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Abstract
Motivated by Abdeljawad (Fixed Point Theory Appl. 2013:19, 2013), we establish some
common fixed point theorems for three and four self-mappings satisfying generalized
Meir-Keeler α-contraction in metric spaces. As a consequence, the results of Rao and
Rao (Indian J. Pure Appl. Math. 16(1):1249-1262, 1985), Jungck (Int. J. Math. Math. Sci.
9(4):771-779, 1986), and Abdeljawad itself are generalized, extended and improved.
Sufficient examples are given to support our main results.
MSC: 47H10; 54H25

Keywords: common fixed points; Meir-Keeler contraction; generalized Meir-Keeler
α-contraction; α-admissible; reciprocally continuous; absorbing maps

1 Introduction and preliminaries
The Meir-Keeler contractive condition [] is one of the interesting aspects to study met-
rical fixed point theory, that is, for given ε > , there exists a δ >  such that

ε ≤ d(x, y) < ε + δ ⇒ d(fx, fy) < ε. ()

This contraction has further been generalized and studied by various authors (see [–
]). Very recently, Abdeljawad [] (see also []) established some fixed point results for
α-contractive-type maps (due to Samet et al. []) to Meir-Keeler versions for single and
a pair of maps. In this article, we prove some common fixed point theorems for three and
four self-mappings satisfying generalized Meir-Keeler α-contractions. Thus, we provide
an affirmative answer to the question of Abdeljawad (see [], Remark ).
Let us recall some definitions, which we will use in our main results.

Definition . (cf. [, ]) Let f , g : X → X be self-mappings of a setX, and letα : X×X →
[,∞) be a mapping, then the mapping f is called α-admissible if

x, y ∈ X, α(x, y)≥  ⇒ α(fx, fy) ≥ ,

and the pair (f , g) is called α-admissible if

x, y ∈ X, α(x, y)≥  ⇒ α(fx, gy)≥  and α(gx, fy)≥ .

Definition . (cf. [, ]) Let f and g (f �= g) be two self-mappings defined on a metric
space (X,d), then f is called g-absorbing if there exists some real number R >  such that
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d(gx, gfx) ≤ Rd(fx, gx) for all x in X. Analogously, g will be called f -absorbing if there exists
some real number R >  such that d(fx, fgx)≤ Rd(fx, gx) for all x in X. The pair of self-maps
(f , g) will be called absorbing if it is both g-absorbing as well as f -absorbing. In particular,
if we take g to be the identity map on X, then f is trivially I-absorbing. Similarly, I is also
f -absorbing in respect to f .

Definition . (cf. []) Two self-mappings f and g of a metric space (X,d) are called
reciprocally continuous if and only if fgxn → ft and gfxn → gt whenever {xn} is a sequence
in X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

2 Main results
We begin with the following definitions.

Definition . Let f , g,T : X → X be three self-mappings of a non-empty set X, and let
α : T(X) × T(X) → [,∞) be a mapping, then the pair (f , g) is called α-admissible with
respect to T (in short, (f , g) is αT -admissible) if for all x, y ∈ X,

α(Tx,Ty)≥  implies that α(fx, gy) ≥  and α(gx, fy)≥ . ()

Definition . Let f , g,S,T : X → X be four self-mappings of a non-empty set X, and
let α : S(X) ∪ T(X) × S(X) ∪ T(X) → [,∞) be a mapping, then the pair (f , g) is called
α-admissible with respect to S and T (in short, (f , g) is αS,T -admissible) if for all x, y ∈ X,

α(Sx,Ty)≥  or α(Tx,Sy)≥ 

implies that α(fx, gy)≥  and α(gx, fy)≥ .
()

Clearly, if S = T = I (identity map), then the definitions above imply Definition ..
In order to extend and improve the result contained in [] for three self-mappings,

we now introduce the concept of generalized Meir-Keeler αT -contractive mappings as
follows.

