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Abstract
The aim of this paper is to obtain coupled fixed point theorems for self-mappings
defined on an ordered closed and convex subset of a quasi-Banach space. Our
method of proof is different and constructive in nature. As an application of our
coupled fixed point results, we establish corresponding coupled coincidence point
results without any type of commutativity of underlying maps. Moreover, an
application to integral equations is given to illustrate the usability of the obtained
results.
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1 Introduction
It is well known that the Banach contraction principle is one of themost important results
in classical functional analysis. It is widely considered as the source of metric fixed point
theory. Also, its significance lies in its vast applicability in a number of branches of math-
ematics (see [–]). The study of coupled fixed points in partially ordered metric spaces
was first investigated in  byGuo and Lakshmikantham [], and then it attractedmany
researchers; see, for example, [, ] and references therein. Recently, Bhaskar and Laksh-
mikantham [] presented coupled fixed point theorems for contractions in partially or-
deredmetric spaces. Luong andThuan [] presented nice generalizations of these results.
Alsulami et al. [] further extended the work of Luong and Thuan to coupled coincidences
in partial metric spaces. For more related work on coupled fixed points and coincidences,
we refer the readers to recent results in [–].
In recent years, several authors have obtained coupled fixed point results for various

classes of mappings on the setting of many generalized metric spaces. The concept of
metric-type space appeared in some works, such as Czerwik [], Khamsi [] and Khamsi
and Hussain []. Metric-type space is a symmetric space with some special properties.
A metric-type space can also be regarded as a triplet (X,d,K ), where (X,d) is a symmetric
space and K ≥  is a real number such that

d(x, z) ≤ K
(
d(x, y) + d(y, z)

)
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for any x, y, z ∈ X. In this paper, we adopt a different and constructive method to prove
some coupled fixed and coincidence point results for contractive mappings defined on an
ordered closed convex subset of a quasi-Banach space.Moreover, an application to integral
equations is given to illustrate the usability of the obtained results.

2 Preliminaries
The aim of this section is to present some notions and results used in the paper.

Definition . Let X be a non-empty set and d : X × X → [, +∞). (X,d) is a symmetric
space (also called E-space) if and only if it satisfies the following conditions:
(W) d(x, y) =  if and only if x = y;
(W) d(x, y) = d(y,x) for any x, y ∈ X .

Symmetric spaces differ from more convenient metric spaces in the absence of triangle
inequality. Nevertheless, many notions can be defined similar to those in metric spaces.
For instance, in a symmetric space (X,d), the limit point of a sequence {xn} is defined by

lim
n→+∞d(xn,x) =  if and only if lim

n→+∞xn = x.

Also, a sequence {xn} ⊂ X is said to be a Cauchy sequence if, for every given ε > , there
exists a positive integer n(ε) such that d(xm,xn) < ε for allm,n≥ n(ε). A symmetric space
(X,d) is said to be complete if and only if each of its Cauchy sequences converges to some
x ∈ X.

Definition . Let X be a nonempty set and let K ≥  be a given real number. A function
d : X × X → R+ is said to be of metric type if and only if for all x, y, z ∈ X the following
conditions are satisfied:
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x);
() d(x, z) ≤ K [d(x, y) + d(y, z)].

A triplet (X,d,K ) is called a metric-type space.

We observe that a metric-type space is included in the class of symmetric spaces. So the
notions of convergent sequence, Cauchy sequence and complete space are defined as in
symmetric spaces.
Next, we give some examples of metric-type spaces.

Example . [] The space lp with ( < p < )

lp =

{
{xn} ⊂R :

+∞∑
n=

|xn|p < +∞
}
,

together with the function d : lp × lp →R, defined by

d(x, y) =

( +∞∑
n=

|xn – yn|p
)/p

,
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where x = {xn}, y = {yn} ∈ lp, is ametric-type space. By an elementary calculation, we obtain
d(x, y) ≤ /p[d(x, y) + d(y, z)].

Example . [] The space Lp ( < p < ) of all real functions x : [, ] →R such that

∫ 



∣∣x(t)∣∣p dt < +∞

is a metric-type space if we take

d(x, y) =
(∫ 



∣∣x(t) – y(t)
∣∣p dt)/p

for each x, y ∈ Lp. The constant K is again equal to /p.

