
Liu et al. Fixed Point Theory and Applications 2013, 2013:267
http://www.fixedpointtheoryandapplications.com/content/2013/1/267

RESEARCH Open Access

Fixed point theorems for mappings satisfying
contractive conditions of integral type
Zeqing Liu1, Yan Lu1 and Shin Min Kang2*

*Correspondence:
smkang@gnu.ac.kr
2Department of Mathematics and
RINS, Gyeongsang National
University, Jinju, 660-701, Korea
Full list of author information is
available at the end of the article

Abstract
Two results involving the existence, uniqueness and iterative approximations of fixed
points for two contractive mappings of integral type are proved in complete metric
spaces. Two nontrivial examples are included.
MSC: 54H25

Keywords: contractive mappings of integral type; fixed point; complete metric
space

1 Introduction
In recent years, there has been increasing interest in the study of fixed points and common
fixed points of mappings satisfying contractive conditions of integral type, see, for exam-
ple, [–] and the references cited therein. Branciari [] introduced first the contractive
mapping of integral type as follows:

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (, ) is a constant, ϕ ∈ � = {ϕ : ϕ : R+ → R
+ satisfies that ϕ is Lebesgue in-

tegrable, summable on each compact subset of R+ and
∫ ε

 ϕ(t)dt >  for each ε > } and
proved the existence of a fixed point for the mapping in complete metric spaces. Rhoades
[] and Liu et al. [] extended Branciari’s result and obtained a few fixed point theorems
for the contractive mappings of integral type below:

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ M(x,y)


ϕ(t)dt, ∀x, y ∈ X

and

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (, ) is a constant, ϕ ∈ � and α :R+ → [, ) is a function with lim sups→t α(s) <
, ∀t > . Mongkolkeha and Kumam [] proved fixed point and common fixed point theo-
rems for ρ-compatible mapping satisfying a generalized weak contraction of integral type
in modular spaces. Sintunavarat and Kumam [, ] gave common fixed point theorems
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for single-valued and multi-valued mappings satisfying strict general contractive condi-
tions of integral type.
Inspired and motivated by the results in [–], in this paper, we introduce two new

classes of contractive mappings of integral type in complete metric spaces and study the
existence, uniqueness and iterative approximations of fixed points for the mappings. The
results obtained in this paper generalize and improve Theorem . in [], Theorem . in
[] and Theorem  in []. Two nontrivial examples are constructed.

2 Preliminaries
Throughout this paper, we assume that R = (–∞, +∞), R+ = [,+∞), N denotes the set of
all positive integers, N = {} ∪N,

� = {φ : φ : R+ → R
+ is upper semi-continuous on R

+ \ {}, φ() =  and φ(t) < t,
∀t > };

� = {φ : φ :R+ →R
+ is right upper semi-continuous on R

+ \ {}, φ() =  and φ(t) < t,
∀t > };

� = {φ : φ : R+ → R
+ is continuous, φ() = , φ(t) > , ∀t >  and limn→∞ tn = , for

each sequence {tn}n∈N ⊂R
+ with limn→∞ φ(tn) = };

� = {φ : φ :R+ →R
+ is strictly increasing, φ() = , continuous at  and limn→∞ tn = 

for each sequence {tn}n∈N in R
+ with limn→∞ φ(tn) = };

� = {φ : φ is in � and is left continuous on R
+ \ {}};

(a) (ϕ,φ,ψ) ∈ � × � × �;
(a) (ϕ,φ,ψ) ∈ � × � × �;
(a) (ϕ,φ,ψ) ∈ � × � × �.
Let T be a mapping from a metric space (X,d) into itself, and let ψ : R+ → R

+ be a
function. Put

M(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]}
, ∀x, y ∈ X,

ψ(s+) and ψ(s–) denote the right and left limits of the function ψ at s ∈R
+, respectively.

The following lemmas play important roles in this paper.

Lemma. [] Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a.Then

lim
n→∞

∫ rn


ϕ(t)dt =

∫ a


ϕ(t)dt.

Lemma . [] Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn


ϕ(t)dt = 

if and only if limn→∞ rn = .

3 Fixed point theorems and examples
In this section, we prove two fixed point theorems for two classes of contractive mappings
of integral type and display two examples as applications of the theorems.

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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Theorem . Let (X,d) be a complete metric space, and let T : X → X be a mapping
satisfying

∫ ψ(d(Tx,Ty))


ϕ(t)dt ≤ φ

(∫ ψ(d(x,y))


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where ϕ, φ and ψ satisfy (a) or (a). Then T has a unique fixed point a ∈ X and
limn→∞ Tnx = a for each x ∈ X.