Definition . Let (X,d) be a metric space, and f , g,T : X → X are self-mappings. Then
we say that the pair (f , g) is a generalized Meir-Keeler αT -contractive pair of typem (M,
respectively) if given an ε > , there exists a δ >  such that

ε ≤m(x, y)
(
M(x, y), respectively

)
< ε + δ

implies that α(Tx,Ty)d(fx, gy) < ε,
()

where

m(x, y) =max

{
d(Tx,Ty),



[
d(Tx, fx) + d(Ty, gy)

]
,


[
d(Tx, gy) + d(Ty, fx)

]}
,

and

M(x, y) =max

{
d(Tx,Ty),d(Tx, fx),d(Ty, gy),



[
d(Tx, gy) + d(Ty, fx)

]}
.
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Definition . Let f , g , and T be three self-mappings on a metric space (X,d) such that
f (X) ∪ g(X) ⊆ T(X). If for a point x ∈ X, there exists a sequence {xn} such that Txn+ =
fxn, Txn+ = gxn+, n = , , , . . . , thenO(f , g,T ,x) = {Txn : n = , , . . .} is called the orbit
for (f , g,T) at x. The space (X,d) is called (f , g,T)-orbitally complete at x iff every Cauchy
sequence inO(f , g,T ,x) converges to a point in X. X is called (f , g,T)-orbitally complete
if it is so at every x ∈ X.

Our first result is the following.

Theorem . Let (X,d) be an (f , g,T)-orbitally complete metric space. Suppose that (f , g)
is generalized Meir-Keeler αT -contractive pair of type m and satisfies the following condi-
tions:

(i) (f , g) is αT -admissible;
(ii) there exists x ∈ X such that α(Tx, fx) ≥ ;
(iii) on the (f , g,T)-orbit of x, we have α(Txn,Txj)≥  for all n even and j > n odd.

Then {Txn} is a Cauchy sequence.Moreover, if
(iv) α(Txn,Txn+) ≥  for all n, and Txn → x implies that α(Txn,Tx) ≥  for all n;
(v) one of the pairs (f ,T) and (g,T) is absorbing as well as reciprocal continuous.

Then f , g , and T have a common fixed point.

Proof Let x ∈ X such that α(Tx, fx)≥ . Define the sequences {xn} and {Txn} in X given
by the rule

Txn+ = fxn, Txn+ = gxn+, n = , , , . . . .

Since (f , g) is αT -admissible, we have

α(Tx, fx) = α(Tx,Tx) ≥  �⇒ α(fx, gx) ≥  and α(gx, fx)≥ ,

which gives

α(Tx,Tx)≥ .

Again by (i), we have

α(Tx,Tx)≥  �⇒ α(fx, gx) ≥  and α(gx, fx) ≥ ,

which gives

α(Tx,Tx) ≥ .

Inductively, we have

α(Txn,Txn+) ≥ , n = , , , . . . . ()

The fact that (f , g) is generalized Meir-Keeler αT -contractive implies that

α(Tx,Ty)d(fx, fy) <m(x, y) for each x, y ∈ X,x �= y. ()
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Now, to obtain a common fixed point of f , g , and T , we take the following steps.
Step : We show that there exists a point z ∈ X such that Txn → z as n → ∞. For this,

first, we claim that {Txn} is a Cauchy sequence. Two cases arise: either Txn = Txn+ for
some n or Txn �= Txn+ for each n.
Case I: Suppose that Txn = Txn+ for some n. We first assume that n is even, i.e., Txm =

Txm+ but Txm+ �= Txm+, then by (),

d(Txm+,Txm+) = d(fxm, gxm+)

≤ α(Txm,Txm+)d(fxm, gxm+)

< max

{
d(Txm,Txm+),



[
d(Txm, fxm) + d(Txm+, gxm+)

]
,



[
d(Txm, gxm+) + d(Txm+, fxm)

]}

= max

{
,



d(Txm+,Txm+),



d(Txm,Txm+)