For more examples of metric-type (or b-metric) spaces, we refer to [, , ]. We recall
that a quasi-norm ‖ · ‖ defined on a real vector space X is a mapping X →R+ such that:
() ‖x‖ >  if and only if x 	= ;
() ‖λx‖ = |λ|‖x‖ for λ ∈R and x ∈ X ;
() ‖x + y‖ ≤ K [‖x‖ + ‖y‖] for all x, y ∈ X , where K ≥  is a constant independent of x, y.

A triplet (X,‖ · ‖,K ) is called a quasi-Banach space.
What makes quasi-Banach spaces different from the more classical Banach spaces is

the triangle inequality. In quasi-Banach spaces, the triangle inequality is allowed to hold
approximately: ‖x + y‖ ≤ K (‖x‖ + ‖y‖) for some constant K ≥ . This relaxation leads to
a broad class of spaces. Lebesgue spaces Lp are Banach spaces for  ≤ p ≤ +∞ and only
quasi-Banach spaces for  < p < .

Remark . Let (X,‖ · ‖,K ) be a quasi-Banach space, then the mapping d : X × X → R+

defined by d(x, y) = ‖x– y‖ for all x, y ∈ X is a metric-type (b-metric). In general, a metric-
type (b-metric) function d is not continuous (see [, ]).

The following result is useful for some of the proofs in the paper.

Lemma . Let (X,d,K ) be a metric-type space and let {xk}nk= ⊂ X. Then

d(xn,x) ≤ Kd(x,x) + · · · +Kn–d(xn–,xn–) +Kn–d(xn–,xn).

From Lemma ., we deduce the following lemma.

Lemma . Let {yn} be a sequence in a metric-type space (X,d,K ) such that

d(xn,xn+) + d(yn, yn+) ≤ λ
[
d(xn–,xn) + d(yn–, yn)

]
for some λ,  < λ < /K , and each n ∈N.Then {xn} and {yn} are two Cauchy sequences in X .

Definition . (Mixed monotone property) Let (X,
) be a partially ordered set and
F : X×X → X.We say that themapping F has themixedmonotone property if F is mono-
tone non-decreasing in its first argument and is monotone non-increasing in its second
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Hussain et al. Fixed Point Theory and Applications 2013, 2013:261 Page 4 of 18
http://www.fixedpointtheoryandapplications.com/content/2013/1/261

argument. That is, for any x, y ∈ X,

x,x ∈ X, x 
 x ⇒ F(x, y) 
 F(x, y) (.)

and

y, y ∈ X, y 
 y ⇒ F(x, y) � F(x, y). (.)

Definition . [] Let F : X ×X → X. We say that (x, y) ∈ X ×X is a coupled fixed point
of F if F(x, y) = x and F(y,x) = y.

Lakshmikantham and Ćirić [] introduced the following concept of a mixed g-
monotone mapping.

Definition . [] Let (X,
) be a partially ordered set, F : X × X → X and g : X → X.
We say that F has the mixed g-monotone property if F is monotone g-non-decreasing in
its first argument and is monotone g-non-increasing in its second argument, that is, for
any x, y ∈ X,

x,x ∈ X, g(x) ≤ g(x) implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, g(y) ≤ g(y) implies F(x, y) ≥ F(x, y).

Note that if g is the identity mapping, then this definition reduces to Definition ..

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of
the mappings F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y).

3 Main results
Let (C,
) be an ordered subset of a quasi-Banach space (X,‖·‖,K ). Throughout this paper,
we assume that the partial order 
 have the following properties:
(A) If x 
 y and λ ∈R+, then λx
 λy;
(B) If x 
 y and z ∈ C, then x + z 
 y + z.
The following theorem is our first main result.

Theorem . Let (C,
) be an ordered closed and convex subset of a quasi-Banach space
(X,‖ · ‖,K ) where  ≤ K <

√
 and d : X × X → R+ is such that d(x, y) = ‖x – y‖. Assume

that F : C×C → C is amapping with the mixedmonotone property on C and suppose that
there exist non-negative real numbers α, β and γ with  ≤ γ +α +β + < /K such that

d
(
F(x, y),F(u, v)

) ≤ αd
(
x,F(x, y)

)
+ βd

(
y,F(y,x)

)
+

γ


[
d(x,u) + d(y, v)

]
(.)

for all x, y,u, v ∈ C, for which u 
 x and y
 v. Also suppose that either

http://www.fixedpointtheoryandapplications.com/content/2013/1/261
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(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ .

