) and Step , we have 〈v – x∗,w〉 ≥ . Since T is maximal monotone,
we have  ∈ Tx∗, and hence, x∗ ∈VI(C,A).
Step . We claim that x∗ ∈GEP(F ,B).
Since un = Trn (xn – rnBxn), for any y ∈ C, we have

F(un, y) + 〈Bxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ .

From (A), we have

〈Bxn, y – un〉 +
〈
y – un,

un – xn
rn

〉
≥ F(y,un). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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Put yt = ty + ( – t)x∗ for all t ∈ (, ] and y ∈ C. Thus, we have yt ∈ C. So, from (.), we
have

〈yt – un,Byt〉 ≥ 〈yt – un,Byt〉 – 〈Bxn, yt – un〉

–
〈
yt – un,

un – xn
rn

〉
+ F(yt ,un)

= 〈yt – un,Byt – Bun〉 + 〈yt – un,Bun – Bxn〉

–
〈
yt – un +

un – xn
rn

〉
+ F(yt ,un). (.)

Since B : C → H is a β-inverse-strongly monotone mapping, letting n → ∞, it follows
from Step , Step , (A) and  < d < rn that

〈
yt – x∗,Byt

〉 ≥ F
(
yt ,x∗), ∀t ∈ (, ]. (.)

From (A), (A) and (.), we also have

 = F(yt , yt)≤ tF(yt , y) + ( – t)F
(
yt ,x∗)

≤ tF(yt , y) + ( – t)
〈
yt – x∗,Byt

〉
= tF(yt , y) + t( – t)

〈
y – x∗,Byt

〉
,

and hence,

 ≤ F(yt , y) + ( – t)
〈
y – x∗,Byt

〉
.

Letting t → +, we have, for each y ∈ C,

 ≤ F
(
x∗, y

)
+

〈
y – x∗,Bx∗〉.

This implies that x∗ ∈GEP(F ,B).
Step . We claim that the sequences {xn}, {un}, {yn}, {tn} and {zn} converge strongly to

x∗ ∈F .
FromStep , , , we have x∗ ∈F . Therefore, it follows fromStep , Step  and Step  that

the sequences {xn}, {un}, {yn}, {tn} and {zn} converge strongly to x∗ ∈ F . This completes
the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , and let
N ≥  be an integer. Let F be a bifunction from C × C to R satisfying (A)-(A), and let
B : C → H be a β-inverse-strongly monotone mapping. Let, for each  ≤ i ≤ N , Si : C → C
be a uniformly continuous asymptotically κi-strict pseudocontractive mapping in the in-
termediate sense with the sequences {γn,i} ⊂ [,∞) such that limn→∞ γn,i =  and {cn,i} ⊂
[,∞) such that limn→∞ cn,i = . Let κ =max{κi : ≤ i≤N}, γn =max{γn,i : ≤ i ≤N} and
cn =max{cn,i : ≤ i≤N}. Assume that F =

⋂N
i= Fix(Si)∩GEP(F ,B) �= ∅. Let {xn}, {un} and

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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{zn} be the sequences generated by the following algorithm with variable coefficients

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

un ∈ C such that F(un, y) + 〈Bxn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

zn = ( – αn – β̂n)xn + αnun + β̂nSh(n)i(n) un,

C = C,

Cn = {z ∈ Cn– : ‖zn – z‖ ≤ ‖xn – z‖ – (αn – κ)β̂n‖un – Sh(n)i(n) un‖ + θn},
xn+ = PCnx

for every n ∈ N, where β̂n = βn
+‖xn–x‖ , θn = βn(γh(n)( + r) + ch(n)), {αn} ⊂ (a, ), {βn} ⊂

(b,  – a) and {rn} ⊂ [d, e] for some a ∈ (κ , ), b ∈ (,  – a) and  < d < e < β , the positive
real number r is chosen so that F ∩ Br (x) �= ∅. Then the sequences {xn}, {un} and {zn}
converge strongly to a point of F .

