RESEARCH

Open Access

The existence of best proximity points with the weak *P*-property

Tomonari Suzuki^{*}

*Correspondence: suzuki-t@mns.kyutech.ac.jp Department of Basic Sciences, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

Abstract

We improve some existence theorem of best proximity points with the weak *P*-property, which has been recently proved by Zhang *et al.* **MSC:** Primary 54H25; secondary 54E50

Keywords: best proximity point; the weak *P*-property; the Banach contraction principle; Kannan's fixed point theorem; completion

1 Introduction

Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and let T be a mapping from A into B. Then $x \in A$ is called a *best proximity point* if d(x, Tx) = d(A, B), where $d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}$. We have proved many existence theorems of best proximity points. See, for example, [1-6]. Very recently, Caballero *et al.* [7] proved a new type of existence theorem, and Zhang *et al.* [8] generalized the theorem. The theorem proved in [8] is Theorem 8 with an additional assumption of the completeness of B. The essence of the result in [7] becomes very clear in [8], however, we have not learned the essence completely.

Motivated by the fact above, in this paper, we improve the result in [8]. Also, in order to consider the discontinuous case, we give a Kannan version.

2 Preliminaries

In this section, we give some preliminaries.

Definition 1 Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and define A_0 and B_0 by

$$A_0 = \left\{ x \in A : \text{ there exists } u \in B \text{ such that } d(x, u) = d(A, B) \right\}$$
(1)

and

$$B_0 = \{ u \in B : \text{ there exists } x \in A \text{ such that } d(x, u) = d(A, B) \}.$$
 (2)

Then

• (Sankar Raj [9]) (*A*, *B*) is said to have the *P*-property if $A_0 \neq \emptyset$ and the following holds:

$$x, y \in A_0, u, v \in B_0, \quad d(x, u) = d(y, v) = d(A, B) \implies d(x, y) = d(u, v).$$

(Zhang *et al.* [8]) (*A*, *B*) is said to have the *weak P-property* if A₀ ≠ Ø and the following holds:

$$x, y \in A_0, u, v \in B_0, \quad d(x, u) = d(y, v) = d(A, B) \implies d(x, y) \le d(u, v).$$

Proposition 2 Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and define A_0 and B_0 by (1) and (2). Assume that $A_0 \neq \emptyset$. Then the following are equivalent:

- (i) (A, B) has the weak P-property.
- (ii) *The conjunction of the following holds:*
 - (ii-1) For every $u \in B_0$, there exists a unique $x \in A_0$ with d(x, u) = d(A, B).
 - (ii-2) There exists a nonexpansive mapping Q from B_0 into A_0 such that d(Qu, u) = d(A, B) for every $u \in B_0$.

Proof We note that $B_0 \neq \emptyset$ because $A_0 \neq \emptyset$. First, we assume (i). Let $x, y \in A_0$ and $u \in B_0$ satisfy d(x, u) = d(y, u) = d(A, B). Then from (i), we have

 $d(x,y) \le d(u,u) = 0,$

thus, x = y. So (ii-1) holds. We put Qu = x. Then from the definition of the weak *P*-property, we have $d(Qu, Qv) \le d(u, v)$ for $u, v \in B_0$, that is, *Q* is nonexpansive. Conversely, we assume (ii). Let $x, y \in A_0$ and $u, v \in B_0$ satisfy d(x, u) = d(y, v) = d(A, B). Then from (ii-1), we have Qu = x and Qv = y. Therefore,

$$d(x, y) = d(Qu, Qv) \le d(u, v)$$

holds.

Lemma 3 Let (A, B) be a pair of subsets of a metric space (X, d), and define A_0 and B_0 by (1) and (2). Assume that $A_0 \neq \emptyset$. Let T be a mapping from A into B, and let Q be a mapping from B_0 into A_0 such that d(Qu, u) = d(A, B) for every $u \in B_0$. Then the following holds:

$$\{u_n\} \subset B_0, \quad \lim_{n \to \infty} u_n = w, \qquad T\left(\lim_{n \to \infty} Qu_n\right) = w \implies w \in B_0.$$
(3)

Proof Let $\{u_n\}$ be a sequence in B_0 such that $\{u_n\}$ converges to $w \in X$, and $T(\lim_n Qu_n) = w$. We put $y = \lim_n Qu_n$. Since Ty = w, we have $y \in A$ and $w \in B$. Since

$$d(y,w) = \lim_{n \to \infty} d(Qu_n, u_n) = d(A, B),$$

we have $y \in A_0$ and $w \in B_0$.