If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then there exist x, y ∈ C
such that x = F(x, y) and y = F(y,x), that is, F has a coupled fixed point in C.

Proof Let x, y ∈ C be such that x 
 F(x, y) and y � F(y,x). Then

x =
x + x



 x + F(x, y)


and y =

y + y


� y + F(y,x)


.

Define x, y ∈ X such that x = x+F(x,y)
 and y = y+F(y,x)

 . Similarly, x = x+F(x,y)
 and

y = y+F(y,x)
 . We construct two sequences {xn} and {yn} such that

yn+ =
yn + F(yn,xn)


for all n≥ , (.)

and

xn+ =
xn + F(xn, yn)


for all n ≥ . (.)

Let us prove that

xn 
 xn+ and yn � yn+ for all n≥ . (.)

Since

x 
 x + F(x, y)


= x and y � y + F(y,x)


= y,

then (.) hold for n = . Suppose that (.) hold for n ≥ . Since F has the mixed mono-
tone property, so we have

xn+ =
xn + F(xn, yn)



 xn + F(xn+, yn)




 xn+ + F(xn+, yn)



 xn+ + F(xn+, yn+)


= xn+

and

yn+ =
yn + F(yn,xn)


� yn+ + F(yn,xn)



� yn+ + F(yn+,xn)


� yn+ + F(yn+,xn+)


= yn+.

Then, by mathematical induction, it follows that (.) hold for all n≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/261
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By (.) and (.) we have

xn+ – xn =
xn – xn– + [F(xn, yn) – F(xn–, yn–)]



and

yn+ – yn =
yn – yn– + [F(yn,xn) – F(yn–,xn–)]


.

Thus

‖xn+ – xn‖ ≤ K‖xn – xn–‖ +K‖F(xn, yn) – F(xn–, yn–)‖


and

‖yn+ – yn‖ ≤ K‖yn – yn–‖ +K‖F(yn,xn) – F(yn–,xn–)‖


.

Therefore


K
d(xn+,xn) – d(xn,xn–) ≤ d

(
F(xn, yn),F(xn–, yn–)

)
(.)

and


K
d(yn+, yn) – d(yn, yn–) ≤ d

(
F(yn,xn),F(yn–,xn–)

)
. (.)

Also,

xn– – F(xn–, yn–) = 
(
xn– –

xn– + F(xn–, yn–)


)
= (xn– – xn).

Then

d
(
xn–,F(xn–, yn–)

)
= d(xn–,xn). (.)

Similarly,

d
(
yn–,F(yn–,xn–)

)
= d(yn–, yn). (.)

On the other hand, by (.) and (.), we have

d
(
F(xn–, yn–),F(xn, yn)

) ≤ αd
(
xn–,F(xn–, yn–)

)
+ βd

(
yn–,F(yn–,xn–)

)
+

γ


[
d(xn–,xn) + d(yn–, yn)

]
and

d
(
F(yn–,xn–),F(yn,xn)

) ≤ αd
(
yn–,F(yn–,xn–)

)
+ βd

(
xn–,F(xn–, yn–)

)
+

γ


[
d(yn–, yn) + d(xn–,xn)

]
.
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Hence, by (.), (.), (.) and (.), we have


K
d(xn+,xn) – d(xn,xn–) ≤ αd(xn–,xn) + βd(yn–, yn)

+
γ


[(
d(xn–,xn) + d(yn–, yn)

)]
and


K
d(yn+, yn) – d(yn, yn–) ≤ αd(yn–, yn) + βd(xn–,xn)

+
γ


[(
d(yn–, yn) + d(xn–,xn)

)]
.

Thus

d(xn+,xn) + d(yn+, yn) ≤ K

(γ + α + β + )

(
d(xn–,xn) + d(yn–, yn)

)
.

By Lemma . we conclude that {xn} and {yn} are two Cauchy sequences. Then there exist
x∗, y∗ ∈ C such that xn → x∗ and yn → y∗.
At first, we assume that F is continuous. Hence

x∗ = lim
n→∞xn = lim

n→∞F(xn–, yn–) = F
(
x∗, y∗).

