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Abstract
In this paper, we first prove the existence of a solution for a generalized equilibrium
problem with a bifunction defined on the dual space in a Banach space setting.
Second, by the virtue of this result, we construct the hybrid projection method for
solving a solution of a generalized equilibrium problem. Consequently, we establish
the strong convergence theorem by using sunny generalized nonexpansive
retraction in the dual of Banach spaces.
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1 Introduction
LetR be the set of real numbers. Let E be a real Banach space with the norm ‖ · ‖, and 〈·, ·〉
is the dual pair between E and E∗, where E∗ is the dual space of E. Let C be a closed and
convex subset of a real Banach space E with the dual space E∗, and let C∗ be a closed and
convex subset of E∗. We recall the following definitions:
() A mapping A : C → E∗ is said to bemonotone if for each x, y ∈ C such that

〈x – y,Ax –Ay〉 ≥ .

() A mapping A : C → E∗ is said to be δ-strongly monotone if there exists a constant
δ >  such that

〈x – y,Ax –Ay〉 ≥ δ‖x – y‖, ∀x, y ∈ C.

() A mapping A : C → E∗ is said to be δ-inverse strongly monotone if there exists a
constant δ >  such that

〈x – y,Ax –Ay〉 ≥ δ‖Ax –Ay‖, ∀x, y ∈ C.

() A mapping A : C∗ → E is said to be skew monotone if for each x∗, y∗ ∈ C∗ such that

〈
Ax∗ –Ay∗,x∗ – y∗〉 ≥ .
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() A mapping A :D(A)⊂ E∗ → E is said to be α-inverse strongly skew monotone if there
exists a constant α >  such that

〈
Ax∗ –Ay∗,x∗ – y∗〉 ≥ α

∥∥Ax∗ –Ay∗∥∥, ∀x∗, y∗ ∈D(A).

() A mapping A :D(A) ⊂ E∗ → E is said to be hemicontinuous if for all x∗, y∗ ∈D(A),
the mapping f of [, ] into E defined by f (t) = A(tx∗ + ( – t)y∗) is continuous.

Let C be a nonempty, closed and convex subset of E, and let J be the duality mapping
from E into E∗ such that J(C) is closed and convex of E∗, let us assume that a bifunction
F : J(C) × J(C) → R satisfies suitable conditions, and A : C∗ → E is a skew monotone
operator from J(C) into E.
The generalized equilibrium problem is to find ẑ ∈ C such that

F(J ẑ, Jy) + 〈AJẑ, Jy – J ẑ〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by GEP(F ,A), that is,

GEP(F ,A) =
{
ẑ ∈ C : F(J ẑ, Jy) + 〈AJẑ, Jy – J ẑ〉 ≥ ,∀y ∈ C

}
. (.)

If A ≡ , then problem (.) reduces to the equilibrium problem, which is to find ẑ ∈ C
such that

F(J ẑ, Jy) ≥ , ∀y ∈ C. (.)

The set of solutions of problem (.) is denoted by EP(F), that is,

EP(F) =
{
ẑ ∈ C : F(J ẑ, Jy) ≥ ,∀y ∈ C

}
. (.)

The above formulation (.) was considered in Takahashi and Zembayashi [], and they
proved a strong convergence theorem for finding a solution of the equilibrium problem
(.) in Banach spaces.
If F ≡ , then problem (.) reduces to variational inequality, which is to find ẑ ∈ C such

that

〈AJẑ, Jy – J ẑ〉 ≥ , ∀y ∈ C. (.)

The set of solutions of problem (.) is denoted by VI(J(C),A), that is,

VI
(
J(C),A

)
=

{
ẑ ∈ C : 〈AJẑ, Jy – J ẑ〉 ≥ ,∀y ∈ C

}
. (.)

In the sequel, let T : C → C be a mapping, we denote by Fix(T) the set of fixed points of
T , that is,

Fix(T) = {x ∈ C : Tx = x}. (.)

We denote the strong convergence, weak convergence {xn} by xn → x, xn ⇀ x, respec-
tively.
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Let C be a nonempty, closed subset of a smooth, strictly convex and reflexive Banach
space E such that J(C) is closed and convex. For solving the equilibrium problem, let us
assume that a bifunction F : J(C)× J(C) →R satisfies the following conditions:
(DA) F(x∗,x∗) =  for all x∗ ∈ J(C);
(DA) F is monotone, i.e., F(x∗, y∗) + F(y∗,x∗) ≤  for all x∗, y∗ ∈ J(C);
(DA) for all x∗, y∗, z∗ ∈ J(C),

lim sup
t↓

F
(
tz∗ + ( – t)x∗, y∗) ≤ F

(
x∗, y∗);

(DA) for all x∗ ∈ J(C), F(x∗, ·) is convex and lower semicontinuous.
The following result is in Blum and Oettli [], and see the proof in [].

Definition . Let E be a Banach space. Then,
() E is said to be strictly convex if ‖x+y‖

 <  for all x, y ∈UE = {z ∈ E : ‖z‖ = } with x �= y.
() E is said to be uniformly convex if for each ε ∈ (, ], there exists δ >  such that

‖x+y‖
 ≤  – δ for all x, y ∈UE with ‖x – y‖ > ε.

() E is said to be smooth if the limit (.)

lim
t−→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈UE .
() E is said to be uniformly smooth if the limit (.) is attained uniformly for all

x, y ∈UE .
() E is said to have uniformly Gâteaux differentiable norm if for all y ∈U(E), the limit

(.) converges uniformly for x ∈ UE .

Definition . Let E be a Banach space. Then a function ρE : R+ → R
+ is said to be the

modulus of smoothness of E if

ρE(t) = sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ = t
}
.

() E is said to be smooth if ρE(t) > , ∀t > .
() E is said to be uniformly smooth if and only if limt→+

ρE(t)
t = .

Definition . Let E be a Banach space. Then themodulus of convexity of E is the function
δE : [, ] → [, ] defined by

δE(ε) = inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : ‖x‖ ≤ ,‖y‖ ≤ ;‖x – y‖ ≥ ε

}
.

() E is said to be uniformly convex if and only if δE(ε) >  for all ε ∈ (, ].
() Let p be a fixed real number p > . Then E is said to be p-uniformly convex if there

exists a constant c >  such that δE(ε)≥ cεp for all ε ∈ [, ].
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Observe that every p-uniformly convex is uniformly convex. One should note that no
Banach space is p-uniformly convex for  < p < . It is well known that a Hilbert space is
-uniformly convex and uniformly smooth.