}

=


d(Txm+,Txm+),

which is a contradiction. Hence Txm+ = Txm+. By proceeding in this way, we obtain
Txm+k = Txm for all k ∈ N . Similar is the case when n is odd. Thus, we conclude that
{Txn} is a Cauchy sequence.
Case II: Suppose that Txn �= Txn+ for all integers n. Applying (), we have

d(Txn,Txn+) = d(gxn–, fxn)

≤ α(Txn,Txn–)d(fxn, gxn–)

< max

{
d(Txn,Txn–),



[
d(Txn, fxn) + d(Txn–, gxn–)

]
,



[
d(Txn, gxn–) + d(Txn–, fxn)

]}

= max

{
d(Txn,Txn–),



[
d(Txn,Txn+) + d(Txn–,Txn)

]
,



[
d(Txn,Txn) + d(Txn–,Txn+)

]}

= d(Txn–,Txn).

Similarly, it can be shown that

d(Txn+,Txn+) < d(Txn,Txn+).

Thus, {d(Txn,Txn+)} is strictly decreasing sequence of positive real numbers, and, there-
fore, converges to a limit r ≥ . If possible, suppose that r > . Then given δ > , there
exists a positive integer N =N(δ) such that

r ≤ d(Txn,Txn+) = d(fxn, gxn–) < r + δ (for all n≥N), ()
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where d(Txn,Txn+) ≤m(xn,xn+). So by Eqs. () and (), we have

d(fxn, gxn+) < α(Txn,Txn+)d(fxn, gxn+) < r,

that is, d(Txn+,Txn+) < r, which is a contradiction. Hence

lim
n→∞d(Txn,Txn+) = . ()

We now show that {Txn} is a Cauchy sequence.
Suppose that it is not. Then there exists an ε >  such that for each positive integer

m, n with m > n > N , we have d(Txm,Txn) ≥ ε. Choose a number δ,  < δ < ε for which
contractive condition () is satisfied. Since d(Txn,Txn+) → , there exists integerN =N(δ)
such that d(Txi,Txi+) < δ

 for all i ≥ N . With this choice of N , pick m, n with m > n > N
such that

d(Txm,Txn) ≥ ε > ε + δ, ()

in which it is clear thatm – n > . Otherwise, we have

d(Txm,Txn) ≤
∑
i=

d(Txn+i,Txn+i+) < δ < ε + δ,

which contradicts (). Also from (), it follows that

d(Txm,Txn+) > ε +
δ


.

Without loss of generality, we may assume that n is even. Suppose that

d(Txn,Txm–) < ε +
δ


,

then

d(Txn,Txm) ≤ d(Txn,Txm–) + d(Txm–,Txm)

< ε +
(

δ



)
+

(
δ



)

< ε + δ,

which is a contradiction to (). So we have

d(Txn,Txm–) ≥ ε +
(

δ



)
.

Similarly, suppose that

d(Txn,Txm–) < ε +
(

δ



)
,
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then

d(Txn,Txm) ≤ d(Txn,Txm–) + d(Txm–,Txm–) + d(Txm–,Txm)

< ε +
(

δ



)
+

(
δ



)
+

(
δ



)

< ε + δ,

which is a contradiction to (). So we have

d(Txn,Txm–) ≥ ε +
(

δ



)
.

Thus, there exists the smallest odd integer j > n such that

d(Txn,Txj) ≥ ε +
(

δ



)
, ()

and hence,

d(Txn,Txj–) < ε +
(

δ



)
.

Now,

d(Txn,Txj) ≤ d(Txn,Txj–) + d(Txj–,Txj–) + d(Txj–,Txj)

< ε +
(

δ



)
+

(
δ



)
+

(
δ



)

= ε +
(
δ


)
.