Similarly,

y∗ = F
(
y∗,x∗).

That is, F has a coupled fixed point.
Now we assume that (b) holds. Since xn → x∗ and yn → y∗ as n → ∞, then (b) implies

that xn 
 x∗ and y∗ 
 yn for all n ≥ . Now, by (.) with x = xn, y = yn, u = x∗, v = y∗, we
have

d
(
F(xn, yn),F

(
x∗, y∗)) ≤ αd

(
xn,F(xn, yn)

)
+βd

(
yn,F(yn,xn)

)
+

γ


[
d
(
xn,x∗)+d(

yn, y∗)],
which implies

d
(
F(xn, yn),F

(
x∗, y∗)) ≤ αd(xn,xn+) + βd(yn, yn+) +

γ


[
d
(
xn,x∗) + d

(
yn, y∗)].

Taking the limit as n→ ∞ in the above inequality, we have

lim
n→∞d

(
F(xn, yn),F

(
x∗, y∗)) = .

Also, by (.) we get limn→∞ F(xn, yn) = x∗. Now we can write

d
(
x∗,F

(
x∗, y∗)) ≤ K lim

n→∞d
(
x∗,F(xn, yn)

)
+K lim

n→∞d
(
F(xn, yn),F

(
x∗, y∗)),

and hence d(x∗,F(x∗, y∗)) = . That is, x∗ = F(x∗, y∗). Similarly, y∗ = F(y∗,x∗) as required.
�

If in Theorem . we take α = β = , we obtain following result.

http://www.fixedpointtheoryandapplications.com/content/2013/1/261
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Corollary . Let (C,
) be an ordered closed and convex subset of a quasi-Banach space
(X,‖·‖,K ),where ≤ K <

√
, and let d : X×X →R+ be such that d(x, y) = ‖x–y‖.Assume

that F : C ×C → C is a mapping such that F has the mixed monotone property on X and
there exists a non-negative real number γ with  ≤ γ +  < /K such that

d
(
F(x, y),F(u, v)

) ≤ γ


[
d(x,u) + d(y, v)

]

for all x, y,u, v ∈ X, for which u
 x and y 
 v. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ .

If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then there exist x, y ∈ C
such that x = F(x, y) and y = F(y,x), that is, F has a coupled fixed point.

The following theorem is our second main result.

Theorem . Let (C,
) be an ordered closed and convex subset of a quasi-Banach space
(X,‖ · ‖,K ), where  ≤ K < +

√


 , and let d : X × X → R+ be such that d(x, y) = ‖x – y‖.
Assume that F : C×C → C is a mapping such that F has the mixed monotone property on
X and there exists a non-negative real number α with  ≤ α + K –  < /K such that

d
(
F(x, y),F(u, v)

) ≤ α



√
d(x,u) + d(y, v) +


K d

(
x,F(x, y)

)
d
(
y,F(y,x)

)
(.)

for all x, y,u, v ∈ C, for which u 
 x and y
 v. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ .

If there exist x, y ∈ X such that x 
 F(x, y) and F(y,x) 
 y, then F has a coupled
fixed point.

Proof Let x, y ∈ X be such that x 
 F(x, y) and y � F(y,x). Then

x =
(K – )x + x

K

 (K – )x + F(x, y)

K

and

y =
(K – )y + y

K
� (K – )y + F(y,x)

K
.
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Define x, y ∈ X such that x = (K–)x+F(x,y)
 and y = (K–)y+F(y,x)

K . Similarly, x =
x+F(x,y)

 and y = (K–)y+F(y,x)
K . We construct two sequences {xn} and {yn} such that

yn+ =
(K – )yn + F(yn,xn)

K
for all n≥  (.)

and

xn+ =
(K – )xn + F(xn, yn)

K
for all n≥ . (.)

Let us prove that

xn 
 xn+ and yn � yn+ for all n≥ . (.)

As

x 
 (K – )x + F(x, y)
K

= x and y � (K – )y + F(y,x)
K

= y,

so (.) hold for n = . Suppose that (.) hold for n ≥ . As F has the mixed monotone
property, so

xn+ =
(K – )xn + F(xn, yn)

K

 (K – )xn + F(xn+, yn)

K


 (K – )xn+ + F(xn+, yn)
K


 (K – )xn+ + F(xn+, yn+)
K

= xn+

and

yn+ =
(K – )yn+ + F(yn+,xn+)

K

 (K – )yn+ + F(yn+,xn)

K


 (K – )yn+ + F(yn,xn)
K


 (K – )yn + F(yn,xn)
K

= yn+.