Proof Putting A = , the conclusion of Corollary . can be obtained by Theorem . im-
mediately. �

Remark . Corollary . improves and extends [, Theorem .] and [, Theorem .]
since
() the boundedness assumptions that set F and the sequence {ρn} are both bounded

in [, Theorem .] are dispensed with,
() the boundedness condition on the sequence {ρn} in [, Theorem .] is dropped

off,
() a finite family of asymptotically strict pseudocontractive mapping in [,

Theorem .] is extended to a finite family of asymptotically strict
pseudocontractive mapping in the intermediate sense,

() the equilibrium problem in [, Theorem .] is extended to the generalized
equilibrium problem.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , and let
N ≥  be an integer. Let A : C → H be a monotone, L-Lipschitz-continuous mapping. Let,
for each  ≤ i ≤ N , Si : C → C be a uniformly continuous asymptotically κi-strict pseudo-
contractive mapping in the intermediate sense with the sequences {γn,i} ⊂ [,∞) such that
limn→∞ γn,i =  and {cn,i} ⊂ [,∞) such that limn→∞ cn,i = . Let κ = max{κi :  ≤ i ≤ N},
γn = max{γn,i :  ≤ i ≤ N} and cn = max{cn,i :  ≤ i ≤ N}. Assume that F =

⋂N
i= Fix(Si) ∩

VI(C,A) �= ∅. Let {xn}, {yn}, {tn} and {zn} be the sequences generated by the following algo-
rithm with variable coefficients

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

yn = PC(xn – λnAxn),

tn = PC(xn – λnAyn),

zn = ( – αn – β̂n)xn + αntn + β̂nSh(n)i(n) tn,

C = C,

Cn = {z ∈ Cn– : ‖zn – z‖ ≤ ‖xn – z‖ – (αn – κ)β̂n‖tn – Sh(n)i(n) tn‖ + θn},
xn+ = PCnx

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
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for every n ∈ N, where β̂n = βn
+‖xn–x‖ , θn = βn(γh(n)( + r) + ch(n)), {αn} ⊂ (a, ), {βn} ⊂

(b,  – a) and {λn} ⊂ (b/L, ( – a)/L) for some a ∈ (κ , ) and some b ∈ (,  – a), the positive
real number r is chosen so that F ∩ Br (x) �= ∅. Then the sequences {xn}, {yn}, {tn} and
{zn} converge strongly to a point of F .

Proof Putting F = , B = , respectively, the conclusion of Corollary . can be obtained
by Theorem . immediately. �

Remark . Corollary . improves and extends [, Theorem .] since
() the convergence condition that lim infn→∞〈Axn, y – xn〉 ≥  for all y ∈ C in [,

Theorem .] is removed,
() the boundedness assumptions that the intersection F(S)∩ � and the sequence {�n}

are both bounded in [, Theorem .] are dispensed with,
() the requirement (I –A)(C) ⊂ C in [, Theorem .] is dropped off,
() an asymptotically κi-strict pseudocontractive mapping in the intermediate sense in

[, Theorem .] is extended to a finite family of ones.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , and let
N ≥  be an integer. Let, for each  ≤ i ≤ N , Si : C → C be a uniformly continuous asymp-
totically κi-strict pseudocontractive mapping in the intermediate sense with the sequences
{γn,i} ⊂ [,∞) such that limn→∞ γn,i =  and {cn,i} ⊂ [,∞) such that limn→∞ cn,i = . Let
κ = max{κi :  ≤ i ≤ N}, γn = max{γn,i :  ≤ i ≤ N} and cn = max{cn,i :  ≤ i ≤ N}. Assume
that F =

⋂N
i= Fix(Si) �= ∅. Let {xn} and {zn} be the sequences generated by the following

algorithm with variable coefficients

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

zn = ( – αn – β̂n)xn + αnxn + β̂nSh(n)i(n) xn,

C = C,

Cn = {z ∈ Cn– : ‖zn – z‖ ≤ ‖xn – z‖ – (αn – κ)β̂n‖xn – Sh(n)i(n) xn‖ + θn},
xn+ = PCnx

for every n ∈N, where β̂n = βn
+‖xn–x‖ , θn = βn(γh(n)( + r) + ch(n)), {αn} ⊂ (a, ) and {βn} ⊂

(b,  – a) for some a ∈ (κ , ) and some b ∈ (,  – a), the positive real number r is chosen so
that F ∩ Br (x) �= ∅. Then the sequences {xn} and {zn} converge strongly to a point of F .