Thus, there exists an odd integer j ∈ (n,m) such that

ε +
(

δ



)
≤ d(Txn,Txj) < ε +

(
δ


)
. ()

Since we have

ε < d(Txn,Txj)≤m(xn,xj)

= max

{
d(Txn,Txj),



[
d(Txn, fxn) + d(Txj, gxj)

]
,



[
d(Txn, gxj) + d(Txj, fxn)

]}

< d(Txn,Txj) +
(

δ



)

< ε + δ.
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So, using () and assumption (iii), we get

d(fxn, gxj) ≤ α(Txn,Txj)d(fxn, gxj) < ε,

that is, d(Txn+,Txj+) < ε. But then

d(Txn,Txj) ≤ d(Txn,Txn+) + d(Txn+,Txj+) + d(Txj+,Txj)

<
(

δ



)
+ ε +

(
δ



)
= ε +

(
δ



)
,

which contradicts (). Therefore, {Txn} is a Cauchy sequence. Since X is (f , g,T)-orbitally
complete, so there exists a point z ∈ X such that Txn → z as n → ∞. Consequently,
fxn → z and gxn+ → z.
Step : We show that z is common fixed point of (f , g,T). In view of assumption (v),

without loss of generality, let the pair (f ,T) be absorbing and reciprocal continuous. Then
the reciprocal continuity of f and T implies that

lim
n→∞ fTxn = fz and lim

n→∞Tfxn = Tz.

Since T is f -absorbing, so there exists an R >  such that

d(fxn, fTxn) ≤ Rd(fxn,Txn).

Letting n → ∞, we get fTxn → z. Similarly, since f is T-absorbing, so we have

d(Txn,Tfxn) ≤ Rd(fxn,Txn),

letting n → ∞, we get Tfxn → z. By the uniqueness of the limit, we have z = fz = Tz.
Now, suppose that z �= gz, then by assumption (iv) and Eq. (), we have

d(fxn, gz) ≤ α(Txn,Tz)d(fxn, gz)

< max

{
d(Txn,Tz),



[
d(Txn, fxn) + d(Tz, gz)

]
,



[
d(Txn, gz) + d(Tz, fxn)

]}
.

Letting n→ ∞, we get d(z, gz) ≤ 
d(z, gz), which implies that z = gz. Thus, z is a common

fixed point of f , g , and T . This completes the proof of the theorem. �

By putting f = g and T = I (identity map) in Theorem ., we get the following result as
a corollary.

Corollary . Let (X,d) be an f -orbitally complete metric space,where f is a self-mapping
on X. Also, let α : X ×X → [,∞) be a mapping. Assume the following:

(i) f is α-admissible;
(ii) there exists an x ∈ X such that α(x, fx) ≥ ;

http://www.fixedpointtheoryandapplications.com/content/2013/1/260


Patel et al. Fixed Point Theory and Applications 2013, 2013:260 Page 8 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/260

(iii) for given ε > , there exists a δ >  such that

ε ≤m(x, y) < ε + δ �⇒ α(x, y)d(fx, fy) < ε,

wherem(x, y) =max

{
d(x, y),



[
d(x, fx) + d(y, fy)

]
,


[
d(x, fy) + d(y, fx)

]}
;

(iv) on the f -orbit of x, we have α(xn,xj) ≥  for all n even and j > n odd.
Then, f has a fixed point in the f -orbit {xn} of x, or f has a fixed point z and limn→∞ xn = z.

Example . Let X = [, ] be endowed with the standard metric d(x, y) = |x – y| for all
x, y ∈ X. Define f : X → X by

fx =

⎧⎪⎪⎨
⎪⎪⎩
 if x ∈ {,  },
 if x ∈ (,  ) – { 

 },

 if x ∈ [  , ].

Then f is not a Meir-Keeler contraction. To see this consider ε = 
 , x =


 , and y = 

 ,
then for any δ > , we have ε ≤m(x, y) < ε + δ, but d(fx, fy) = d(,  ) =


 > ε. However, f is

a generalized Meir-Keeler α-contraction, where α : X ×X → [,∞) is defined by

α(x, y) =

⎧⎨
⎩
 if x, y ∈ [  , ],

, otherwise.

Clearly, f has two fixed points, namely x =  and x = 
 . Notice that α(  , ) =  < .

For the uniqueness of the fixed point of a generalized Meir-Keeler α-contractive map-
ping, we will consider the following hypothesis.
(H) For all fixed points x and y of (f , g,T), we have α(Tx,Ty)≥ .