For any p > , the generalized duality mapping Jp : E → E∗ is defined by

Jpx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖p,∥∥f ∗∥∥ = ‖x‖p–}, ∀x ∈ E. (.)

In particular, J = J is called the normalized duality mapping. If E is a Hilbert space, then
J = I , where I is the identity mapping. That is,

Jx = Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥}, ∀x ∈ E. (.)

Remark . The basic properties below hold, see [–].
() If E is a uniformly smooth real Banach space, then J is uniformly continuous on

each bounded subset of E.
() If E is a uniformly smooth real Banach space, then J∗ : E∗ → E is a normalized

duality mapping on E∗, then J– = J∗, (J∗)J = IE and J(J∗) = IE∗ , where on IE and IE∗

are the identity mappings on E and E∗, respectively.
() Let E be a smooth, strictly convex reflexive Banach space and J be the duality

mapping from E into E∗. Then J– is also single-valued, one-to-one, onto, and it is
also the duality mapping from E∗ into E.

() If E is a reflexive, strictly convex Banach space, then J– is hemicontinuous, that is,
J– is norm-to-weak∗-continuous.

() If E is a reflexive, smooth and strictly convex Banach space, then J is single-valued,
one-to-one, and onto.

() A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.
() Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any

sequence {xn} ⊂ E, if xn ⇀ x ∈ E, and ‖xn‖ → ‖x‖, then xn → x.
() A Banach space E is strictly convex if and only if J is strictly monotone, that is,

〈
x – y,x∗ – y∗〉 > , whenever x, y ∈ E,x �= y, and x∗ ∈ Jx, y∗ ∈ Jy.

() Both, uniformly smooth Banach space and uniformly convex Banach space, are
reflexive.

() If E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

() If E∗ is a strictly convex Banach space, then J is one-to-one, that is, x �= y implies
that Jx∩ Jy �= ∅.

Let J be the normalized duality mapping, then J is said to be weakly sequentially contin-
uous if the strong convergence of a sequence {xn} to x ∈ E implies the weak∗ convergence
of a sequence {Jxn} to Jx in E∗.
Let E be a smooth and strictly convex reflexive Banach space, and let C be a nonempty,

closed and convex subset of E. We assume that the Lyapunov functional φ : E × E → R
+

is defined by [, ]

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

http://www.fixedpointtheoryandapplications.com/content/2013/1/264
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Let C be a nonempty, closed and convex subset of a Banach space E. The generalized
projection [] �C : E → C is defined by, for each x ∈ E,

�C(x) = argmin
y∈C φ(x, y).

Remark . From the definition of φ. It is easy to see that
() (‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖) for all x, y ∈ E.
() φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉 for all x, y, z ∈ E.
() φ(x, y) = 〈x, Jx – Jy〉 + 〈y – x, Jy〉 ≤ ‖x‖‖Jx – Jy‖ + ‖y – x‖‖y‖ for all x, y, z ∈ E.
() If E is a real Hilbert space H , then φ(x, y) = ‖x – y‖, and �C = PC (the metric

projection of H onto C).

Lemma . [, ] If C is a nonempty, closed and convex subset of a smooth and strictly
convex reflexive real Banach space E, then
() for x ∈ E, and u ∈ C, one has

u =�C(x) ⇔ 〈u – y, Jx – Ju〉 ≥ , ∀y ∈ C.

() φ(x,�C(y)) + φ(�C(y), y) ≤ φ(x, y), ∀x ∈ C, y ∈ E.
() φ(x, y) =  if and only if x = y, ∀x, y ∈ E.

In , Takahashi and Zembayashi [] introduced an iterative algorithm for finding
a solution of an equilibrium problem with a bifunction defined on the dual space of a
Banach space by using the shrinking projection method, and they established the strong
convergence as follows.

TheoremTZ Let E be a uniformly convex Banach space whose norm is uniformlyGâteaux
differentiable, and let C be a nonempty, closed and convex subset of E such that J(C) is
closed and convex of E∗. Assume that a mapping F : J(C) × J(C) → R satisfies the condi-
tion (DA)-(DA) such that EP(F) �= ∅. Let {xn} be a sequence generated by the following
algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary, C = C,

un ∈ C such that F(Jun, Jy) + 
rn 〈un – xn, Jy – Jun〉 ≥ , ∀y ∈ C,

yn = αnxn + ( – αn)un,

Cn+ = {z ∈ Cn : φ(yn, z) ≤ φ(xn, z)},
xn+ = RCn+ (x), ∀n ∈N∪ {},

(.)

where J is the duality mapping on E, the sequence {αn} ⊂ [, ] such that lim supn→∞ αn < ,
rn ⊂ [a,∞) for some a > , and RCn+ is the sunny generalized nonexpansive retraction from
E onto Cn+.
Then the sequence {xn} converges strongly to some point p = REP(F)(x),where REP(F) is the

sunny generalized nonexpansive retraction from E to EP(F).

In , Plubtieng and Sriprad [] proved the existence theorem of the variational in-
equality problem for skew monotone operator defined on the dual space of a smooth Ba-
nach space, and they established a weak convergence theorem for finding a solution of the
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variational inequality problem using the projection algorithm method with a new projec-
tion, which was introduced by Ibaraki and Takahashi [] and Iiduka and Takahashi [] in
Banach spaces.

Theorem PS Let E be a uniformly convex and -uniformly smooth Banach space whose
duality mapping J is weakly sequentially continuous. Let C be a nonempty, closed and con-
vex subset of E such that J(C) is closed and convex, and let A be an α-inverse-strongly-skew-
monotone operator of J(C) into E such thatVI(J(C),A) �= ∅ and ‖AJz‖ ≤ ‖AJy–AJz‖, for all
y ∈ C and z ∈ VI(J(C),A). Let {xn} be a sequence defined by x = x ∈ C and

xn+ = RC(xn – λnAJxn) (.)

for every n = , , , . . . , where RC is the sunny generalized nonexpansive retraction of E
into C, {αn} ⊂ [a,b], for some a, b with  < a < b < α

c , where c >  is a constant satisfying
‖Jx– Jy‖ ≤ c‖x–y‖ for all x, y ∈ C.Then the sequence {xn} converges weakly to some element
z ∈VI(J(C),A). Further z = limn→∞ RVI(J(C),A)(xn).