Proof Putting F = , A = , B = , respectively, the conclusion of Corollary . can be
obtained by Theorem . immediately. �

By the careful analysis of the proof of Theorem ., we can obtain the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let N ≥  be an integer. Let F be a bifunction from C × C to R satisfying (A)-(A),
let A : C → H be a monotone, L-Lipschitz-continuous mapping, and let B : C → H be
a β-inverse-strongly monotone mapping. Let, for each  ≤ i ≤ N , Si : C → C be a uni-
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formly continuous asymptotically κi-strict pseudocontractive mapping in the intermedi-
ate sense with the sequences {γn,i} ⊂ [,∞) such that limn→∞ γn,i =  and {cn,i} ⊂ [,∞)
such that limn→∞ cn,i = . Let κ = max{κi :  ≤ i ≤ N}, γn = max{γn,i :  ≤ i ≤ N} and
cn =max{cn,i : ≤ i≤N}.Assume thatF =

⋂N
i= Fix(Si)∩VI(C,A)∩GEP(F ,B) is nonempty

and bounded. Let {xn}, {un}, {yn}, {tn} and {zn} be the sequences generated by the following
algorithm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

un ∈ C such that F(un, y) + 〈Bxn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

tn = PC(un – λnAyn),

zn = ( – αn – βn)xn + αntn + βnSh(n)i(n) tn,

C = C,

Cn = {z ∈ Cn– : ‖zn – z‖ ≤ ‖xn – z‖ – (αn – κ)βn‖tn – Sh(n)i(n) tn‖ + θn},
xn+ = PCnx

for every n ∈ N, where θn = βn(γh(n)�n + ch(n)), �n = supp∈F ‖xn – p‖, {αn} ⊂ (a, ), {βn} ⊂
(b,  – a), {λn} ⊂ (b/L, ( – a)/L) and {rn} ⊂ [d, e] for some a ∈ (κ , ), b ∈ (,  – a) and  <
d < e < β . Then the sequences {xn}, {un}, {yn}, {tn} and {zn} converge strongly to a point
of F .

Proof Following the reasoning in the proof of Theorem ., we use F instead of F ∩
Br (x). Considering that F is bounded, we take �n = supp∈F ‖xn – p‖, θn = βn(γn�n + cn)
in (.), so the assertion of Step  holds. From Step , we have that the sequence {�n}
is bounded, and hence, θn = βn(γn�n + cn) →  as n → ∞. The remainder of the proof of
Theorem . is similar to Theorem .. The conclusion, therefore, follows. This completes
the proof. �

Remark . Theorem . improves and extends [, Theorem .] since
() the requirement that the sequence {ρn} is bounded in [, Theorem .] is dispensed

with,
() Theorem . of [] is a special case, in which mapping A =  in Theorem ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and
let N ≥  be an integer. Let F be a bifunction from C × C to R satisfying (A)-(A), let
A : C → H be a monotone, L-Lipschitz-continuous mapping, and let B : C → H be a
β-inverse-strongly monotone mapping. Let, for each  ≤ i ≤ N , Si : C → C be a uniformly
continuous asymptotically nonexpansive mapping in the intermediate sense with the se-
quence {cn,i} ⊂ [,∞) such that limn→∞ cn,i = . Let cn =max{cn,i : ≤ i ≤N}. Assume that
F =