Theorem. Adding condition (H) to the hypotheses of Theorem . (resp.,Corollary .),
we obtain the uniqueness of the common fixed point of f , g , and T .

Proof Let z be the common fixed point obtained as Txn → z and u is another common
fixed point. Then, () and condition (H) yield to

d(z,u) = d(fz, gu)

≤ α(Tz,Tu)d(fz, gu)

<max

{
d(Tz,Tu),



[
d(Tz, fz) + d(Tu, gu)

]
,


[
d(Tz, gu) + d(Tu, fz)

]}

= d(z,u).

Thus, we reach d(z,u) < d(z,u), and hence z = u. �

The following example illustrates Theorem ..

http://www.fixedpointtheoryandapplications.com/content/2013/1/260
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Example . Let X = [, ] and d be the usual metric on X. Define f , g,T : X → X as
follows:

fx =

⎧⎨
⎩
 if x ∈ [, ],

 if x > ,
gx =

⎧⎨
⎩
 if x ∈ [, ),

 if x≥ ,
and

Tx =

⎧⎪⎪⎨
⎪⎪⎩
 if x = ,

 if x ∈ [, ] – {, },
 if x = .

In this example the mappings f , g , and T do not satisfy the general Meir-Keeler contrac-
tive condition. To see this, consider ε = 

 , x =  and y ∈ [, ), then for any δ > , we have
ε ≤ m(x, y) < ε + δ, but d(fx, gy) = d(, ) =  > ε. However, f , g , and T satisfy the general-
izedMeir-Keeler α-contractive condition () with the mapping α : T(X)×T(X)→ [,∞)
defined by

α(u, v) =

⎧⎨
⎩
 if u, v ∈ {, },
, otherwise.

Also, all the hypotheses of Theorem . with condition (H) are satisfied, and clearly x = 
is our unique common fixed point. Indeed, hypothesis (ii) is satisfied with x = , and
here Txn =  is a sequence, for which hypotheses (iii) and (iv) are satisfied. Also in view of
the sequence xn = , here both pairs (f ,T) and (g,T) are reciprocal continuous as well as
absorbing. Notice that x =  is the point of discontinuity of the mappings g and T .

Theorem . The conclusion of Theorem . remains true if the assumption (v) of Theo-
rem . is replaced by one of the following conditions:
(a) d(gx,Ty)≤max{d(y, gx),d(y,Tx)} for all x, y ∈ X with right-hand side positive.
(b) d(fx,Ty) ≤max{d(y,Tx),d(y, fx)} for all x, y ∈ X with right-hand side positive.

Proof In view of Theorem ., we have that {Txn} is a Cauchy sequence, and Txn → z ∈ X
as n→ ∞, and, consequently, fxn and gxn+ also converge to z as n→ ∞.
Clearly, Txn �= z for infinitely many n. We can as well assume that Txn �= z for all n.
If (a) holds, then

d(gxn+,Tz) ≤max
{
d(z, gxn+),d(z,Txn+)

}
.

Letting n → ∞, we get d(z,Tz) ≤ , i.e., Tz = z. If (b) holds, then also Tz = z.
Now, suppose that z �= gz. Since Txn �= Txn+, so by assumption (iv) and Eq. (), we have

d(fxn, gz) ≤ α(Txn,Tz)d(fxn, gz)

< max

{
d(Txn,Tz),



[
d(Txn, fxn) + d(Tz, gz)

]
,



[
d(Txn, gz) + d(Tz, fxn)

]}
,

letting n → ∞, we get d(z, gz) ≤ 
d(z, gz), which implies that z = gz.

http://www.fixedpointtheoryandapplications.com/content/2013/1/260
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Now, let fz �= z = Tz, then again by the process above, we have

d(fz, gxn+) ≤ α(Txn+,Tz)d(fz, gxn+)

< max

{
d(Tz,Txn+),



[
d(Tz, fz) + d(Txn+, gxn+)

]
,



[
d(Tz, gxn+) + d(Txn+, fz)

]}
,

letting n→ ∞, we get d(fz, z) ≤ 
d(z, fz), which implies that fz = z. Thus, z is the common

fixed point of f , g , and T . �

The following example demonstrates Theorem ..