Then, by mathematical induction, it follows that (.) holds for all n≥ .
By (.) and (.), we have

xn+ – xn =
(K – )(xn – xn–) + [F(xn, yn) – F(xn–, yn–)]

K

and

yn+ – yn =
(K – )(yn – yn–) + [F(yn,xn) – F(yn–,xn–)]

K
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/261
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Thus

‖xn+ – xn‖ ≤ (K – )‖xn – xn–‖ + ‖F(xn, yn) – F(xn–, yn–)‖


and

‖yn+ – yn‖ ≤ (K – )‖yn – yn–‖ + ‖F(yn,xn) – F(yn–,xn–)‖


.

Therefore

d(xn+,xn) – (K – )d(xn,xn–)≤ d
(
F(xn, yn),F(xn–, yn–)

)
(.)

and

d(yn+, yn) – (K – )d(yn, yn–) ≤ d
(
F(yn,xn),F(yn–,xn–)

)
. (.)

Also, we have

xn– – F(xn–, yn–) = K
(
xn– –

(K – )xn– + F(xn–, yn–)
K

)
= K (xn– – xn),

which implies

d
(
xn–,F(xn–, yn–)

)
= Kd(xn–,xn). (.)

Similarly, we have

d
(
yn–,F(yn–,xn–)

)
= Kd(yn–, yn). (.)

Now, by (.), (.) and (.), (.), we have

d(xn+,xn) – (K – )d(xn,xn–)

≤ α


√
d(xn–,xn) + d(yn–, yn) + d(xn–,xn)d(yn–, yn)

=
α


[(
d(xn–,xn) + d(yn–, yn)

)]
.

Similarly,

d(yn+, yn) – (K – )d(yn, yn–) ≤ α


[
(d(yn–, yn) + d(xn–,xn)

]
.

Thus

d(xn+,xn) + d(yn+, yn) ≤ 

(α + K – )

(
d(xn–,xn) + d(yn–, yn)

)
.

By Lemma ., we conclude that {xn} and {yn} are Cauchy sequences. Thus, there exist
x∗, y∗ ∈ C such that xn → x∗ and yn → y∗.

http://www.fixedpointtheoryandapplications.com/content/2013/1/261
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Now, proceeding as in the proof of Theorem ., we can prove that (x∗, y∗) is a coupled
fixed point of F . �

Since

α



√


K d
(
x,F(x, y)

)
d
(
y,F(y,x)

)

≤ α



√
d(x,u) + d(y, v) +


K d

(
x,F(x, y)

)
d
(
y,F(y,x)

)
,

so by Theorem . we obtain the following result.

Corollary . Let (C,
) be an ordered closed and convex subset of a quasi-Banach space
(X,‖ · ‖,K ), where  ≤ K < +

√


 , and let d : X × X → R+ be such that d(x, y) = ‖x – y‖.
Assume that F : C × C → C, F has the mixed monotone property on C and for a non-
negative real number α with  ≤ α + K –  < /K , F satisfies following inequality:

d
(
F(x, y),F(u, v)

) ≤ α
√


K

√
d
(
x,F(x, y)

)
d
(
y,F(y,x)

)

for all x, y,u, v ∈ X, for which u
 x and y 
 v. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y
 yn for all n≥ .

If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then F has a coupled
fixed point.

By taking K =  in the above proved results, we can obtain the following couple fixed
results in Banach spaces.

Corollary . Let (C,
) be an ordered closed and convex subset of a Banach space (X,‖·‖),
and let F : C × C → C be a mapping such that F has the mixed monotone property on C.
Suppose that there exist non-negative real numbers α, β and γ with  ≤ γ + α + β < 
such that

d
(
F(x, y),F(u, v)

) ≤ αd
(
x,F(x, y)

)
+ βd

(
y,F(y,x)

)
+

γ


[
d(x,u) + d(y, v)

]

for all x, y,u, v ∈ C with u
 x and y
 v. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ .
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If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then F has a coupled
fixed point.

