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1 Introduction
Let (A,B) be a pair of nonempty subsets of a metric space (X,d), and let T be a map-
ping from A into B. Then x ∈ A is called a best proximity point if d(x,Tx) = d(A,B), where
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. We have proved many existence theorems of best prox-
imity points. See, for example, [–]. Very recently, Caballero et al. [] proved a new type
of existence theorem, and Zhang et al. [] generalized the theorem. The theorem proved
in [] is Theorem  with an additional assumption of the completeness of B. The essence
of the result in [] becomes very clear in [], however, we have not learned the essence
completely.
Motivated by the fact above, in this paper, we improve the result in []. Also, in order to

consider the discontinuous case, we give a Kannan version.

2 Preliminaries
In this section, we give some preliminaries.

Definition  Let (A,B) be a pair of nonempty subsets of a metric space (X,d), and define
A and B by

A =
{
x ∈ A : there exists u ∈ B such that d(x,u) = d(A,B)

}
()

and

B =
{
u ∈ B : there exists x ∈ A such that d(x,u) = d(A,B)

}
. ()

Then
• (Sankar Raj []) (A,B) is said to have the P-property if A �=∅ and the following holds:

x, y ∈ A,u, v ∈ B, d(x,u) = d(y, v) = d(A,B) �⇒ d(x, y) = d(u, v).
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• (Zhang et al. []) (A,B) is said to have the weak P-property if A �=∅ and the following
holds:

x, y ∈ A,u, v ∈ B, d(x,u) = d(y, v) = d(A,B) �⇒ d(x, y) ≤ d(u, v).

Proposition  Let (A,B) be a pair of nonempty subsets of a metric space (X,d), and define
A and B by () and (). Assume that A �=∅. Then the following are equivalent:

(i) (A,B) has the weak P-property.
(ii) The conjunction of the following holds:

(ii-) For every u ∈ B, there exists a unique x ∈ A with d(x,u) = d(A,B).
(ii-) There exists a nonexpansive mapping Q from B into A such that

d(Qu,u) = d(A,B) for every u ∈ B.

Proof We note that B �=∅ because A �=∅. First, we assume (i). Let x, y ∈ A and u ∈ B

satisfy d(x,u) = d(y,u) = d(A,B). Then from (i), we have

d(x, y) ≤ d(u,u) = ,

thus, x = y. So (ii-) holds.WeputQu = x. Then from the definition of theweak P-property,
we have d(Qu,Qv) ≤ d(u, v) for u, v ∈ B, that is, Q is nonexpansive. Conversely, we as-
sume (ii). Let x, y ∈ A and u, v ∈ B satisfy d(x,u) = d(y, v) = d(A,B). Then from (ii-), we
have Qu = x and Qv = y. Therefore,

d(x, y) = d(Qu,Qv)≤ d(u, v)

holds. �

Lemma  Let (A,B) be a pair of subsets of a metric space (X,d), and define A and B by
() and ().Assume that A �=∅. Let T be amapping from A into B, and let Q be amapping
from B into A such that d(Qu,u) = d(A,B) for every u ∈ B. Then the following holds:

{un} ⊂ B, lim
n→∞un = w, T

(
lim
n→∞Qun

)
= w �⇒ w ∈ B. ()

Proof Let {un} be a sequence inB such that {un} converges tow ∈ X, andT(limn Qun) = w.
We put y = limn Qun. Since Ty = w, we have y ∈ A and w ∈ B. Since

d(y,w) = lim
n→∞d(Qun,un) = d(A,B),

we have y ∈ A and w ∈ B. �

Lemma  Let (X,d) be a metric space, let A, A, B be nonempty subsets such that A is
complete and A ⊂ A. Let T be a mapping from A into X such that T(A) ⊂ B, and let Q
be a nonexpansive mapping from B into A. Let Q̄ be the mapping whose graph Gr(Q̄) is
the completion of Gr(Q). Assume (). Then the following hold:

(i) Q̄ is well-defined and nonexpansive.
(ii) Q̄w = z is equivalent to that there exists a sequence {un} in B such that limn un = w

and limn Qun = z.
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(iii) The domain of Q̄ is B̄, where B̄ is the completion of B.
(iv) The range of Q̄ is a subset of Ā, where Ā is the completion of A.
(v) T ◦ Q̄w = w implies T ◦Qw = w.
(vi) Q̄ ◦ Tz = z implies Q ◦ Tz = z.
(vii) The range of Q̄ is a subset of A.

