The existence of best proximity points with the weak P-property

Tomonari Suzuki*

"Correspondence:
suzuki-t@mns.kyutech.ac.jp Department of Basic Sciences, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

```
Abstract
We improve some existence theorem of best proximity points with the weak P-property, which has been recently proved by Zhang et al.
MSC: Primary 54H25; secondary 54E50
```

Keywords: best proximity point; the weak P-property; the Banach contraction principle; Kannan's fixed point theorem; completion

1 Introduction

Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and let T be a mapping from A into B. Then $x \in A$ is called a best proximity point if $d(x, T x)=d(A, B)$, where $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$. We have proved many existence theorems of best proximity points. See, for example, [1-6]. Very recently, Caballero et al. [7] proved a new type of existence theorem, and Zhang et al. [8] generalized the theorem. The theorem proved in [8] is Theorem 8 with an additional assumption of the completeness of B. The essence of the result in [7] becomes very clear in [8], however, we have not learned the essence completely.
Motivated by the fact above, in this paper, we improve the result in [8]. Also, in order to consider the discontinuous case, we give a Kannan version.

2 Preliminaries

In this section, we give some preliminaries.

Definition 1 Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and define A_{0} and B_{0} by

$$
\begin{equation*}
A_{0}=\{x \in A: \text { there exists } u \in B \text { such that } d(x, u)=d(A, B)\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{0}=\{u \in B: \text { there exists } x \in A \text { such that } d(x, u)=d(A, B)\} . \tag{2}
\end{equation*}
$$

Then

- (Sankar Raj $[9])(A, B)$ is said to have the P-property if $A_{0} \neq \varnothing$ and the following holds:

$$
x, y \in A_{0}, u, v \in B_{0}, \quad d(x, u)=d(y, v)=d(A, B) \quad \Longrightarrow \quad d(x, y)=d(u, v) .
$$

- (Zhang et al. [8]) (A, B) is said to have the weak P-property if $A_{0} \neq \varnothing$ and the following holds:

$$
x, y \in A_{0}, u, v \in B_{0}, \quad d(x, u)=d(y, v)=d(A, B) \quad \Longrightarrow \quad d(x, y) \leq d(u, v)
$$

Proposition 2 Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and define A_{0} and B_{0} by (1) and (2). Assume that $A_{0} \neq \varnothing$. Then the following are equivalent:
(i) (A, B) has the weak P-property.
(ii) The conjunction of the following holds:
(ii-1) For every $u \in B_{0}$, there exists a unique $x \in A_{0}$ with $d(x, u)=d(A, B)$.
(ii-2) There exists a nonexpansive mapping Q from B_{0} into A_{0} such that $d(Q u, u)=d(A, B)$ for every $u \in B_{0}$.

Proof We note that $B_{0} \neq \varnothing$ because $A_{0} \neq \varnothing$. First, we assume (i). Let $x, y \in A_{0}$ and $u \in B_{0}$ satisfy $d(x, u)=d(y, u)=d(A, B)$. Then from (i), we have

$$
d(x, y) \leq d(u, u)=0,
$$

thus, $x=y$. So (ii-1) holds. We put $Q u=x$. Then from the definition of the weak P-property, we have $d(Q u, Q v) \leq d(u, v)$ for $u, v \in B_{0}$, that is, Q is nonexpansive. Conversely, we assume (ii). Let $x, y \in A_{0}$ and $u, v \in B_{0}$ satisfy $d(x, u)=d(y, v)=d(A, B)$. Then from (ii-1), we have $Q u=x$ and $Q v=y$. Therefore,

$$
d(x, y)=d(Q u, Q v) \leq d(u, v)
$$

holds.

Lemma 3 Let (A, B) be a pair of subsets of a metric space (X, d), and define A_{0} and B_{0} by (1) and (2). Assume that $A_{0} \neq \varnothing$. Let T be a mapping from A into B, and let Q be a mapping from B_{0} into A_{0} such that $d(Q u, u)=d(A, B)$ for every $u \in B_{0}$. Then the following holds:

$$
\begin{equation*}
\left\{u_{n}\right\} \subset B_{0}, \quad \lim _{n \rightarrow \infty} u_{n}=w, \quad T\left(\lim _{n \rightarrow \infty} Q u_{n}\right)=w \quad \Longrightarrow \quad w \in B_{0} . \tag{3}
\end{equation*}
$$