Lemma 4 Let (X, d) be a metric space, let A, A_0 , B_0 be nonempty subsets such that A is complete and $A_0 \subset A$. Let T be a mapping from A into X such that $T(A_0) \subset B_0$, and let Q be a nonexpansive mapping from B_0 into A_0 . Let \overline{Q} be the mapping whose graph $Gr(\overline{Q})$ is the completion of Gr(Q). Assume (3). Then the following hold:

- (i) \overline{Q} is well-defined and nonexpansive.
- (ii) Qw = z is equivalent to that there exists a sequence $\{u_n\}$ in B_0 such that $\lim_n u_n = w$ and $\lim_n Qu_n = z$.

- (iii) The domain of \overline{Q} is $\overline{B_0}$, where $\overline{B_0}$ is the completion of B_0 .
- (iv) The range of \overline{Q} is a subset of $\overline{A_0}$, where $\overline{A_0}$ is the completion of A_0 .
- (v) $T \circ \overline{Q}w = w$ implies $T \circ Qw = w$.
- (vi) $\overline{Q} \circ Tz = z$ implies $Q \circ Tz = z$.
- (vii) The range of \overline{Q} is a subset of A.

Proof We consider that the whole space is the completion of *X*. Since *Q* is Lipschitz continuous, \overline{Q} is well-defined. The rest of (i) and (ii)-(iv) are obvious. By using (3), we can easily prove (v) and (vi). From the completeness of *A*, we obtain (vii).

3 Fixed point theorems

In this section, we give fixed point theorems, which are used in the proofs of the main results.

Theorem 5 Let (X,d) be a metric space, let A, A_0 , B_0 be nonempty subsets such that A is complete and $A_0 \subset A$. Let T be a contraction from A into X such that $T(A_0) \subset B_0$, and let Q be a nonexpansive mapping from B_0 into A_0 . Assume (3). Then $Q \circ T$ has a unique fixed point in A_0 .

Proof We consider that the whole space is the completion of *X*. Define a nonexpansive mapping \overline{Q} as in Lemma 4. Since *T* is continuous, $T(\overline{A_0})$ is a subset of $\overline{B_0}$. Let *S* be the restriction of *T* to $\overline{A_0}$. Then $\overline{Q} \circ S$ is a contraction on $\overline{A_0}$. So the Banach contraction principle yields that there exists a unique fixed point *z* of $\overline{Q} \circ S$ in $\overline{A_0}$. Since $\overline{Q} \circ Tz = z$, by Lemma 4(vi), *z* is a fixed point of $Q \circ T$.

Remark

- If $X = A = A_0 = B_0$ and Q is the identity mapping on B_0 , then Theorem 5 becomes the Banach contraction principle [10].
- We can prove Theorem 5 with the mapping $T \circ \overline{Q}$ as in the proof of Theorem 7.

We prove generalizations of Kannan's fixed point theorem [11].

Theorem 6 Let (X,d) be a metric space, let Y be a complete subset of X, and let T be a mapping from Y into X. Assume that the following hold:

- (i) There exists $\alpha \in [0, 1/2)$ such that $d(Tx, Ty) \leq \alpha d(x, Tx) + \alpha d(y, Ty)$ for all $x, y \in Y$.
- (ii) There exists a nonempty subset Z of Y such that $T(Z) \subset Z$.

Then there exists a unique fixed point z, and for every $x \in Z$, $\{T^n x\}$ converges to z.

Proof Fix $x \in Z$. Then from the proof in Kannan [11], we obtain that $\{T^n x\}$ converges to a fixed point, and the fixed point is unique.

Remark If X = Y = Z, then Theorem 6 becomes Kannan's fixed point theorem [11].

Using Theorem 6, we obtain the following.