Proof We consider that the whole space is the completion of X. Since Q is Lipschitz con-
tinuous, Q̄ is well-defined. The rest of (i) and (ii)-(iv) are obvious. By using (), we can
easily prove (v) and (vi). From the completeness of A, we obtain (vii). �

3 Fixed point theorems
In this section, we give fixed point theorems, which are used in the proofs of the main
results.

Theorem  Let (X,d) be a metric space, let A, A, B be nonempty subsets such that A is
complete and A ⊂ A. Let T be a contraction from A into X such that T(A) ⊂ B, and let
Q be a nonexpansive mapping from B into A. Assume (). Then Q ◦T has a unique fixed
point in A.

Proof We consider that the whole space is the completion of X. Define a nonexpansive
mapping Q̄ as in Lemma . Since T is continuous, T(Ā) is a subset of B̄. Let S be the
restriction of T to Ā. Then Q̄ ◦ S is a contraction on Ā. So the Banach contraction prin-
ciple yields that there exists a unique fixed point z of Q̄ ◦ S in Ā. Since Q̄ ◦ Tz = z, by
Lemma (vi), z is a fixed point of Q ◦ T . �

Remark
• If X = A = A = B and Q is the identity mapping on B, then Theorem  becomes the
Banach contraction principle [].

• We can prove Theorem  with the mapping T ◦ Q̄ as in the proof of Theorem .

We prove generalizations of Kannan’s fixed point theorem [].

Theorem  Let (X,d) be a metric space, let Y be a complete subset of X , and let T be a
mapping from Y into X. Assume that the following hold:

(i) There exists α ∈ [, /) such that d(Tx,Ty) ≤ αd(x,Tx) + αd(y,Ty) for all x, y ∈ Y .
(ii) There exists a nonempty subset Z of Y such that T(Z) ⊂ Z.

Then there exists a unique fixed point z, and for every x ∈ Z, {Tnx} converges to z.

Proof Fix x ∈ Z. Then from the proof in Kannan [], we obtain that {Tnx} converges to a
fixed point, and the fixed point is unique. �

Remark If X = Y = Z, then Theorem  becomes Kannan’s fixed point theorem [].

Using Theorem , we obtain the following.

Theorem  Let (X,d) be a metric space, let A, A, B be nonempty subsets such that A is
complete and A ⊂ A. Let T be a mapping from A into X such that T(A) ⊂ B, and let Q
be a nonexpansive mapping from B into A. Assume that () and the following hold:
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• There exist α ∈ [, /) and μ ∈ [,∞) such that

d(Tx,Ty) ≤ α
(
d(x,Tx) –μ

)
+ α

(
d(y,Ty) –μ

)

for x, y ∈ A and d(Qu,u) ≤ μ for all u ∈ B.
Then T ◦Q has a unique fixed point in B.

Proof We consider that the whole space is the completion of X. Define a nonexpansive
mapping Q̄ as in Lemma . From the continuity of d, d(Q̄u,u) ≤ μ for u ∈ B̄. For u, v ∈ B̄,
we have

d(T ◦ Q̄u,T ◦ Q̄v)
≤ α

(
d(Q̄u,T ◦ Q̄u) –μ

)
+ α

(
d(Q̄v,T ◦ Q̄v) –μ

)

≤ α
(
d(Q̄u,u) + d(u,T ◦ Q̄u) –μ

)
+ α

(
d(Q̄v, v) + d(v,T ◦ Q̄v) –μ

)

≤ αd(u,T ◦ Q̄u) + αd(v,T ◦ Q̄v).

Hence T ◦ Q̄ is a Kannan mapping from B̄ into X. T ◦ Q̄(B) = T ◦Q(B)⊂ B is obvious.
So by Theorem , there exists a unique fixed pointw of T ◦ Q̄ in B̄. By Lemma (v),w ∈ B

and w is a fixed point of T ◦Q. �

Remark
• Since T is not necessarily continuous, the range of T ◦ Q̄ is not necessarily included by
B̄. Because of the same reason, we cannot prove Theorem  with the mapping Q̄ ◦ T .