Example . Let X = [, ] and d be the usual metric on X. Define f , g,T : X → X as
follows:

fx =

⎧⎪⎪⎨
⎪⎪⎩
 if x ∈ [,  ],

 if x ∈ (  ,


 ),


 if x ∈ [  , ],

gx =

⎧⎪⎪⎨
⎪⎪⎩

x
 if x ∈ [,  ],

x if x ∈ (  ,

 ),

 if x ∈ [  , ],

and

Tx =

⎧⎪⎪⎨
⎪⎪⎩

x
 if x ∈ [,  ],

 if x ∈ (  ,


 ),

x
 if x ∈ [  , ].

Here themappings f , g , andT satisfy all the conditions of Theorem.with themapping
α : T(X)× T(X)→ [,∞) defined by

α(u, v) =

⎧⎨
⎩
 if (u, v) ∈ [, 

 ]× [  ,

 ],

, otherwise.

Clearly, none of the pairs (f ,T) and (g,T) are reciprocal continuous. To see this con-
sider the sequence xn = 

 + 
n , then limn→∞ fxn = limn→∞ Txn = 

 , but limn→∞ fTxn =
limn→∞ f (  + 

n ) =

 �=  = f (  ). Therefore, (f ,T) is not reciprocal continuous. To see

that (g,T) is not reciprocal continuous, one can consider the sequence yn = 
 + 

n . Here,
the involved mappings satisfy condition (a) of Theorem ., and they have the unique
common fixed x = .

Remark . Theorem . generalizes and extends Theorem . of Rao and Rao [].

Theorem . Theorem . remains true if we replace m(x, y) by M(x, y) and condition
(iv) by the following (iv′):

(iv′) α(Txn,Txn+) ≥  for all n and Txn → x implies that α(Txn,Tx) ≥ K for all n, where
K > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/260
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Proof The proof of z = fz = Tz follows from Theorem .. Now, suppose that z �= gz, then
by the help of condition (iv’), we have

d(fxn, gz) ≤ K–α(Txn,Tz)d(fxn, gz) < K–M(xn, z)

= K–max

{
d(Txn,Tz),d(Txn, fxn),d(Tz, gz),



[
d(Txn, gz) + d(Tz, fxn)

]}
.

By letting n→ ∞, we conclude that d(z, gz) ≤ K–d(z, gz) < d(z, gz), and hence z = gz. Thus,
z is a common fixed point of f , g , and T . �

Example . above also satisfies Theorem ..

Remark . Theorem . generalizes and extends Theorem . of Rao and Rao [].

By taking T = I (identity map) in Theorem ., we derive the following result as a corol-
lary.

Corollary . Let (X,d) be an (f , g)-orbitally complete metric space, where f , g are self-
mappings of X. Also, let α : X ×X → [,∞) be a mapping. Assume the following:

(i) (f , g) is α-admissible, and there exists an x ∈ X such that α(x, fx) ≥ ;
(ii) for given ε > , there exists a δ >  such that

ε ≤M(x, y) < ε + δ implies that α(x, y)d(fx, gy) < ε,

where

M(x, y) =
{
d(x, y),d(x, fx),d(y, gy),



[
d(x, gy) + d(y, fx)

]}
;

(iii) on the (f , g)-orbit of x, we have α(xn,xj) ≥  for all n even and j > n odd;
(iv) α(xn,xn+) ≥  for n, and xn → x implies that α(xn,x)≥ K for all n, where K > .

Then, the pair (f , g) has a common fixed point provided it is absorbing as well as reciprocal
continuous.

Remark . Corollary . improves Theorem  contained in [].

The next result is a common fixed point theorem for four self-mappings.