In this paper, motivated and inspired by the previously mentioned results, we study the
existence theorem for a generalized equilibrium problemwith a bifunction defined on the
dual space of a Banach space, and we also construct an iterative procedure generated by a
hybrid method for solving the solution of a generalized equilibrium problem by using the
sunny generalized nonexpansive retraction. Under some suitable assumptions, the strong
convergence theorems are established in Banach spaces. The results obtained in this paper
extend and improve several recent results in this area.

2 Preliminaries
Definition . Let C be a nonempty and closed subset of a smooth Banach space.
() A mapping T : C → C is said to be closed if for each {xn} ⊂ C, xn → x and Txn → y

imply that Tx = y.
() A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

() A mapping T : C → C is said to be φ-nonexpansive if Fix(T) �= ∅, and

φ(Tx,Ty) ≤ φ(x, y), ∀x, y ∈ C.

() A mapping T : C → C is said to be generalized nonexpansive [] if Fix(T) �= ∅, and

φ(Tx,p) ≤ φ(x,p), ∀x ∈ C,p ∈ Fix(T).

Definition . [] Let C be a nonempty and closed subset of a smooth Banach space E.
A mapping R : E → C is called
() a retraction if R = R;
() a sunny if R(Rx + t(x – Rx)) = Rx for all x ∈ E and t ≥ .

We also know that if E is a smooth, strictly convex and reflexive Banach space, and C
is nonempty, closed and convex subset of E, then there exists a sunny generalized nonex-

http://www.fixedpointtheoryandapplications.com/content/2013/1/264
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pansive retraction RC of E onto C if and only if J(C) is closed and convex. In this case, RC

is given by

RC = J–�J(C)J .

Definition . [] Let C be a nonempty and closed subset of a smooth Banach space E.
The set C is called a sunny generalized nonexpansive retraction of E if there exists a sunny
generalized nonexpansive R from E onto C.

Lemma . [] Let C be a nonempty and closed subset of a smooth and strictly convex
Banach space E, and let R be a retraction from E onto C.Then the following are equivalent:
() R is sunny generalized nonexpansive;
() 〈x – Rx, Jy – JRx〉 ≤  for all x ∈ E and y ∈ C.

Lemma . [] Let C be a nonempty, closed and sunny generalized nonexpansive retrac-
tion of a smooth and strictly convex Banach space E. Then the sunny generalized nonex-
pansive retraction from E onto C is uniquely determined.

Lemma . [] Let C be a nonempty and closed subset of a smooth and strictly convex
Banach space E such that there exists a sunny generalized nonexpansive retraction R from
E onto C. Let x ∈ E and z ∈ C. Then the following hold:
() z = Rx if and only if 〈x – z, Jy – Jz〉 ≤  for all y ∈ C;
() φ(x,Rx) + φ(Rx, z)≤ φ(x, z).

Lemma . [] Let C be a nonempty and closed subset of a smooth, strictly convex and
reflexive Banach space E. Then the following are equivalent:
() C is a sunny generalized nonexpansive retraction of E;
() J(C) is closed and convex.

Remark . From Lemmas . and .. If E is a Hilbert space, then a sunny generalized
nonexpansive retraction from E onto C reduces to a metric projection operator P from E
onto C.

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space, let C be
a nonempty, closed and sunny generalized nonexpansive retraction of E, and let R be the
sunny generalized nonexpansive retraction from E onto C. Let x ∈ E and z ∈ C. Then the
following are equivalent:
() z = Rx;
() φ(x, z) =miny∈C φ(x, y).

Lemma . [] Let E be a uniformly smooth and strictly convex real Banach space, and
let {xn} and {yn} be two sequences of E. If φ(xn, yn) →  and either {xn} or {yn} is bounded,
then ‖xn – yn‖ → .

Lemma . [] Let E be a uniformly smooth and strictly convex real Banach space with
the Kadec-Klee property, and let C be a nonempty, closed and convex subset of E. Let {xn}
and {yn} be two sequences in C and p ∈ E. If xn → p and φ(xn, yn) → , then yn → p.

http://www.fixedpointtheoryandapplications.com/content/2013/1/264
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Lemma . [] Let {an} and {bn} be two sequences of nonnegative real numbers satisfy-
ing the inequality

an+ ≤ an + bn, ∀n≥ .

If
∑∞

n= bn < ∞, then limn→∞ an exists.

Now, let us recall the following well-known concept and the result.

Definition . [] Let B be a subset of a topological vector space X. A mapping G :
B → X is called a KKM mapping if conv{x,x,x, . . . ,xm} ⊂ ⋃m

i=G(xi), for xi ∈ B and
i = , , , . . . ,m, where convA denotes the convex hull of the set A.

In [], Ky Fan gave the following famous infinite-dimensional generalization of Knaster,
Kuratowski and Mazurkiewicz’s classical finite-dimensional result.

Lemma . [] Let B be a subset of a Hausdorff topological vector space X, and let G :
B → X be a KKM mapping. If G(x) is closed for all x ∈ B and is compact for at least one
x ∈ B, then

⋂
x∈B G(x) �= ∅.

3 Existence theorem
In this section, we prove the existence theorem of a solution for a generalized equilibrium
problem with a bifunction defined on the dual space of a Banach space. Now, we use the
concept of KKMmapping to prove the lemma for our main result.

Lemma . Let C be a nonempty, compact and convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E, and let J be the duality mapping from E into
E∗ such that J(C) is closed and convex, let us assume that a bifunction F : J(C)× J(C) →R

satisfies the following conditions (DA)-(DA), let C∗ be a nonempty, closed and convex
subset of E∗, and let A : C∗ → E be an α-inverse strongly skew monotone. Let any r >  be a
given real number, and let x ∈ E be any point. Then there exists z ∈ C such that

F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
z – x, J(y – z)

〉 ≥ , ∀y ∈ C.

Proof Let x be any point in E. For each y ∈ C, we define the mapping H : C → E as
follows:

H(y) =
{
z ∈ C : F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 

r
〈
z – x, J(y – z)

〉 ≥ ,∀y ∈ C
}
.