Corollary . Let (C,
) be an ordered closed and convex subset of a Banach space
(X,‖ · ‖), and let F : C×C → C be amapping such that F has themixedmonotone property
on C. Suppose that there exists a non-negative real number γ with  ≤ γ <  such that

d
(
F(x, y),F(u, v)

) ≤ γ


[
d(x,u) + d(y, v)

]

for all x, y,u, v ∈ C with u
 x and y
 v. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ .

If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then F has a coupled
fixed point.

Corollary . Let (C,
) be an ordered closed and convex subset of a Banach space (X,‖·‖),
and let F : C × C → C be a mapping such that F has the mixed monotone property on C.
Suppose that there exists a non-negative real number α with  ≤ α <  such that

d
(
F(x, y),F(u, v)

) ≤ α



√
d(x,u) + d(y, v) +



d
(
x,F(x, y)

)
d
(
y,F(y,x)

)

for all x, y,u, v ∈ C with u
 x and y
 v. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ , (.)

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ . (.)

If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then F has a coupled
fixed point.

Corollary . Let (C,
) be an ordered closed and convex subset of a Banach space (X,‖·‖),
and let F : C × C → C be a mapping such that F has the mixed monotone property on C.
Suppose that there exists a non-negative real number α with  ≤ α <  such that

d
(
F(x, y),F(u, v)

) ≤ α
√




√
d
(
x,F(x, y)

)
d
(
y,F(y,x)

)

for all x, y,u, v ∈ C with u
 x and y
 v. Also suppose that either
(a) F is continuous, or

http://www.fixedpointtheoryandapplications.com/content/2013/1/261
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(b) C has the following property:

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n≥ .

If there exist x, y ∈ C such that x 
 F(x, y) and F(y,x) 
 y, then F has a coupled
fixed point.

The following lemma is an easy consequence of the axiom of choice (see p. [], AC:
For every function f : X → X, there is a function g such that D(g) = R(f ) and for every
x ∈D(g) , f (gx) = x).

Lemma . Let X be a nonempty set and g : X → X be a mapping. Then there exists a
subset E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one.

As an application of Theorem ., we now establish a coupled coincidence point result.

Theorem . Let (C,
) be a nonempty ordered subset of a quasi-Banach space (X,‖ ·
‖,K ),where ≤ K <

√
, and let d : X×X → R+ be such that d(x, y) = ‖x– y‖.Assume that

g : C → C and F : C × C → C are mappings where F has the mixed g-monotone property
on C, g(C) is closed and convex and F(C×C) ⊆ g(C). Suppose that there exist non-negative
real numbers α, β and a real number γ with  ≤ γ + α + β +  < /K such that

d
(
F(x, y),F(u, v)

) ≤ αd
(
gx,F(x, y)

)
+ βd

(
gy,F(y,x)

)
+

γ


[
d(gx, gu) + d(gy, gv)

]
(.)

for all x, y,u, v ∈ C, for which gu 
 gx and gy 
 gv. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {gxn} → gx, then gxn 
 gx for all n≥ ,

if a non-increasing sequence {gyn} → gy, then gy
 gyn for all n ≥ .

If there exist x, y ∈ C such that g(x) 
 F(x, y) and F(y,x) 
 g(y), then there exist
x, y ∈ C such that gx = F(x, y) and gy = F(y,x), that is, F and g have a coupled coincidence
point in C.

Proof Using Lemma ., there exists E ⊆ C such that g(E) = g(C) and g : E → C is one-to-
one. We define a mapping G : g(E)× g(E)→ g(E) by

G(gx, gy) = F(x, y), (.)

for all gx, gy ∈ g(E). As g is one-to-one on g(E) and F(C ×C) ⊆ g(C), so G is well defined.
Thus, it follows from (.) and (.) that

d
(
G(gx, gy),F(gu, gv)

)
+ αd

(
gx,G(gx, gy)

)
+ βd

(
gy,G(gy, gx)

)
≤ γ


[
d(gx, gu) + d(gy, gv)

]
(.)
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for all gx, gy, gu, gv ∈ g(C), for which g(x) 
 g(u) and g(y) � g(v). Since F has the mixed
g-monotone property, for all gx, gy ∈ g(C),

gx, gx ∈ g(C), g(x)
 g(x) implies G(gx, gy) 
G(gx, gy) (.)

and

gy, gy ∈ g(C), g(y) 
 g(y) implies G(gx, gy)�G(gx, gy), (.)

which imply that G has the mixed monotone property. Also, there exist x, y ∈ C such
that

g(x)
 F(x, y) and g(y) � F(y,x).