Theorem . Let f , g , S, and T be four self-mappings on a complete metric space (X,d)
such that f (X)⊆ T(X) and g(X)⊆ S(X), and they satisfy the following conditions:

(i) the pair (f , g) is αS,T -admissible;
(ii) there exists a point x ∈ X such that α(Sx, fx) ≥ ;
(iii) for given ε > , there exists a δ >  such that

ε ≤m(x, y) < ε + δ �⇒ α(Sx,Ty)d(fx, gy) < ε, ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/260
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where

m(x, y) =max

{
d(Sx,Ty),d(fx,Sx),d(gy,Ty),



[
d(fx,Ty) + d(gy,Sx)

]}
;

(iv) there exists a sequence {xn} in X such that α(Sxn,Txj) ≥  for all n even and j > n
odd;

Then f , g , S, and T have a common fixed point provided both the pair (f ,S) and (g,T) are
absorbing as well as reciprocal continuous.

Proof Let x ∈ X such that α(Sx, fx) ≥ . Define sequences {xn} and {yn} in X as

yn = fxn = Txn+; yn+ = gxn+ = Sxn+.

This can be done since f (X)⊆ T(X) and g(X)⊆ S(X).
Since (f , g) is αS,T -admissible, we have

α(Sx, fx) = α(Sx,Tx) ≥  �⇒ α(fx, gx) ≥  and α(gx, fx) ≥ ,

which gives

α(Tx,Sx) ≥  = α(y, y) ≥ .

Again by (i), we have

α(Tx,Sx) ≥  �⇒ α(fx, gx) ≥  and α(gx, fx) ≥ ,

which gives

α(Sx,Tx) = α(y, y) ≥ .

Inductively, we obtain

α(yn, yn+) ≥ , n = , , , . . . , ()

that is, α(Sxn+,Txn+) ≥ , when n is odd and α(Txn+,Sxn+)≥  when n is even.
By assumption (iii), we have

α(Sx,Ty)d(fx, gy) <m(x, y). ()

Now, we claim that {yn} is a Cauchy sequence.
Case I: If yn = yn+ for some n. We first assume that n is odd, i.e., ym+ = ym+ and

suppose that ym+ �= ym+, then by applying () and (), we get

d(ym+, ym+) = d(fxm+, gxm+)

≤ α(Sxm+,Txm+)d(fxm+, gxm+)

http://www.fixedpointtheoryandapplications.com/content/2013/1/260
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< max

{
d(Sxm+,Txm+),d(fxm+,Sxm+),d(gxm+,Txm+),



[
d(fxm+,Txm+) + d(gxm+,Sxm+)

]}

= max

{
d(ym+, ym+),d(ym+, ym+),d(ym+, ym+),



[
d(ym+, ym+) + d(ym+, ym+)

]}

=


d(ym+, ym+),

a contradiction. Hence ym+ = ym+. By proceeding in this manner, we obtain ym+k =
ym+ for all k ≥ . Similarly, when we assume n as even, then we obtain ym+k = ym for all
k ≥ , and so {yn} is a Cauchy sequence.
Case II: If yn �= yn+ for each n. Applying () and (), we get

d(yn, yn+) = d(fxn, gxn+)

≤ α(Sxn,Txn+)d(fxn, gxn+)

< max

{
d(Sxn,Txn+),d(fxn,Sxn),d(gxn+,Txn+),



[
d(fxn,Txn+) + d(gxn+,Sxn)

]}

= max

{
d(yn–, yn),d(yn, yn–),d(yn+, yn),



[
d(yn, yn) + d(yn+, yn–)

]}

= d(yn–, yn).