It is easy to see that y ∈ H(y), and hence H(y) �= ∅.
(a) First, we show that H is a KKMmapping.
Suppose that H is not a KKM mapping. Then there exists a finite subset {y, y, . . . , ym}

of C and αi >  with
∑m

i= αi =  such that x̂ =
∑m

i= αiyi /∈ ⋃m
i=H(yi) for all i = , , , . . . ,m.

It follows from the definition of a mapping H that

F(Jx̂, Jyi) + 〈AJx̂, Jyi – Jx̂〉 + 
r
〈
x̂ – x, J(yi – x̂)

〉
<  for all i = , , , . . . ,m.

http://www.fixedpointtheoryandapplications.com/content/2013/1/264
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By the assumptions of (DA) and (DA), we get

 = F(Jx̂, Jx̂) + 〈AJx̂, Jx̂ – Jx̂〉 + 
r
〈
x̂ – x, J(x̂ – x̂)

〉

≤
m∑
i=

αi

(
F(Jx̂, Jyi) + 〈AJx̂, Jyi – Jx̂〉 + 

r
〈
x̂ – x, J(yi – x̂)

〉)

< ,

which is a contradiction. Thus, H is a KKMmapping on C.
(b) Next, we show that H(y) is closed for all y ∈ C.
Let {zn} be a sequence in H(y) such that zn → z, as n→ ∞.
It then follows from zn ∈H(y) that

F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 
r
〈
zn – x, J(y – zn)

〉 ≥ . (.)

By assumption (DA), the continuity of J and the lower semicontinuity of ‖ · ‖, we obtain
from (.) that

 ≤ lim inf
n→∞

(
F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 

r
〈
zn – x, J(y – zn)

〉)

≤ lim sup
n→∞

(
F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 

r
〈
zn – x, J(y – zn)

〉)

= lim sup
n→∞

(
F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 

r
〈
(zn – y) + (y – x), J(y – zn)

〉)

= lim sup
n→∞

(
F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 

r
〈
zn – y, J(y – zn)

〉
+

r
〈
y – x, J(y – zn)

〉)

= lim sup
n→∞

(
F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 

r
〈
y – x, J(y – zn)

〉
–

r
〈
y – zn, J(y – zn)

〉)

= lim sup
n→∞

(
F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 + 

r
〈
y – x, J(y – zn)

〉
–

r
‖y – zn‖

)

≤ lim sup
n→∞

F(Jzn, Jy) + lim sup
n→∞

〈AJzn, Jy – Jzn〉

+

r
lim sup
n→∞

〈
y – x, J(y – zn)

〉
– lim inf

n→∞

r
‖y – zn‖

≤ F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
y – x, J(y – z)

〉
–

r
‖y – z‖

= F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
y – x, J(y – z)

〉
–

r
〈
y – z, J(y – z)

〉

= F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
y – x, J(y – z)

〉
+

r
〈
z – y, J(y – z)

〉

= F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
(y – x) + (z – y), J(y – z)

〉

= F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
z – x, J(y – z)

〉
.
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Now, we get

F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
z – x, J(y – z)

〉 ≥ .

Therefore, z ∈ H(y), and so H(y) is closed for all y ∈ C.
(c) We show that H(y) is weakly compact.
Now, we know that H(y) is closed and subset of C.
Since C is compact. Therefore, H(y) is compact, and then H(y) is weakly compact.
By using (a), (b), (c) and Lemma ., we can conclude that

⋂
y∈C H(y) �= ∅.

Therefore, there exists z ∈ C such that

F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
z – x, J(y – z)

〉 ≥ , ∀y ∈ C. �

Theorem. Let C be a nonempty, closed and convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E, and let J be the duality mapping from E into E∗ such
that J(C) is closed and convex, let us assume that a bifunction F : J(C)× J(C) → R satisfies
the following conditions (DA)-(DA), let C∗ be a nonempty, closed and convex subset of E∗,
and let A : C∗ → E be an α-inverse strongly skew monotone and hemicontinuous. Let any
r >  be a given real number, and let x ∈ E be any point. We define a mapping Tr : E → C
as follows:

Tr(x) =
{
z ∈ C : F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 

r
〈
z – x, J(y – z)

〉 ≥ ,∀y ∈ C
}
. (.)

Then the following conclusions hold:
() Tr is single-valued;
() 〈Trx – Try, J(Trx – Try)〉 ≤ 〈x – y, J(Trx – Try)〉, ∀x, y ∈ E;
() Fix(Tr) =GEP(F ,A);
() J(GEP(F ,A)) is closed and convex.

Proof We complete this proof by four items below.
() We show that Tr is single-valued.
From the definition of Tr(x), it is easy to see that

F(Jy, Jy) + 〈AJy, Jy – Jy〉 + 
r
〈
z – y, J(y – y)

〉
=  ≥ .

Therefore, y ∈ Tr(x). Hence, Tr(x) �= ∅.
Indeed, for any x ∈ E and r > , let z, z ∈ Tr(x). Then

F(Jz, Jz) + 〈AJz, Jz – Jz〉 + 
r
〈
z – x, J(z – z)

〉 ≥ ,

and

F(Jz, Jz) + 〈AJz, Jz – Jz〉 + 
r
〈
z – x, J(z – z)

〉 ≥ .
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Adding the two inequalities, we have

 ≤ F(Jz, Jz) + F(Jz, Jz) + 〈AJz, Jz – Jz〉 + 〈AJz, Jz – Jz〉
+

r
〈
z – x, J(z – z)

〉
+

r
〈
z – x, J(z – z)

〉
= F(Jz, Jz) + F(Jz, Jz) + 〈AJz, Jz – Jz〉 – 〈AJz, Jz – Jz〉

+

r
〈
z – x, J(z – z)

〉
–

r
〈
z – x, J(z – z)

〉

= F(Jz, Jz) + F(Jz, Jz) + 〈AJz –AJz, Jz – Jz〉 + 
r
〈
(z – x) – (z – x), J(z – z)

〉

= F(Jz, Jz) + F(Jz, Jz) + 〈AJz –AJz, Jz – Jz〉 + 
r
〈
z – z, J(z – z)

〉

= F(Jz, Jz) + F(Jz, Jz) – 〈AJz –AJz, Jz – Jz〉 + 
r
〈
z – z, J(z – z)

〉
.

Therefore, we obtain

F(Jz, Jz) + F(Jz, Jz) – 〈AJz –AJz, Jz – Jz〉 + 
r
〈
z – z, J(z – z)

〉 ≥ . (.)