Proof Let x be an arbitrary point in X. Put xn = Txn– for each n ∈ N. Assume that xn =
xn– for some n ∈N. It is easy to see that xn– is a fixed point of T , and there is nothing
to prove. Assume that xn 	= xn– for all n ∈N. From (.) and one of (a) and (a), we obtain
that

∫ ψ(d(xn+,xn))


ϕ(t)dt =

∫ ψ(d(Txn ,Txn–))


ϕ(t)dt ≤ φ

(∫ ψ(d(xn ,xn–))


ϕ(t)dt

)

<
∫ ψ(d(xn ,xn–))


ϕ(t)dt, ∀n ∈N, (.)

which implies that

 < ψ
(
d(xn+,xn)

)
< ψ

(
d(xn,xn–)

)
, ∀n ∈N. (.)

Note that (.) yields that the sequence {ψ(d(xn,xn–))}n∈N is positive and strictly decreas-
ing. Thus, there exists a constant c ≥  with

lim
n→∞ψ

(
d(xn,xn–)

)
= c. (.)

Suppose that c > . Taking upper limit in (.) and using (.), Lemma . and one of (a)
and (a), we conclude that

∫ c


ϕ(t)dt = lim sup

n→∞

∫ ψ(d(xn+,xn))


ϕ(t)dt ≤ lim sup

n→∞
φ

(∫ ψ(d(xn ,xn–))


ϕ(t)dt

)

≤ φ

(∫ c


ϕ(t)dt

)
<

∫ c


ϕ(t)dt,

which is absurd, and hence c = , that is,

lim
n→∞ψ

(
d(xn,xn–)

)
= ,

which together with one of (a) and (a) guarantees that

lim
n→∞d(xn,xn–) = . (.)

Now, we show that {xn}n∈N is a Cauchy sequence. Suppose that {xn}n∈N is not a Cauchy
sequence, which means that there is a constant ε >  such that for each positive integer k,
there are positive integers m(k) and n(k) withm(k) > n(k) > k satisfying

d(xm(k),xn(k)) > ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
the inequality above. It follows that

d(xm(k),xn(k)) > ε and d(xm(k)–,xn(k)) ≤ ε, ∀k ∈N. (.)

Note that

ε < d(xm(k),xn(k)) ≤ d(xm(k),xm(k)–) + d(xm(k)–,xn(k)–) + d(xn(k)–,xn(k))

≤ d(xm(k),xm(k)–) + d(xm(k)–,xn(k)) + d(xn(k),xn(k)–), ∀k ∈N. (.)

Letting k → ∞ in (.) and using (.) and (.), we conclude that

lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k)–,xn(k)–) = ε. (.)

In view of (.), we deduce that

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt =

∫ ψ(d(Txm(k)–,Txn(k)–))


ϕ(t)dt

≤ φ

(∫ ψ(d(xm(k)–,xn(k)–))


ϕ(t)dt

)
, ∀k ∈N. (.)

Assume that (a) holds. Taking upper limit in (.) and using (.) and Lemma ., we
get that

∫ ψ(ε)


ϕ(t)dt = lim sup

k→∞

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt

≤ lim sup
k→∞

φ

(∫ ψ(d(xm(k)–,xn(k)–))


ϕ(t)dt

)

≤ φ

(∫ ψ(ε)


ϕ(t)dt

)
<

∫ ψ(ε)


ϕ(t)dt,

which is a contradiction.
Assume that (a) holds. In view of (.), there exists K ∈N satisfying

d(xm(k)–,xn(k)–) >
ε


, ∀k ≥ K .

It follows from the inequality above and ψ ∈ � that

ψ
(
d(xm(k)–,xn(k)–)

)
>ψ

(
ε



)
> , ∀k ≥ K ,

which together with (.) and φ ∈ � gives that

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt ≤ φ

(∫ ψ(d(xm(k)–,xn(k)–))


ϕ(t)dt

)

<
∫ ψ(d(xm(k)–,xn(k)–))


ϕ(t)dt, ∀k ≥ K ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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which ensures that

ψ
(
d(xm(k),xn(k))

)
< ψ

(
d(xm(k)–,xn(k)–)

)
, ∀k ≥ K ,

that is,

d(xm(k),xn(k)) < d(xm(k)–,xn(k)–), ∀k ≥ K ,

which together with (.) and (.) implies that

lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k)–,xn(k)–) = ε.