This implies that there exist gx, gy ∈ g(C) such that

g(x)
G(gx, gy) and g(y) �G(gy, gx).

Suppose that assumption (a) holds. Since F is continuous, G is also continuous. Using
Theorem . to the mapping G, it follows that G has a coupled fixed point (u, v) ∈ g(C)×
g(C).
Suppose that assumption (b) holds. We conclude similarly that the mapping G has a

coupled fixed point (u, v) ∈ g(C) × g(C). Finally, we prove that F and g have a coupled
coincidence point. Since (u, v) is a coupled fixed point of G, we get

u =G(u, v) and v =G(v,u). (.)

Since (u, v) ∈ g(C)× g(C), there exists a point (u, v) ∈ C ×C such that

u = gu and v = gv. (.)

It follows from (.) and (.) that

gu =G(gu, gv) and gv =G(gv, gu). (.)

Combining (.) and (.), we get

gu = F(u, v) and gv = F(v,u).

Thus, (u, v) is a required coupled coincidence point of F and g . This completes the
proof. �

Similarly, as an application of Theorem ., we can prove the following coupled coinci-
dence point result.
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Theorem . Let (C,
) be a nonempty ordered subset of a quasi-Banach space (X,‖ ·
‖,K ), where  ≤ K < +

√


 , and let d : X × X → R+ be such that d(x, y) = ‖x – y‖. Assume
that g : C → C and F : C × C → C are mappings where F has the mixed g-monotone
property on C, g(C) is closed and convex and F(C ×C) ⊆ g(C). Suppose that there exists a
real number α with  ≤ α + K –  < /K such that

d
(
F(x, y),F(u, v)

)
≤ α



√
d(gx, gu) + d(gy, gv) +


K d

(
gx,F(x, y)

)
d
(
gy,F(y,x)

)
(.)

for all x, y,u, v ∈ C, for which gu 
 gx and gy 
 gv. Also suppose that either
(a) F is continuous, or
(b) C has the following property:

if a non-decreasing sequence {gxn} → gx, then gxn 
 gx for all n≥ ,

if a non-increasing sequence {gyn} → gy, then gy
 gyn for all n ≥ .

If there exist x, y ∈ C such that g(x) 
 F(x, y) and F(y,x) 
 g(y), then F and g have
a coupled coincidence point in C.

4 Existence of a solution for a system of integral equations
We consider the space X = C([,T],R) of continuous functions defined on I = [,T] en-
dowed with the structure (X ,‖ · ‖) given by

‖u‖ = sup
t∈[,T]

∣∣u(t)∣∣
for all u ∈X . We endow X with the partial order 
 given by

x 
 y ⇐⇒ x(t)≤ y(t) for all t ∈ [,T].

Clearly, the partial order 
 satisfies conditions A and B. Further, it is known that (X ,d,
)
is regular [], that is,

if a non-decreasing sequence {xn} → x, then xn 
 x for all n≥ ,

if a non-increasing sequence {yn} → y, then y 
 yn for all n ≥ .

Motivated by the work in [, , , ], we study the existence of solutions for a system
of nonlinear integral equations using the results proved in the previous section.
Consider the integral equations in the following system.

x(t) = P(t) +
∫ T


S(t, r)

[
f
(
r,x(r)

)
+ k

(
r, y(r)

)]
dr,

y(t) = P(t) +
∫ T


S(t, r)

[
f
(
r, y(r)

)
+ k

(
r,x(r)

)]
dr.

(.)