From condition (DA) and the fact that A is an α-inverse strongly skew monotone, we
have

 ≤ F(Jz, Jz) + F(Jz, Jz) – 〈AJz –AJz, Jz – Jz〉 + 
r
〈
z – z, J(z – z)

〉

≤ –α‖AJz –AJz‖ + 
r
〈
z – z, J(z – z)

〉

≤ 
r
〈
z – z, J(z – z)

〉
.

Since r > , J is monotone, and E is strictly convex, we obtain

z = z.

This implies that Tr is single-valued.
() We show that 〈Trx – Try, J(Trx – Try)〉 ≤ 〈x – y, J(Trx – Try)〉 for all x, y ∈ E.
Indeed, for any x, y ∈ C and r > , we have

F(JTrx, JTry) + 〈AJTrx, JTry – JTrx〉 + 
r
〈
Trx – x, J(Try – Trx)

〉 ≥ ,

and

F(JTry, JTrx) + 〈AJTry, JTrx – JTry〉 + 
r
〈
Try – y, J(Trx – Try)

〉 ≥ .

Adding the two inequalities, we have

 ≤ F(JTrx, JTry) + F(JTry, JTrx) + 〈AJTrx, JTry – JTrx〉 + 〈AJTry, JTrx – JTry〉
+

r
〈
Trx – x, J(Try – Trx)

〉
+

r
〈
Try – y, J(Trx – Try)

〉
= F(JTrx, JTry) + F(JTry, JTrx) + 〈AJTrx, JTry – JTrx〉 – 〈AJTry, JTry – JTrx〉
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+

r
〈
Trx – x, J(Try – Trx)

〉
–

r
〈
Try – y, J(Try – Trx)

〉
= F(JTrx, JTry) + F(JTry, JTrx) + 〈AJTrx –AJTry, JTry – JTrx〉

+

r
〈
(Trx – x) – (Try – y), J(Try – Trx)

〉
= F(JTrx, JTry) + F(JTry, JTrx) + 〈AJTrx –AJTry, JTry – JTrx〉

+

r
〈
(Trx – Try) – (x – y), J(Try – Trx)

〉
= F(JTrx, JTry) + F(JTry, JTrx) – 〈AJTrx –AJTry, JTrx – JTry〉

+

r
〈
(Trx – Try) – (x – y), J(Try – Trx)

〉
. (.)

It follows that

F(JTrx, JTry) + F(JTry, JTrx) – 〈AJTrx –AJTry, JTrx – JTry〉

+

r
〈
(Trx – Try) – (x – y), J(Try – Trx)

〉 ≥ . (.)

From condition (DA) and the fact that A is an α-inverse strongly skewmonotone, we get

 ≤ F(JTrx, JTry) + F(JTry, JTrx) – 〈AJTrx –AJTry, JTrx – JTry〉
+

r
〈
(Trx – Try) – (x – y), J(Try – Trx)

〉

≤ –α‖AJTrx –AJTry‖ + 
r
〈
(Trx – Try) – (x – y), J(Try – Trx)

〉

≤ 
r
〈
(Trx – Try) – (x – y), J(Try – Trx)

〉

≤ –

r
〈
(Trx – Try) – (x – y), J(Trx – Try)

〉
.

Since r > , we have

〈
(Trx – Try) – (x – y), J(Trx – Try)

〉 ≤ .

Therefore, we also have

〈
Trx – Try, J(Trx – Try)

〉
–

〈
x – y, J(Trx – Try)

〉 ≤ .

This implies that

〈
Trx – Try, J(Trx – Try)

〉 ≤ 〈
x – y, J(Trx – Try)

〉
.

() We show that Fix(Tr) =GEP(F ,A).
It is easy to see that

z ∈ Fix(Tr) ⇔ z = Trz

⇔ F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 
r
〈
z – z, J(y – z)

〉 ≥ 
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⇔ F(Jz, Jy) + 〈AJz, Jy – Jz〉 ≥ 

⇔ z ∈ GEP(F ,A).

This implies that Fix(Tr) =GEP(F ,A).
() We show that J(GEP(F ,A)) is closed and convex.
For each y ∈ C, we define the mapping G : C → E as follows:

G(y) =
{
z ∈ C : F(Jz, Jy) + 〈AJz, Jy – Jz〉 ≥ 

}
.

It is easy to see that y ∈ G(y), so that G(y) �= ∅.
Next, we show that G is a KKMmapping.
Suppose thatG is not a KKMmapping. Then there exists a finite subset {z, z, . . . , zm} of

C, and βi >  with
∑m

i= βi =  such that ẑ =
∑m

i= βizi /∈ G(zi) for all i = , , , . . . ,m. Then
we have

F(J ẑ, Jzi) + 〈AJẑ, Jzi – J ẑ〉 < , i = , , , . . . ,m.

It follows from (DA) and (DA) that

 = F(J ẑ, J ẑ) + 〈AJẑ, J ẑ – J ẑ〉 ≤
m∑
i=

βi
(
F(J ẑ, Jzi) + 〈AJẑ, Jzi – J ẑ〉) < ,

which is the contradiction. Hence, G is a KKMmapping on C.
(.) Next, we show that G(y) is closed for each y ∈ C.
For any y ∈ C, let {zn} be any sequence in G(y) such that zn → z, as n→ ∞.
Hence, zn – x → z – x, as n→ ∞.
Next, we show that z ∈ G(y). Then for each y ∈ C, we have

F(Jzn, Jy) + 〈AJzn, Jy – Jzn〉 ≥ . (.)

It follows from assumption (DA) that

F(Jz, Jy) + 〈AJz, Jy – Jz〉 ≥ lim sup
n→∞

F(Jzn, Jy) + lim
n→∞〈AJzn, Jy – Jzn〉 ≥ .

This implies that z ∈G(y), and hence G(y) is closed for each y ∈ C.
Since J is continuous. Therefore,

⋂
y∈C G(y) = J(GEP(F ,A)) is closed.