Taking upper limit in (.) and using Lemma ., (a) and the equations above, we con-
clude that

∫ ψ(ε+)


ϕ(t)dt = lim sup

k→∞

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt

≤ lim sup
k→∞

φ

(∫ ψ(d(xm(k)–,xn(k)–))


ϕ(t)dt

)

≤ φ

(∫ ψ(ε+)


ϕ(t)dt

)
<

∫ ψ(ε+)


ϕ(t)dt,

which is a contradiction.
Thus, {xn}n∈N is a Cauchy sequence. Since (X,d) is a completemetric space, there exists

a point a ∈ X such that limn→∞ xn = a. By (.), Lemma . and one ofψ ∈ � andψ ∈ �,
we arrive at

 ≤
∫ ψ(d(xn+,Ta))


ϕ(t)dt ≤ φ

(∫ ψ(d(xn ,a))


ϕ(t)dt

)

≤
∫ ψ(d(xn ,a))


ϕ(t)dt →  as n→ ∞,

that is,

lim
n→∞

∫ ψ(d(xn+,Ta))


ϕ(t)dt = ,

which together with Lemma . means that

lim
n→∞ψ

(
d(xn+,Ta)

)
= . (.)

Note that (.) and one of ψ ∈ � and ψ ∈ � ensure that limn→∞ d(xn+,Ta) = . Con-
sequently, we conclude immediately that

d(a,Ta)≤ d(a,xn+) + d(xn+,Ta) →  as n→ ∞,

which gives that a = Ta.

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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Next, we show that a is a unique fixed point T in X. Suppose that T has another fixed
point b ∈ X \ {a}. It follows from (.) and one of (a) and (a) that

 <
∫ ψ(d(a,b))


ϕ(t)dt =

∫ ψ(d(Ta,Tb))


ϕ(t)dt

≤ φ

(∫ ψ(d(a,b))


ϕ(t)dt

)
<

∫ ψ(d(a,b))


ϕ(t)dt,

which is a contradiction. This completes the proof. �

Remark . Theorem . generalizes Theorem . in [] and Theorem . in []. The
example below is an application of Theorem ..

Example . Let X = [, ]∪ {, } be endowed with the Euclidean metric d = | · |. Define
T : X → X and ϕ,φ,ψ :R+ →R

+ by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

x
 , ∀x ∈ [, ],

, x = ,

, x = ,

ϕ(t) =

⎧⎨
⎩
, ∀t ∈ [, ],

et , ∀t ∈ (, +∞),

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩


 t, ∀t ∈ [,  ],

t – , ∀t ∈ (  , ),
t
+t , ∀t ∈ [, +∞),

ψ(t) =

⎧⎨
⎩


 t, ∀t ∈ [, ],

t, ∀t ∈ (, +∞).

It is easy to see that (a) holds. Put x, y ∈ X with x < y. To verify (.), we need to consider
four possible cases as follows.
Case . Let x, y ∈ [, ]. It follows that

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ(  |x–y|)


ϕ(t)dt =




|x – y| ≤ 

|x – y|

= φ

(∫ 
 |x–y|


ϕ(t)dt

)
= φ

(∫ ψ(d(x,y))


ϕ(t)dt

)
;

Case . Let x ∈ [, ] and y = . Note that |y – x| ≥  and e|y–x| +  – e > e. It follows that

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ( x )


ϕ(t)dt =



x ≤ 


<

(e|y–x| +  – e)

 + (e|y–x| +  – e)

= φ
(
e|y–x| +  – e

)
= φ

(∫ 


ϕ(t)dt +

∫ |y–x|


ϕ(t)dt

)

= φ

(∫ ψ(d(x,y))


ϕ(t)dt

)
;

Case . Let x ∈ [, ] and y = . Notice that |y – x| ≥ . It follows that

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ(|– x
 |)


ϕ(t)dt =



–
x


≤ 


<
(e|y–x| +  – e)

 + (e|y–x| +  – e)
= φ

(
e|y–x| +  – e

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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= φ

(∫ 


ϕ(t)dt +

∫ |y–x|


ϕ(t)dt

)

= φ

(∫ ψ(d(x,y))


ϕ(t)dt

)
;

Case . Let x =  and y = . It follows that

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ()


ϕ(t)dt =

∫ 



ϕ(t)dt =



<

(e +  – e)

 + e +  – e

= φ
(
e +  – e

)
= φ

(
 +

∫ 


ϕ(t)dt

)

= φ

(∫ 


ϕ(t)dt +

∫ 


ϕ(t)dt

)

= φ

(∫ ψ(d(x,y))


ϕ(t)dt

)
.

That is, (.) holds. Thus, Theorem . implies that T has a unique fixed point  ∈ X and
limn→∞ Tnx =  for each x ∈ X.

Theorem . Let (X,d) be a complete metric space, and let T : X → X be a mapping
satisfying

∫ ψ(d(Tx,Ty))


ϕ(t)dt ≤ φ

(∫ ψ(M(x,y))


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where ϕ, φ and ψ satisfy (a) or (a). Then T has a unique fixed point a ∈ X and
limn→∞ Tnx = a for each x ∈ X.