Theorem 7 Let (X, d) be a metric space, let A, A_0 , B_0 be nonempty subsets such that A is complete and $A_0 \subset A$. Let T be a mapping from A into X such that $T(A_0) \subset B_0$, and let Q be a nonexpansive mapping from B_0 into A_0 . Assume that (3) and the following hold:

• There exist $\alpha \in [0, 1/2)$ and $\mu \in [0, \infty)$ such that

$$d(Tx, Ty) \leq \alpha (d(x, Tx) - \mu) + \alpha (d(y, Ty) - \mu)$$

for $x, y \in A$ and $d(Qu, u) \le \mu$ for all $u \in B_0$. Then $T \circ Q$ has a unique fixed point in B_0 .

Proof We consider that the whole space is the completion of *X*. Define a nonexpansive mapping \bar{Q} as in Lemma 4. From the continuity of d, $d(\bar{Q}u, u) \leq \mu$ for $u \in \bar{B}_0$. For $u, v \in \bar{B}_0$, we have

$$d(T \circ \bar{Q}u, T \circ \bar{Q}v)$$

$$\leq \alpha \left(d(\bar{Q}u, T \circ \bar{Q}u) - \mu \right) + \alpha \left(d(\bar{Q}v, T \circ \bar{Q}v) - \mu \right)$$

$$\leq \alpha \left(d(\bar{Q}u, u) + d(u, T \circ \bar{Q}u) - \mu \right) + \alpha \left(d(\bar{Q}v, v) + d(v, T \circ \bar{Q}v) - \mu \right)$$

$$\leq \alpha d(u, T \circ \bar{Q}u) + \alpha d(v, T \circ \bar{Q}v).$$

Hence $T \circ \overline{Q}$ is a Kannan mapping from $\overline{B_0}$ into X. $T \circ \overline{Q}(B_0) = T \circ Q(B_0) \subset B_0$ is obvious. So by Theorem 6, there exists a unique fixed point w of $T \circ \overline{Q}$ in $\overline{B_0}$. By Lemma 4(v), $w \in B_0$ and w is a fixed point of $T \circ Q$.

Remark

- Since *T* is not necessarily continuous, the range of $T \circ \overline{Q}$ is not necessarily included by $\overline{B_0}$. Because of the same reason, we cannot prove Theorem 7 with the mapping $\overline{Q} \circ T$.
- It is interesting that we do not need the completeness of any set related to *B*₀ directly. Of course, we need the completeness of *A*.

4 Main results

In this section, we give the main results.

Theorem 8 (Zhang *et al.* [8]) Let (A, B) be a pair of subsets of a metric space (X, d), and define A_0 and B_0 by (1) and (2). Let T be a contraction from A into B. Assume that the following hold:

- (i) (A, B) has the weak P-property.
- (ii) A is complete.
- (iii) $T(A_0) \subset B_0$.

Then there exists a unique $z \in A$ such that d(z, Tz) = d(A, B).

Proof By Proposition 2(ii-2), there exists a nonexpansive mapping Q from B_0 into A_0 such that d(Qu, u) = d(A, B) for every $u \in B_0$. Then by Lemma 3, all the assumptions in Theorem 5 hold. So there exists a unique fixed point z of $Q \circ T$ in A_0 . This implies that d(z, Tz) = d(A, B). Let $x \in A$ satisfy d(x, Tx) = d(A, B). Then from Proposition 2(ii-1), $x \in A_0$, $Tx \in B_0$ and $Q \circ Tx = x$ hold. Since $Q \circ T$ has a unique fixed point, we obtain x = z. Hence z is unique.

Remark

- If we weaken (i) to the conjunction of A₀ ≠ Ø and (ii-2) in Proposition 2, we obtain only the existence of best proximity points.
- In [8], we assume the completeness of *B*.
- Exactly speaking, in [8], we obtained a theorem connected with Geraghty's fixed point theorem [12]. However, in this paper, the difference between the two fixed point theorems is not essential. This means that we can easily modify Theorem 8 to be connected with Geraghty's theorem.

Theorem 9 Let (A, B) be a pair of subsets of a metric space (X, d), and define A_0 and B_0 by (1) and (2). Let T be a mapping from A into B. Assume that (i)-(iii) in Theorem 8 and the following hold:

(iv) There exists $\alpha \in [0, 1/2)$ such that

$$d(Tx, Ty) \le \alpha \left(d(x, Tx) - d(A, B) \right) + \alpha \left(d(y, Ty) - d(A, B) \right)$$

for $x, y \in A$.