(.) Next, we show that J(GEP(F ,A)) is convex.
Let z∗

 , z∗
 ∈ J(GEP(F ,A)), then we have z∗

 = Jz ∈ J(C) and z∗
 = Jz ∈ J(C), where

z, z ∈ C.
For k, t ∈ (, ), let z∗ = kz∗

 + ( – k)z∗
 and for any y ∈ C, we set x∗

t = tJy + ( – t)z∗.
It follows from (DA) and (DA) that

 = F
(
x∗
t ,x

∗
t
)

≤ F
(
x∗
t , tJy + ( – t)z∗)

≤ tF
(
x∗
t , Jy

)
+ ( – t)F

(
x∗
t , z

∗)
≤ tF

(
x∗
t , Jy

)
, (.)
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and

 =
〈
Ax∗

t ,x
∗
t – x∗

t
〉

=
〈
Ax∗

t ,
(
x∗
t – Jy

)
+

(
Jy – x∗

t
)〉

=
〈
Ax∗

t ,x
∗
t – Jy

〉
+

〈
Ax∗

t , Jy – x∗
t
〉

=
〈
Ax∗

t ,x
∗
t – Jy

〉
–

〈
Ax∗

t ,x
∗
t – Jy

〉
≤ 〈

Ax∗
t ,x

∗
t – Jy

〉
=

〈
Ax∗

t , tJy + ( – t)z∗ – Jy
〉

=
〈
Ax∗

t , tJy + ( – t)z∗ –
(
t + ( – t)

)
Jy

〉
=

〈
Ax∗

t , ( – t)
(
z∗ – Jy

)〉
= ( – t)

〈
Ax∗

t , z
∗ – Jy

〉
= (t – )

〈
Ax∗

t , Jy – z∗〉
≤ t

〈
Ax∗

t , Jy – z∗〉. (.)

Adding two inequalities (.) and (.) and dividing by t > , we get

 ≤ tF
(
x∗
t , Jy

)
+ t

〈
Ax∗

t , Jy – z∗〉
≤ F

(
x∗
t , Jy

)
+

〈
Ax∗

t , Jy – z∗〉.

Letting t to  by (DA) and the hemicontinuous of A, we obtain

F
(
z∗, Jy

)
+

〈
Az∗, Jy – z∗〉 ≥  for all y ∈ C.

Hence, z∗ ∈ J(GEP(F ,A)), and thus, J(GEP(F ,A)) is convex.
This completes the proof. �

4 Convergence theorem
In this section, we use the hybrid projectionmethod for finding a solution of a generalized
equilibrium problem in the dual space of Banach spaces.

Theorem. Let E be a uniformly smooth, strictly convex and reflexive real Banach space,
which has a Kadec-Klee property, let C be a nonempty, closed and convex subset of E,
and let J be the duality mapping from E into E∗ such that J(C) is closed and convex of
E∗, let us assume that a bifunction F : J(C) × J(C) → R satisfies the following conditions
(DA)-(DA), let C∗ be a nonempty, closed and convex subset of E∗, and let A : C∗ → E
be an α-inverse strongly skew monotone. For x ∈ E, we define a mapping Trn : E → C as
follows:

Trn (x) =
{
z ∈ C : F(Jz, Jy) + 〈AJz, Jy – Jz〉 + 

rn

〈
z – x, J(y – z)

〉 ≥ ,∀y ∈ C
}
. (.)
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Suppose that GEP(F ,A) �= ∅. Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary, C = C,

un = Trnxn,

yn = αnxn + ( – αn)un,

Cn+ = {z ∈ Cn : φ(yn, z) ≤ φ(xn, z)},
xn+ = RCn+ (x), ∀n≥ ,

(.)

where J is the duality mapping on E, {αn} is the sequence in [, ] such that lim supn→∞ αn <
, {rn} ⊂ [a,∞) for some a >  and RCn+ is the sunny generalized nonexpansive retraction
from E onto Cn+.Then the sequence {xn} converges strongly to RGEP(F ,A)(x),where RGEP(F ,A)

is the sunny generalized nonexpansive retraction from E onto GEP(F ,A).

Proof We complete this proof by seven steps below.
Step . We show that J(Cn) are closed and convex subsets of E for each n ∈ N∪ {}.
It is obvious that J(C) is closed and convex. Suppose that J(Ck) is closed and convex for

some k ∈N∪ {}.
For each z ∈ Cn, we see that

φ(yn, z) ≤ φ(xn, z) ⇔ ‖yn‖ – 〈yn, Jz〉 + ‖z‖ ≤ ‖xn‖ – 〈xn, Jz〉 + ‖z‖

⇔ ‖yn‖ – ‖xn‖ – 〈yn, Jz〉 + 〈xn, Jz〉 ≤ 

⇔ ‖yn‖ – ‖xn‖ – 〈yn – xn, Jz〉 ≤ .

Hence, J(Ck+) is closed and convex. Therefore, J(Cn) are closed and convex subsets of E
for each n ∈ N∪ {}.
Step . We show that GEP(F ,A)⊂ Cn for all n ∈N∪ {}.
Note that un = Trnxn and Trn is generalized nonexpansive.
From C = C, we have GEP(F ,A) ⊂ C. Suppose that GEP(F ,A) ⊂ Ck , for some k ∈

N∪ {}.
For any p ∈ GEP(F ,A), from algorithm (.) and the fact that Trk is generalized nonex-

pansive, we compute

φ(yk ,p) = φ
(
αnxk + ( – αn)uk ,p

)
=

∥∥αkxk + ( – αk)uk
∥∥ – 

〈
αkxk + ( – αk)uk , Jp

〉
+ ‖p‖

≤ αk‖xk‖ + ( – αk)‖uk‖ – αk〈xk , Jp〉 – ( – αk)〈uk , Jp〉 + ‖p‖

= αk‖xk‖ + ( – αk)‖uk‖ – αk〈xk , Jp〉
– ( – αk)〈uk , Jp〉 +

(
αk + ( – αk)

)‖p‖
= αk‖xk‖ – αk〈xk , Jp〉 + αk‖p‖ + ( – αk)‖uk‖

– ( – αk)〈uk , Jp〉 + ( – αk)‖p‖

= αkφ(xk ,p) + ( – αk)φ(uk ,p)

= αkφ(xk ,p) + ( – αk)φ(Trk xk ,p)
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≤ αkφ(xk ,p) + ( – αk)φ(xk ,p)

= φ(xk ,p).