Proof Let $\left\{u_{n}\right\}$ be a sequence in B_{0} such that $\left\{u_{n}\right\}$ converges to $w \in X$, and $T\left(\lim _{n} Q u_{n}\right)=w$. We put $y=\lim _{n} Q u_{n}$. Since $T y=w$, we have $y \in A$ and $w \in B$. Since

$$
d(y, w)=\lim _{n \rightarrow \infty} d\left(Q u_{n}, u_{n}\right)=d(A, B),
$$

we have $y \in A_{0}$ and $w \in B_{0}$.
Lemma 4 Let (X, d) be a metric space, let A, A_{0}, B_{0} be nonempty subsets such that A is complete and $A_{0} \subset A$. Let T be a mapping from A into X such that $T\left(A_{0}\right) \subset B_{0}$, and let Q be a nonexpansive mapping from B_{0} into A_{0}. Let \bar{Q} be the mapping whose graph $\operatorname{Gr}(\bar{Q})$ is the completion of $\operatorname{Gr}(Q)$. Assume (3). Then the following hold:
(i) \bar{Q} is well-defined and nonexpansive.
(ii) $\bar{Q} w=z$ is equivalent to that there exists a sequence $\left\{u_{n}\right\}$ in B_{0} such that $\lim _{n} u_{n}=w$ and $\lim _{n} Q u_{n}=z$.
(iii) The domain of \bar{Q} is $\overline{B_{0}}$, where $\overline{B_{0}}$ is the completion of B_{0}.
(iv) The range of \bar{Q} is a subset of $\overline{A_{0}}$, where $\overline{A_{0}}$ is the completion of A_{0}.
(v) $T \circ \bar{Q} w=w$ implies $T \circ Q w=w$.
(vi) $\bar{Q} \circ T z=z$ implies $Q \circ T z=z$.
(vii) The range of \bar{Q} is a subset of A.

Proof We consider that the whole space is the completion of X. Since Q is Lipschitz continuous, \bar{Q} is well-defined. The rest of (i) and (ii)-(iv) are obvious. By using (3), we can easily prove (v) and (vi). From the completeness of A, we obtain (vii).

3 Fixed point theorems

In this section, we give fixed point theorems, which are used in the proofs of the main results.

Theorem 5 Let (X, d) be a metric space, let A, A_{0}, B_{0} be nonempty subsets such that A is complete and $A_{0} \subset A$. Let T be a contraction from A into X such that $T\left(A_{0}\right) \subset B_{0}$, and let Q be a nonexpansive mapping from B_{0} into A_{0}. Assume (3). Then $Q \circ T$ has a unique fixed point in A_{0}.

Proof We consider that the whole space is the completion of X. Define a nonexpansive mapping \bar{Q} as in Lemma 4. Since T is continuous, $T\left(\overline{A_{0}}\right)$ is a subset of $\overline{B_{0}}$. Let S be the restriction of T to $\overline{A_{0}}$. Then $\bar{Q} \circ S$ is a contraction on $\overline{A_{0}}$. So the Banach contraction principle yields that there exists a unique fixed point z of $\bar{Q} \circ S$ in $\overline{A_{0}}$. Since $\bar{Q} \circ T z=z$, by Lemma $4(\mathrm{vi}), z$ is a fixed point of $Q \circ T$.

Remark

- If $X=A=A_{0}=B_{0}$ and Q is the identity mapping on B_{0}, then Theorem 5 becomes the Banach contraction principle [10].
- We can prove Theorem 5 with the mapping $T \circ \bar{Q}$ as in the proof of Theorem 7 .

We prove generalizations of Kannan's fixed point theorem [11].

Theorem 6 Let (X, d) be a metric space, let Y be a complete subset of X, and let T be a mapping from Y into X. Assume that the following hold:
(i) There exists $\alpha \in[0,1 / 2)$ such that $d(T x, T y) \leq \alpha d(x, T x)+\alpha d(y, T y)$ for all $x, y \in Y$.
(ii) There exists a nonempty subset Z of Y such that $T(Z) \subset Z$.

Then there exists a unique fixed point z, and for every $x \in Z,\left\{T^{n} x\right\}$ converges to z.

Proof Fix $x \in Z$. Then from the proof in Kannan [11], we obtain that $\left\{T^{n} x\right\}$ converges to a fixed point, and the fixed point is unique.

Remark If $X=Y=Z$, then Theorem 6 becomes Kannan's fixed point theorem [11].

Using Theorem 6, we obtain the following.