We will consider system (.) under the following assumptions:
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(i) f ,k : [,T]×R →R are continuous;
(ii) P : [,T] →R is continuous;
(iii) S : [,T]×R → [,∞) is continuous;
(iv) there exist a,b, c >  with  ≤ a + b + c <  such that for all r ∈ [,T] and all

x(r), y(r),u(r), v(r) ∈ X with u(r) 
 x(r)
 y(r) 
 v(r), we have

 ≤ f
(
r, y(r)

)
– f

(
r,x(r)

) ≤ a
∣∣x(r) – F

(
x(r), y(r)

)∣∣ + b
∣∣y(r) – F

(
y(r),x(r)

)∣∣
+
c

[(
x(r) – u(r)

)
+

(
y(r) – v(r)

)]
,

 ≤ k
(
r,x(r)

)
– k

(
r, y(r)

) ≤ a
∣∣x(r) – F

(
x(r), y(r)

)∣∣ + b
∣∣y(r) – F

(
y(r),x(r)

)∣∣
+
c

[(
x(r) – u(r)

)
+

(
y(r) – v(r)

)]
,

where

F(x, y)(t) = P(t) +
∫ T


S(t, r)

[
f
(
r,x(r)

)
+ k

(
r, y(r)

)]
dr;

(v) there exist continuous functions α,γ : [,T] →R such that

α(t)≤ P(t) +
∫ T


S(t, r)

[
f
(
r,α(r)

)
+ k

(
r,γ (r)

)]
dr,

γ (t) ≥ P(t) +
∫ T


S(t, r)

[
f
(
r,γ (r)

)
+ k

(
r,α(r)

)]
dr;

(vi) assume that

sup
t∈[,T]

∫ T


S(t, r)dr ≤ /.

Theorem . Under assumptions (i)-(vi), system (.) has a solution in X , where X =
(C([,T],R)) is defined above.

Proof We consider the operator F :X  →X defined by

F(x,x)(t) = P(t) +
∫ T


S(t, r)

[
f
(
r,x(r)

)
+ k

(
r,x(r)

)]
dr

for all t, r ∈ [,T], x,x ∈X .
Clearly, F has the mixed monotone property [].
Let x, y,u, v ∈X with u
 x 
 y
 v. Since F has the mixed monotone property, we have

F(u, v)
 F(x, y).

Notice that

∣∣F(x, y)(t) – F(u, v)(t)
∣∣

=
∣∣∣∣
∫ T


S(t, r)

[
f
(
r,x(r)

)
– f

(
r,u(r)

)]
dr +

∫ T


S(t, r)

[
k
(
r, y(r)

)
– k

(
r, v(r)

)]
dr

∣∣∣∣
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≤
∫ T


S(t, r)

[∣∣f (r,x(r)) – f
(
r,u(r)

)∣∣]dr + ∫ T


S(t, r)

[∣∣k(r, y(r)) – k
(
r, v(r)

)∣∣]dr
≤

∫ T


S(t, r)

[
a
∣∣x(r) – F

(
x(r), y(r)

)∣∣ + b
∣∣y(r) – F

(
y(r),x(r)

)∣∣
+
c

[∣∣x(r) – u(r)

∣∣ + ∣∣y(r) – v(r)
∣∣]]dr

+
∫ T


S(t, r)

[
a
∣∣x(r) – F

(
x(r), y(r)

)∣∣ + b
∣∣y(r) – F

(
y(r),x(r)

)∣∣
+
c

[∣∣x(r) – u(r)

∣∣ + ∣∣y(r) – v(r)
∣∣]]dr

= 
∫ T


S(t, r)

[
a
∣∣x(r) – F

(
x(r), y(r)

)∣∣ + b
∣∣y(r) – F

(
y(r),x(r)

)∣∣
+
c

[∣∣x(r) – u(r)

∣∣ + ∣∣y(r) – v(r)
∣∣]]dr

≤  sup
t∈[,T]

∫ T


S(t, r)dr

[
a
∥∥x – F(x, y)

∥∥ + b
∥∥y – F(y,x)

∥∥ +
c

(‖x – u‖ + ‖y – v‖)]

≤ a
∥∥x – F(x, y)

∥∥ + b
∥∥y – F(y,x)

∥∥ +
c

(‖x – u‖ + ‖y – v‖).

Thus,

∥∥F(x, y) – F(u, v)
∥∥ ≤ a

∥∥x – F(x, y)
∥∥ + b

∥∥y – F(y,x)
∥∥ +

c

(‖x – u‖ + ‖y – v‖).

Further, by (v), we get

α ≤ F(α,γ ), γ ≥ F(γ ,α).

All of the conditions of Corollary . are satisfied, so we deduce the existence of x,x ∈X
such that x = F(x,x) and x = F(x,x). �
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