⋂N
i= Fix(Si) ∩ VI(C,A) ∩ GEP(F ,B) �= ∅. Let {xn}, {un}, {yn}, {tn} and {zn} be the se-
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quences generated by the following algorithm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary,

un ∈ C such that F(un, y) + 〈Bxn, y – un〉 + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = PC(un – λnAun),

tn = PC(un – λnAyn),

zn = ( – αn – βn)xn + αntn + βnSh(n)i(n) tn,

C = C,

Cn = {z ∈ Cn– : ‖zn – z‖ ≤ ‖xn – z‖ – αnβn‖tn – Sh(n)i(n) tn‖ + θn},
xn+ = PCnx

for every n ∈N,where θn = βnch(n), {αn} ⊂ (a, ), {βn} ⊂ (b,  –a), {λn} ⊂ (b/L, ( –a)/L) and
{rn} ⊂ [d, e] for some a ∈ (, ), b ∈ (,  – a) and  < d < e < β . Then the sequences {xn},
{un}, {yn}, {tn} and {zn} converge strongly to a point of F .

Proof In Theorem ., whenever Si : C → C is an asymptotically nonexpansive mapping
in the intermediate sense, we have γn,i = , κi =  for all n ∈ N,  ≤ i ≤ N . From (.), we
have

‖zn – p‖ ≤ ‖xn – p‖ – (αn – κ)βn
∥∥tn – Sh(n)i(n) tn

∥∥ + βn
(
γh(n)‖tn – p‖ + ch(n)

)
. (.)

Since κ =max{κi :  ≤ i ≤ N} = , γh(n) =max{γh(n),i :  ≤ i ≤ N} =  and ch(n) =max{ch(n),i :
≤ i≤N}, thus, (.) is reduced to

‖zn – p‖ ≤ ‖xn – p‖ – αnβn
∥∥tn – Sh(n)i(n) tn

∥∥ + θn,

where θn = βnch(n). So, we have

F ⊂ Cn, ∀n ∈N,

and hence, the result of Step  holds.
Next, following the reasoning in the proof of Theorem . and using F instead of F ∩

Br (x), we deduce the conclusion of Theorem .. �

Remark . Theorem . improves and extends [, Theorem .] and [, Theorem .]
since
() a finite family of nonexpansive mappings is extended to a finite family of

asymptotically nonexpansive mapping in the intermediate sense,
() inverse-strongly monotone mapping A is extended to monotone

L-Lipschitz-continuous mapping.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed significantly in writing this paper. All authors read and approved the final manuscript.

http://www.fixedpointtheoryandapplications.com/content/2013/1/257


Ge et al. Fixed Point Theory and Applications 2013, 2013:257 Page 18 of 18
http://www.fixedpointtheoryandapplications.com/content/2013/1/257

Acknowledgements
The authors are extremely grateful to the referees for their useful comments and suggestions which helped to improve
this paper. The work was supported partly by the Natural Science Foundation of Anhui Educational Committee
(KJ2011Z057), the Natural Science Foundation of Anhui Province (11040606M01) and the Specialized Research Fund 2010
for the Doctoral Program of Anhui University of Architecture.

Received: 27 December 2012 Accepted: 2 September 2013 Published: 07 Nov 2013

References
1. Goebel, K, Kirk, WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35(1),

171-174 (1972)
2. Bruck, RE, Kuczumow, T, Reich, S: Convergence of iterates of asymptotically nonexpansive mappings in Banach

spaces with the uniform Opial property. Colloq. Math. 65(2), 169-179 (1993)
3. Liu, QH: Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive

mappings. Nonlinear Anal. 26(11), 1835-1842 (1996)
4. Sahu, DR, Xu, HK, Yao, JC: Asymptotically strict pseudocontractive mappings in the intermediate sense. Nonlinear

Anal. 70(10), 3502-3511 (2009)
5. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145

(1994)
6. Moudafi, A, Thera, M: Proximal and dynamical approaches to equilibrium problems. In: Ill-Posed Variational Problems

and Regularization Techniques. Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187-201.
Springer, New York (1999)