Therefore, p ∈ Ck . Hence, we get p ∈ Ck+.
This implies that GEP(F ,A) ⊂ Cn, ∀n ∈ N ∪ {}, and also the sequence {xn} is well de-

fined.
Step . We show that {xn} is bounded.
From the definition of {xn}, we know that xn = RCn (x) and xn+ = RCn+ (x) ∈ Cn+ ⊂ Cn.

For all p ∈GEP(F ,A)⊂ Cn, we have

φ(xn,x) = φ
(
RCn (x),x

)
≤ φ(p,x) – φ

(
p,RCn (x)

)
≤ φ(p,x).

Then φ(x,xn) is bounded. Therefore, {xn} is bounded, and also {Trnxn} is bounded.
Step . We show that there exists p̂ ∈ C such that xn → p̂, as n→ ∞.
Since xn = RCn (x) and xn+ = RCn+ (x) ∈ Cn+ ⊂ Cn, we have

φ(xn,x) ≤ φ(xn+,x), ∀n ∈ N∪ {}.

Therefore, the sequence {φ(xn,x)} is nondecreasing. Hence, limn→∞ φ(xn,x) exists.
By the definition of Cn, one has that Cm ⊂ Cn and xm = RCm (x) ∈ Cn for any positive

integer m ≥ n. It follows that

φ(xm,xn) = φ
(
xm,RCn (x)

)
≤ φ(xm,x) – φ

(
RCn (x),x

)
≤ φ(xm,x) – φ(xn,x)

→ , asm,n→ ∞.

It follows from Lemma . that ‖xm – xn‖ → , asm,n→ ∞.
Thus, the sequence {xn} is a Cauchy sequence.
Without loss of generality, we can assume that xn ⇀ p̂. Since {xn} is bounded, and E is

reflexive.
We know that Cn+ ⊂ Cn, and Cn is closed and convex, for p̂ ∈ Cn, we have

lim inf
n→∞ φ(xn,x) = lim inf

n→∞
(‖xn‖ – 〈xn, Jx〉 + ‖x‖

)

≥ ‖p̂‖ – 〈p̂, Jx〉 + ‖x‖

= φ(p̂,x).

It follows that

φ(p̂,x) ≤ lim inf
n→∞ φ(xn,x) ≤ φ(p̂,x).
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This implies that

lim
n→∞φ(xn,x) = φ(p̂,x).

So ‖xn‖ → ‖p̂‖. Since xn ⇀ p̂. By the Kadec-Klee property of E, we obtain that

xn → p̂, as n→ ∞. (.)

From J is uniformly norm-to-norm continuous on bounded subset of E, we also have

Jxn → Jp̂, as n → ∞. (.)

Step . We show that ‖xn – yn‖ →  and ‖xn – un‖ → , as n→ ∞.
Since xn = RCn (x) and limn→∞ φ(xn,x) exists. We get

φ(xn,xn+) = φ
(
RCn (x),xn+

)
≤ φ(x,xn+) – φ

(
x,RCn (x)

)
= φ(x,xn+) – φ(x,xn)

→ , as n→ ∞.

From xn+ = RCn+ (x) ∈ Cn+ ⊂ Cn, we have

φ(yn,xn+) ≤ φ(xn,xn+)→ , as n→ ∞.

By Lemma ., we obtain

‖xn – xn+‖ →  and ‖yn – xn+‖ → , as n→ ∞.

Therefore,

‖xn – yn‖ → , as n→ ∞. (.)

Since

 = lim
n→∞‖xn – yn‖

= lim
n→∞

∥∥xn – (
αnxn + ( – αn)un

)∥∥
= lim

n→∞( – αn)‖xn – un‖.

By the assumption, we have lim supn→∞ αn < , we obtain

‖xn – un‖ → , as n→ ∞. (.)

Step . We show that p̂ ∈GEP(F ,A), that is, Jp̂ ∈ J(GEP(F ,A)).
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From (.), (.) and (.), it follows that

un → p̂ and yn → p̂, as n → ∞. (.)

From J is uniformly norm-to-norm continuous on bounded subset of E, we also have

Jun → Jp̂ and Jyn → Jp̂, as n → ∞. (.)

It follows from (.) and (.) and the property of J that

‖Jxn – Jyn‖ →  and ‖Jxn – Jun‖ →  as n→ ∞. (.)

Since {xn} is bounded. Therefore, {un} and {yn} are bounded.
Hence, {Jxn}, {Jun} and {Jyn} are also bounded.
So, there exists a subsequence {Jxnk } of {Jxn} such that Jxnk ⇀ p̂∗, and there exists a

subsequence {Junk } of {Jun} such that Junk ⇀ p̂∗.
From (.) and rn ⊂ [a,∞), we have

lim
n→∞


rn

‖xn – un‖ = .

Since un = Trnxn, we have

F(Jun, Jy) + 〈AJun, Jy – Jun〉 + 
rn

〈
un – xn, J(y – un)

〉 ≥ , ∀y ∈ C.

It follows from (DA) that

〈AJun, Jy – Jun〉 + 
rn

〈
un – xn, J(y – un)

〉 ≥ –F(Jun, Jy) ≥ F(Jy, Jun), ∀y ∈ C.

From xn → p̂ and un → p̂, we get

〈AJp̂, Jy – Jp̂〉 + 
rn

〈
p̂ – p̂, J(y – p̂)

〉 ≥ F(Jy, Jp̂), ∀y ∈ C.

Therefore,

〈AJp̂, Jy – Jp̂〉 ≥ F(Jy, Jp̂), ∀y ∈ C.

For any  < t < , y ∈ C and setting y∗
t = tJy + ( – t)Jp̂. Then we get y∗

t ∈ J(C), and so

〈
AJp̂, y∗

t – Jp̂
〉 ≥ F

(
y∗
t , Jp̂

)
, ∀y ∈ C.

It follows from (DA) and (DA) that

 = F
(
y∗
t , y

∗
t
)

≤ tF
(
y∗
t , Jy

)
+ ( – t)F

(
y∗
t , Jp̂

)
≤ tF

(
y∗
t , Jy

)
+ ( – t)

〈
AJp̂, y∗

t – Jp̂
〉
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/264


Phuangphoo and Kumam Fixed Point Theory and Applications 2013, 2013:264 Page 19 of 22
http://www.fixedpointtheoryandapplications.com/content/2013/1/264

Letting t ↓ , we obtain from assumption (DA) that

F(Jp̂, Jy) +
〈
AJp̂, y∗

t – Jp̂
〉 ≥ .