• It is interesting that we do not need the completeness of any set related to B directly.
Of course, we need the completeness of A.

4 Main results
In this section, we give the main results.

Theorem  (Zhang et al. []) Let (A,B) be a pair of subsets of a metric space (X,d), and
define A and B by () and (). Let T be a contraction from A into B. Assume that the
following hold:

(i) (A,B) has the weak P-property.
(ii) A is complete.
(iii) T(A) ⊂ B.

Then there exists a unique z ∈ A such that d(z,Tz) = d(A,B).

Proof By Proposition (ii-), there exists a nonexpansive mapping Q from B into A

such that d(Qu,u) = d(A,B) for every u ∈ B. Then by Lemma , all the assumptions in
Theorem  hold. So there exists a unique fixed point z of Q ◦ T in A. This implies that
d(z,Tz) = d(A,B). Let x ∈ A satisfy d(x,Tx) = d(A,B). Then fromProposition (ii-), x ∈ A,
Tx ∈ B and Q ◦Tx = x hold. Since Q ◦T has a unique fixed point, we obtain x = z. Hence
z is unique. �
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Remark
• If we weaken (i) to the conjunction of A �=∅ and (ii-) in Proposition , we obtain
only the existence of best proximity points.

• In [], we assume the completeness of B.
• Exactly speaking, in [], we obtained a theorem connected with Geraghty’s fixed point
theorem []. However, in this paper, the difference between the two fixed point
theorems is not essential. This means that we can easily modify Theorem  to be
connected with Geraghty’s theorem.

Theorem  Let (A,B) be a pair of subsets of a metric space (X,d), and define A and B

by () and (). Let T be a mapping from A into B. Assume that (i)-(iii) in Theorem  and
the following hold:
(iv) There exists α ∈ [, /) such that

d(Tx,Ty) ≤ α
(
d(x,Tx) – d(A,B)

)
+ α

(
d(y,Ty) – d(A,B)

)

for x, y ∈ A.
Then there exists a unique z ∈ A such that d(z,Tz) = d(A,B).

Proof By Proposition (ii-), there exists a nonexpansivemappingQ from B intoA such
that d(Qu,u) = d(A,B) for every u ∈ B. Then by Theorem , there exists a unique fixed
point w of T ◦Q in B. This implies that d(z,Tz) = d(A,B), where z =Qw. Let x ∈ A satisfy
d(x,Tx) = d(A,B). Then fromProposition (ii-), x ∈ A,Tx ∈ B andQ◦Tx = x hold. Since
T ◦ Q ◦ Tx = Tx, we have Tx = w, and hence x = Q ◦ Tx = Qw = z. Therefore, z is unique.

�

Remark If we weaken (i) to the conjunction of A �= ∅ and (ii-) in Proposition , we
obtain only the existence of best proximity points.

5 Additional result
In this section, we give a proposition similar to Proposition .

Proposition  Let (A,B) be a pair of nonempty subsets of ametric space (X,d), and define
A and B by () and (). Assume that A �=∅. Then the following are equivalent:

(i) (A,B) has the P-property.
(ii) The conjunction of the following holds:

(ii-) For every u ∈ B, there exists a unique x ∈ A with d(x,u) = d(A,B).
(ii-) There exists an isometry Q from B onto A such that d(Qu,u) = d(A,B) for

every u ∈ B.

Proof We note B �= ∅. First, we assume (i). Let x, y ∈ A and u ∈ B satisfy d(x,u) =
d(y,u) = d(A,B). Then from (i), we have d(x, y) = d(u,u) = , thus, x = y. So (ii-) holds.
We putQu = x. Then it is obvious thatQ is isometric. For every x ∈ A, there exists u ∈ B

with d(x,u) = d(A,B). From (ii-), Qu = x obviously holds, and hence Q is surjective. Con-
versely, we assume (ii). Let x, y ∈ A and u, v ∈ B satisfy d(x,u) = d(y, v) = d(A,B). Then
we have Qu = x and Qv = y. Therefore, d(x, y) = d(Qu,Qv) = d(u, v) holds. �
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