7. Takahashi, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and nonexpansive
mappings in Hilbert spaces. Nonlinear Anal. 69(3), 1025-1033 (2008)

8. Inchan, I: Hybrid extragradient method for general equilibrium problems and fixed point problems in Hilbert space.
Nonlinear Anal. Hybrid Syst. 5(3), 467-478 (2011)

9. Kangtunyakarn, A, Suantai, S: A new mapping for finding common solutions of equilibrium problems and fixed point
problems of finite family of nonexpansive mappings. Nonlinear Anal. 71(10), 4448-4460 (2009)

10. Jaiboon, C, Chantarangsi, W, Kumam, P: A convergence theorem based on a hybrid relaxed extragradient method for
generalized equilibrium problems and fixed point problems of a finite family of nonexpansive mappings. Nonlinear
Anal. Hybrid Syst. 4(1), 199-215 (2010)

11. Qin, XL, Cho, YJ, Kang, SM, Shang, M: A hybrid iterative scheme for asymptotically k-strictly pseudocontractions in
Hilbert spaces. Nonlinear Anal. 70(5), 1902-1911 (2009)

12. Hu, CS, Cai, G: Convergence theorems for equilibrium problems and fixed point problems of a finite family of
asymptotically k-strictly pseudocontractive mappings in the intermediate sense. Comput. Math. Appl. 61(1), 79-93
(2011)

13. Hu, LG, Wang, JP: Mann iterative of weak convergence theorems in Banach space. Acta Math. Appl. Sin., Engl. Ser.
25(2), 217-224 (2009)

14. Ge, CS: A hybrid algorithm with variable coefficients for asymptotically pseudocontractive mappings in the
intermediate sense on unbounded domains. Nonlinear Anal. 75(5), 2859-2866 (2012)

15. Ge, CS: Strong convergence of iterative algorithms with variable coefficients for asymptotically strict
pseudocontractive mappings in the intermediate sense and monotone mappings. Fixed Point Theory Appl. 2012, 68
(2012). doi:10.1186/1687-1812-2012-68

16. Ceng, LC, Yao, JC: Strong convergence theorems for variational inequalities and fixed point problems of
asymptotically strict pseudocontractive mappings in the intermediate sense. Acta Appl. Math. 115(2), 167-191 (2011)

17. Kumam, P, Petrot, N, Wangkeeree, R: A hybrid iterative scheme for equilibrium problems and fixed point problems of
asymptotically k-strict pseudo-contractions. J. Comput. Appl. Math. 233(8), 2013-2026 (2010)

18. Marino, G, Xu, HK: Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math.
Anal. Appl. 329(1), 336-346 (2007)

19. Matinez-Yanes, C, Xu, HK: Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 64(11),
2400-2411 (2006)

20. Osilike, MO, Igbokwe, DI: Weak and strong convergence theorems for fixed points of pseudocontractions and
solutions of monotone type operator equations. Comput. Math. Appl. 40(4-5), 559-567 (2000)

21. Combettes, PL, Hirstoaga, SA: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117-136 (2005)
22. Ibaraki, T, Kimura, Y, Takahashi, W: Convergence theorems for generalized projections and maximal monotone

operators in Banach spaces. Abstr. Appl. Anal. 2003, 621-629 (2003)
23. Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149(1), 75-88

(1970)

10.1186/1687-1812-2013-257
Cite this article as: Ge et al.: Strong convergence of iterative algorithms with variable coefficients for generalized
equilibrium problems, variational inequality problems and fixed point problems. Fixed Point Theory and Applications
2013, 2013:257

http://www.fixedpointtheoryandapplications.com/content/2013/1/257
http://dx.doi.org/10.1186/1687-1812-2012-68

	Strong convergence of iterative algorithms with variable coefﬁcients for generalized equilibrium problems, variational inequality problems and ﬁxed point problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Results and proofs
	Competing interests
	Authors' contributions
	Acknowledgements
	References