Then there exists a unique $z \in A$ such that d(z, Tz) = d(A, B).

Proof By Proposition 2(ii-2), there exists a nonexpansive mapping Q from B_0 into A_0 such that d(Qu, u) = d(A, B) for every $u \in B_0$. Then by Theorem 7, there exists a unique fixed point w of $T \circ Q$ in B_0 . This implies that d(z, Tz) = d(A, B), where z = Qw. Let $x \in A$ satisfy d(x, Tx) = d(A, B). Then from Proposition 2(ii-1), $x \in A_0$, $Tx \in B_0$ and $Q \circ Tx = x$ hold. Since $T \circ Q \circ Tx = Tx$, we have Tx = w, and hence $x = Q \circ Tx = Qw = z$. Therefore, z is unique.

Remark If we weaken (i) to the conjunction of $A_0 \neq \emptyset$ and (ii-2) in Proposition 2, we obtain only the existence of best proximity points.

5 Additional result

In this section, we give a proposition similar to Proposition 2.

Proposition 10 Let (A, B) be a pair of nonempty subsets of a metric space (X, d), and define A_0 and B_0 by (1) and (2). Assume that $A_0 \neq \emptyset$. Then the following are equivalent:

- (i) (*A*, *B*) has the *P*-property.
- (ii) *The conjunction of the following holds:*
 - (ii-1) For every $u \in B_0$, there exists a unique $x \in A_0$ with d(x, u) = d(A, B).
 - (ii-2) There exists an isometry Q from B_0 onto A_0 such that d(Qu, u) = d(A, B) for every $u \in B_0$.

Proof We note $B_0 \neq \emptyset$. First, we assume (i). Let $x, y \in A_0$ and $u \in B_0$ satisfy d(x, u) = d(y, u) = d(A, B). Then from (i), we have d(x, y) = d(u, u) = 0, thus, x = y. So (ii-1) holds. We put Qu = x. Then it is obvious that Q is isometric. For every $x \in A_0$, there exists $u \in B_0$ with d(x, u) = d(A, B). From (ii-1), Qu = x obviously holds, and hence Q is surjective. Conversely, we assume (ii). Let $x, y \in A_0$ and $u, v \in B_0$ satisfy d(x, u) = d(y, v) = d(A, B). Then we have Qu = x and Qv = y. Therefore, d(x, y) = d(Qu, Qv) = d(u, v) holds.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is supported in part by the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Received: 24 June 2013 Accepted: 18 September 2013 Published: 07 Nov 2013

References

- Alghamdi, MA, Shahzad, N, Vetro, F: Best proximity points for some classes of proximal contractions Abstr. Appl. Anal. 2013, Article ID 713252 (2013)
- Di Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790-3794 (2008)
- 3. Eldred, AA, Kirk, WA, Veeramani, P: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283-293 (2005)
- 4. Eldred, AA, Veeramani, P: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001-1006 (2006)
- 5. Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. **71**, 2918-2926 (2009)
- Vetro, C: Best proximity points: convergence and existence theorems for *p*-cyclic mappings. Nonlinear Anal. 73, 2283-2291 (2010)
- 7. Caballero, J, Harjani, J, Sadarangani, K: A best proximity point theorem for Geraghty-contractions. Fixed Point Theory Appl. 2012, Article ID 231 (2012)
- 8. Zhang, J, Su, Y, Cheng, Q: A note on 'A best proximity point theorem for Geraghty-contractions'. Fixed Point Theory Appl. 2013, Article ID 99 (2013)
- 9. Sankar Raj, V: Banach's contraction principle for non-self mappings. Preprint
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133-181 (1922)
- 11. Kannan, R: Some results on fixed points. II. Am. Math. Mon. 76, 405-408 (1969)
- 12. Geraghty, MA: On contractive mappings. Proc. Am. Math. Soc. 40, 604-608 (1973)

10.1186/1687-1812-2013-259

Cite this article as: Suzuki: The existence of best proximity points with the weak P-property. Fixed Point Theory and Applications 2013, 2013:259

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at springeropen.com