Similarly, we obtain d(yn–, yn) < d(yn–, yn–). Thus, {d(yn, yn+)} is a strictly decreasing
sequence of positive numbers, and, therefore, tends to a limit r ≥ . If possible, suppose
that r > . Then given δ > , there exists a positive integer N such that for each n≥N , we
have

r ≤ d(yn, yn+) = d(Txn+,Sxn+) < r + δ, ()

where d(Sxn+,Txn+) ≤m(xn+,xn+). Then by applying (), we have

d(fxn+, gxn+)≤ α(Sxn+,Txn+)d(fxn+, gxn+) < r,

that is, d(yn+, yn+) < r, which is a contradiction, and hence,

lim
n→∞d(yn, yn+) = . ()

Now, we show that {yn} is a Cauchy sequence. Suppose that it is not, then there exists an
ε >  such that for each integer N , there exist integers m > n >N such that d(ym, yn) ≥ ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/260


Patel et al. Fixed Point Theory and Applications 2013, 2013:260 Page 14 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/260

Choose a number δ,  < δ < ε, for which contractive condition () is satisfied. By virtue of
(), there exists an integer N such that d(yi, yi+) < δ

 for all i ≥ N . With this choice of N ,
pick integers m > n >N such that

d(ym, yn) ≥ ε > δ + ε, ()

in which it is clear thatm – n > . Also from (), it follows that d(ym, yn+) > ε + δ
 .

If not, then

d(ym, yn) ≤ d(ym, yn+) + d(yn+, yn)

< ε +
(

δ



)
+

(
δ



)
< ε,

which is a contradiction. Without loss of generality, we can assume that n is even. From
(), there exists the smallest odd integer j > n such that

d(yn, yj) ≥ ε +
(

δ



)
, ()

and hence d(yn, yj–) < ε + δ
 . So we have

d(yn, yj) ≤ d(yn, yj–) + d(yj–, yj–) + d(yj–, yj)

< ε +
(

δ



)
+

(
δ



)
+

(
δ



)

= ε +
(
δ


)
.

Thus, there exists an odd integer j ∈ (n,m) such that

ε +
(

δ



)
≤ d(yn, yj) < ε +

(
δ


)
. ()

Therefore, we have

ε < d(yn, yj) = d(Txn+,Sxj+)≤m(xj+,xn+)

= max

{
d(Sxj+,Txn+),d(fxj+,Sxj+),d(gxn+,Txn+),



[
d(fxj+,Txn+) + d(gxn+,Sxj+)

]}

= max

{
d(yj, yn),d(yj+, yj),d(yn+, yn),



[
d(yj+, yn) + d(yn+, yj)

]}

< d(yj, yn) +
δ


< ε + δ,

so that by () and assumption (iv), we get

d(fxj+, gxn+) ≤ α(Sxj+,Txn+)d(fxj+, gxn+) < ε,

http://www.fixedpointtheoryandapplications.com/content/2013/1/260
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i.e., d(yn+, yj+) < ε. But then

d(yn, yj) ≤ d(yn, yn+) + d(yn+, yj+) + d(yj+, yj)

<
(

δ



)
+ ε +

(
δ



)

= ε +
(

δ



)
,

which contradicts (). Therefore, {yn} is a Cauchy sequence. By the completeness of X,
there exists a z ∈ X such that yn → z as n → ∞ and, consequentially, fxn, Txn+, gxn+
and Sxn+ → z as n→ ∞.
Since the pair (f ,S) is reciprocal continuous and absorbing, so by reciprocal continuity,

we have fSxn → fz and Sfxn → Sz as n → ∞. By absorbing property, there is an R > 
such that d(fxn, fSxn) ≤ Rd(fxn,Sxn) and d(Sxn,Sfxn) ≤ Rd(fxn,Sxn), which letting
n → ∞ gives fSxn → z and Sfxn → z. Thus, we have z = fz = Sz. Similarly, the absorbing
and reciprocal continuity of the pair (g,T) provides us z = gz = Tz. Thus, z is a common
fixed point of f , g , S, and T . �

Theorem . Adding the condition (H-): For all common fixed points x and y of f , g , S,
and T , α(Sx,Ty) ≥ , to the hypotheses of Theorem ., the uniqueness of the fixed point is
obtained.

Remark . Theorem . generalizes, extends and improves the results of Jungck (The-
orem ., []), Cho et al. (Theorem ., []) and Rao and Rao [].
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