This implies that

Jp̂ ∈ J
(
GEP(F ,A)

)
.

Step . We show that the sequence {xn} converges strongly to RGEP(F ,A)(x).
We know that xn = RCn (x) ∈GEP(F ,A)⊂ Cn.
Let w = RGEP(F ,A)(x). It follows from Lemma . that

φ(x,xn) ≤ φ(x,w).

Since the norm is weakly lower semicontinuous, and from (DA), we have

φ
(
x, J–p̂∗) = ‖x‖ – 

〈
x, J

(
J–p̂∗)〉 + ‖p̂‖

= ‖x‖ – 
〈
x, p̂∗〉 + ‖p̂‖

≤ lim inf
k→∞

(‖x‖ – 〈x, Jxnk 〉 + ‖xnk‖
)

= lim inf
k→∞

φ(x,xnk )

≤ lim sup
k→∞

φ(x,xnk )

≤ φ(x,w).

From the definition of RGEP(F ,A), we have J–p̂∗ = w.
Finally, we show that xn → w, where w = RGEP(F ,A)(x).
Now, we have

φ(x,xn) ≤ φ(x,w) = φ
(
xn,RGEP(F ,A)(x)

)
,

and from Remark .(), we get

φ(w,xn) = φ(w,x) + φ(x,xn) + 〈w – x, Jx – Jxn〉.

Therefore,

lim sup
n→∞

φ(w,xn) = lim sup
n→∞

(
φ(w,x) + φ(x,xn) + 〈w – x, Jx – Jxn〉

)

≤ lim sup
n→∞

(
φ(w,x) + φ(x,w) + 〈w – x, Jx – Jxn〉

)

= φ(w,x) + φ(x,w) + 〈w – x, Jx – Jw〉
= φ(w,w) = .

This implies that

lim
n→∞φ(w,xn) = .
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By Lemma ., we get

lim
n→∞‖w – xn‖ = lim

n→∞
∥∥RGEP(F ,A)(x) – xn

∥∥ = .

Hence,

xn → RGEP(F ,A)(x), as n→ ∞.

Therefore, the sequence {xn} converges strongly to RGEP(F ,A)(x). This completes the
proof. �

If we substitute x = xn and z = un in equation (.), then we obtain the following result
which extends the following results by Takahashi and Zembayashi [] from an equilibrium
problem to a generalized equilibrium problem.

Corollary . Let E be a uniformly smooth, strictly convex and reflexive real Banach space
which has a Kadec-Klee property, let C be a nonempty, closed and convex subset of E, and
let J be the duality mapping from E into E∗ such that J(C) is closed and convex of E∗, let
us assume that a bifunction F : J(C) × J(C) → R satisfies the following conditions (DA)-
(DA), let C∗ be a nonempty, closed and convex subset of E∗, and let A : C∗ → E be an
α-inverse strongly skew monotone. Suppose that GEP(F ,A) �= ∅. Let {xn} be a sequence gen-
erated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary, C = C,

un ∈ C such that

F(Jun, Jy) + 〈AJun, Jy – Jun〉 + 
rn 〈un – xn, J(y – un)〉 ≥ , ∀y ∈ C,

yn = αnxn + ( – αn)un,

Cn+ = {z ∈ Cn : φ(yn, z) ≤ φ(xn, z)},
xn+ = RCn+ (x), ∀n≥ ,

(.)

where J is the duality mapping on E, {αn} is the sequence in [, ] such that lim supn→∞ αn <
, {rn} ⊂ [a,∞) for some a >  and RCn+ is the sunny generalized nonexpansive retraction
from E onto Cn+.Then the sequence {xn} converges strongly to RGEP(F ,A)(x),where RGEP(F ,A)

is the sunny generalized nonexpansive retraction from E onto GEP(F ,A).

If we set A ≡  in Corollary ., then we obtain the following result which extends the
following results by Takahashi and Zembayashi [].

Corollary . Let E be a uniformly smooth, strictly convex and reflexive real Banach
space which has Kadec-Klee property, let C be a nonempty, closed and convex subset
of E, and let J be the duality mapping from E into E∗ such that J(C) is closed and
convex of E∗, let us assume that a bifunction F : J(C) × J(C) → R satisfies the follow-
ing conditions (DA)-(DA). Suppose that EP(F) �= ∅. Let {xn} be a sequence generated
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by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary, C = C,

un ∈ C such that F(Jun, Jy) + 
rn 〈un – xn, J(y – un)〉 ≥ , ∀y ∈ C,

yn = αnxn + ( – αn)un,

Cn+ = {z ∈ Cn : φ(yn, z) ≤ φ(xn, z)},
xn+ = RCn+ (x), ∀n≥ ,

(.)

where J is the duality mapping on E, {αn} is the sequence in [, ] such that lim supn→∞ αn <
, {rn} ⊂ [a,∞) for some a >  and RCn+ is the sunny generalized nonexpansive retraction
from E onto Cn+. Then the sequence {xn} converges strongly to REP(F)(x), where REP(F) is
the sunny generalized nonexpansive retraction from E onto EP(F).

If we set F ≡  in Corollary ., then Corollary . is reduced to the following corollary.

Corollary . Let E be a uniformly smooth, strictly convex and reflexive real Banach space
which has a Kadec-Klee property, let C be a nonempty, closed and convex subset of E such
that J(C) is closed and convex of E∗, let C∗ be a nonempty, closed and convex subset of E∗

and A : C∗ → E be an α-inverse strongly skew monotone. Suppose that VI(J(C),A) �= ∅. Let
{xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrary, C = C,

un ∈ C such that 〈AJun, Jy – Jun〉 + 
rn 〈un – xn, J(y – un)〉 ≥ , ∀y ∈ C,

yn = αnxn + ( – αn)un,

Cn+ = {z ∈ Cn : φ(yn, z) ≤ φ(xn, z)},
xn+ = RCn+ (x), ∀n≥ ,

(.)

where J is the duality mapping on E, {αn} is the sequence in [, ] such that lim supn→∞ αn <
, {rn} ⊂ [a,∞) for some a > , and RCn+ is the sunny generalized nonexpansive retrac-
tion from E onto Cn+. Then the sequence {xn} converges strongly to RVI(J(C),A)(x), where
RVI(J(C),A) is the sunny generalized nonexpansive retraction from E onto VI(J(C),A).
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