Theorem 7 Let (X, d) be a metric space, let A, A_{0}, B_{0} be nonempty subsets such that A is complete and $A_{0} \subset A$. Let T be a mapping from A into X such that $T\left(A_{0}\right) \subset B_{0}$, and let Q be a nonexpansive mapping from B_{0} into A_{0}. Assume that (3) and the following hold:

- There exist $\alpha \in[0,1 / 2)$ and $\mu \in[0, \infty)$ such that

$$
\begin{aligned}
& \qquad d(T x, T y) \leq \alpha(d(x, T x)-\mu)+\alpha(d(y, T y)-\mu) \\
& \text { for } x, y \in A \text { and } d(Q u, u) \leq \mu \text { for all } u \in B_{0} .
\end{aligned}
$$

Then $T \circ Q$ has a unique fixed point in B_{0}.

Proof We consider that the whole space is the completion of X. Define a nonexpansive mapping \bar{Q} as in Lemma 4. From the continuity of $d, d(\bar{Q} u, u) \leq \mu$ for $u \in \overline{B_{0}}$. For $u, v \in \overline{B_{0}}$, we have

$$
\begin{aligned}
& d(T \circ \bar{Q} u, T \circ \bar{Q} v) \\
& \quad \leq \alpha(d(\bar{Q} u, T \circ \bar{Q} u)-\mu)+\alpha(d(\bar{Q} v, T \circ \bar{Q} v)-\mu) \\
& \quad \leq \alpha(d(\bar{Q} u, u)+d(u, T \circ \bar{Q} u)-\mu)+\alpha(d(\bar{Q} v, v)+d(v, T \circ \bar{Q} v)-\mu) \\
& \quad \leq \alpha d(u, T \circ \bar{Q} u)+\alpha d(v, T \circ \bar{Q} v) .
\end{aligned}
$$

Hence $T \circ \bar{Q}$ is a Kannan mapping from \bar{B}_{0} into $X . T \circ \bar{Q}\left(B_{0}\right)=T \circ Q\left(B_{0}\right) \subset B_{0}$ is obvious. So by Theorem 6, there exists a unique fixed point w of $T \circ \bar{Q}$ in $\overline{B_{0}}$. By Lemma $4(\mathrm{v}), w \in B_{0}$ and w is a fixed point of $T \circ Q$.

Remark

- Since T is not necessarily continuous, the range of $T \circ \bar{Q}$ is not necessarily included by $\overline{B_{0}}$. Because of the same reason, we cannot prove Theorem 7 with the mapping $\bar{Q} \circ T$.
- It is interesting that we do not need the completeness of any set related to B_{0} directly. Of course, we need the completeness of A.

4 Main results

In this section, we give the main results.

Theorem 8 (Zhang et al. [8]) Let (A, B) be a pair of subsets of a metric space (X, d), and define A_{0} and B_{0} by (1) and (2). Let T be a contraction from A into B. Assume that the following hold:
(i) (A, B) has the weak P-property.
(ii) A is complete.
(iii) $T\left(A_{0}\right) \subset B_{0}$.

Then there exists a unique $z \in A$ such that $d(z, T z)=d(A, B)$.

Proof By Proposition 2(ii-2), there exists a nonexpansive mapping Q from B_{0} into A_{0} such that $d(Q u, u)=d(A, B)$ for every $u \in B_{0}$. Then by Lemma 3, all the assumptions in Theorem 5 hold. So there exists a unique fixed point z of $Q \circ T$ in A_{0}. This implies that $d(z, T z)=d(A, B)$. Let $x \in A$ satisfy $d(x, T x)=d(A, B)$. Then from Proposition 2(ii-1), $x \in A_{0}$, $T x \in B_{0}$ and $Q \circ T x=x$ hold. Since $Q \circ T$ has a unique fixed point, we obtain $x=z$. Hence z is unique.

Remark

- If we weaken (i) to the conjunction of $A_{0} \neq \varnothing$ and (ii-2) in Proposition 2, we obtain only the existence of best proximity points.
- In [8], we assume the completeness of B.
- Exactly speaking, in [8], we obtained a theorem connected with Geraghty's fixed point theorem [12]. However, in this paper, the difference between the two fixed point theorems is not essential. This means that we can easily modify Theorem 8 to be connected with Geraghty's theorem.

Theorem 9 Let (A, B) be a pair of subsets of a metric space (X, d), and define A_{0} and B_{0} by (1) and (2). Let T be a mapping from A into B. Assume that (i)-(iii) in Theorem 8 and the following hold:
(iv) There exists $\alpha \in[0,1 / 2)$ such that

$$
d(T x, T y) \leq \alpha(d(x, T x)-d(A, B))+\alpha(d(y, T y)-d(A, B))
$$

for $x, y \in A$.
Then there exists a unique $z \in A$ such that $d(z, T z)=d(A, B)$.
Proof By Proposition 2(ii-2), there exists a nonexpansive mapping Q from B_{0} into A_{0} such that $d(Q u, u)=d(A, B)$ for every $u \in B_{0}$. Then by Theorem 7, there exists a unique fixed point w of $T \circ Q$ in B_{0}. This implies that $d(z, T z)=d(A, B)$, where $z=Q w$. Let $x \in A$ satisfy $d(x, T x)=d(A, B)$. Then from Proposition 2(ii-1), $x \in A_{0}, T x \in B_{0}$ and $Q \circ T x=x$ hold. Since $T \circ Q \circ T x=T x$, we have $T x=w$, and hence $x=Q \circ T x=Q w=z$. Therefore, z is unique .

Remark If we weaken (i) to the conjunction of $A_{0} \neq \varnothing$ and (ii-2) in Proposition 2, we obtain only the existence of best proximity points.

5 Additional result

In this section, we give a proposition similar to Proposition 2.

Proposition 10 Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and define A_{0} and B_{0} by (1) and (2). Assume that $A_{0} \neq \varnothing$. Then the following are equivalent:
(i) (A, B) has the P-property.
(ii) The conjunction of the following holds:
(ii-1) For every $u \in B_{0}$, there exists a unique $x \in A_{0}$ with $d(x, u)=d(A, B)$.
(ii-2) There exists an isometry Q from B_{0} onto A_{0} such that $d(Q u, u)=d(A, B)$ for every $u \in B_{0}$.

Proof We note $B_{0} \neq \varnothing$. First, we assume (i). Let $x, y \in A_{0}$ and $u \in B_{0}$ satisfy $d(x, u)=$ $d(y, u)=d(A, B)$. Then from (i), we have $d(x, y)=d(u, u)=0$, thus, $x=y$. So (ii-1) holds. We put $Q u=x$. Then it is obvious that Q is isometric. For every $x \in A_{0}$, there exists $u \in B_{0}$ with $d(x, u)=d(A, B)$. From (ii-1), $Q u=x$ obviously holds, and hence Q is surjective. Conversely, we assume (ii). Let $x, y \in A_{0}$ and $u, v \in B_{0}$ satisfy $d(x, u)=d(y, v)=d(A, B)$. Then we have $Q u=x$ and $Q v=y$. Therefore, $d(x, y)=d(Q u, Q v)=d(u, v)$ holds.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is supported in part by the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Received: 24 June 2013 Accepted: 18 September 2013 Published: 07 Nov 2013

References

1. Alghamdi, MA, Shahzad, N, Vetro, F: Best proximity points for some classes of proximal contractions Abstr. Appl. Anal. 2013, Article ID 713252 (2013)
2. Di Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790-3794 (2008)
3. Eldred, AA, Kirk, WA, Veeramani, P: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171 283-293 (2005)
4. Eldred, AA, Veeramani, P: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001-1006 (2006)
5. Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918-2926 (2009)
6. Vetro, C: Best proximity points: convergence and existence theorems for p-cyclic mappings. Nonlinear Anal. 73 2283-2291 (2010)
7. Caballero, J, Harjani, J, Sadarangani, K: A best proximity point theorem for Geraghty-contractions. Fixed Point Theory Appl. 2012, Article ID 231 (2012)
8. Zhang, J, Su, Y, Cheng, Q: A note on 'A best proximity point theorem for Geraghty-contractions'. Fixed Point Theory Appl. 2013, Article ID 99 (2013)
9. Sankar Raj, V: Banach's contraction principle for non-self mappings. Preprint
10. Banach, S : Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam Math. 3, 133-181 (1922)
11. Kannan, R: Some results on fixed points. II. Am. Math. Mon. 76, 405-408 (1969)
12. Geraghty, MA: On contractive mappings. Proc. Am. Math. Soc. 40, 604-608 (1973)

10.1186/1687-1812-2013-259

Cite this article as: Suzuki: The existence of best proximity points with the weak P-property. Fixed Point Theory and Applications 2013, 2013:259

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```