Proof Let x be an arbitrary point in X. Put xn = Txn– for each n ∈ N. Assume that xn =
xn– for some n ∈N. It is easy to see that xn– is a fixed point ofT , and there is nothing to
prove. Assume that xn 	= xn– for all n ∈ N. From (.) and one of (a) and (a), we obtain
that

∫ ψ(d(xn+,xn))


ϕ(t)dt =

∫ ψ(d(Txn ,Txn–))


ϕ(t)dt ≤ φ

(∫ ψ(M(xn ,xn–))


ϕ(t)dt

)

<
∫ ψ(M(xn ,xn–))


ϕ(t)dt, ∀n ∈N, (.)

where

M(xn,xn–)

=max

{
d(xn,xn–),d(xn,Txn),d(xn–,Txn–),



[
d(xn,Txn–) + d(xn–,Txn)

]}

=max

{
d(xn,xn–),d(xn,xn+),d(xn–,xn),



[
d(xn,xn) + d(xn–,xn+)

]}

=max
{
d(xn,xn–),d(xn,xn+)

}
, ∀n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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Suppose that d(xn ,xn–) ≤ d(xn ,xn+) for some n ∈N. It follows from (.) and (.)
that

∫ ψ(d(xn+,xn ))


ϕ(t)dt <

∫ ψ(M(xn ,xn–))


ϕ(t)dt =

∫ ψ(d(xn+,xn ))


ϕ(t)dt,

which is a contradiction. Consequently, we deduce that

d(xn,xn+) < d(xn,xn–) and M(xn,xn–) = d(xn,xn–), ∀n ∈ N. (.)

In view of (.), (.) and one of (a) and (a), we get that

∫ ψ(d(xn+,xn))


ϕ(t)dt ≤ φ

(∫ ψ(M(xn ,xn–))


ϕ(t)dt

)

= φ

(∫ ψ(d(xn ,xn–))


ϕ(t)dt

)

<
∫ ψ(d(xn ,xn–))


ϕ(t)dt, ∀n ∈N, (.)

which implies that

ψ
(
d(xn+,xn)

)
<ψ

(
d(xn,xn–)

)
, ∀n ∈N, (.)

which means that there exists a constant c≥  with limn→∞ ψ(d(xn,xn–)) = c.
Now we show that c = . Otherwise, c > . Taking upper limit in (.) and using Lem-

ma . and one of (a) and (a), we conclude that

∫ c


ϕ(t)dt = lim sup

n→∞

∫ ψ(d(xn+,xn))


ϕ(t)dt ≤ lim sup

n→∞
φ

(∫ ψ(d(xn ,xn–))


ϕ(t)dt

)

≤ φ

(∫ c


ϕ(t)dt

)
<

∫ c


ϕ(t)dt,

which is impossible. Hence c = , that is,

lim
n→∞ψ

(
d(xn,xn–)

)
= ,

which together with one of (a) and (a) gives that

lim
n→∞d(xn,xn–) = . (.)

Next, we claim that {xn}n∈N is a Cauchy sequence. Suppose that {xn}n∈N is not a Cauchy
sequence, which means that there is a constant ε >  such that for each positive integer k,
there are positive integers m(k) and n(k) withm(k) > n(k) > k such that

d(xm(k),xn(k)) > ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
the inequality above. Obviously, (.)-(.) hold. Note that

M(xm(k)–,xn(k)–)

=max

{
d(xm(k)–,xn(k)–),d(xm(k)–,Txm(k)–),d(xn(k)–,Txn(k)–),



[
d(xm(k)–,Txn(k)–) + d(xn(k)–,Txm(k)–)

]}

=max

{
d(xm(k)–,xn(k)–),d(xm(k)–,xm(k)),d(xn(k)–,xn(k)),



[
d(xm(k)–,xn(k)) + d(xn(k)–,xm(k))

]}

≤max

{
d(xm(k)–,xn(k)–),d(xm(k)–,xm(k)),d(xn(k)–,xn(k)),



[
d(xm(k)–,xn(k)–) + d(xn(k)–,xn(k)) + d(xn(k),xm(k))

]}
, ∀k ∈N. (.)

Combining (.), (.) and (.), we infer that

lim
k→∞

M(xm(k)–,xn(k)–) = ε. (.)

In light of (.), we deduce that

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt =

∫ ψ(d(Txm(k)–,Txn(k)–))


ϕ(t)dt

≤ φ

(∫ ψ(M(xm(k)–,xn(k)–))


ϕ(t)dt

)
, ∀k ∈N. (.)

Assume that (a) holds. Taking upper limit in (.) and using (.), (.) and Lem-
ma ., we get that

∫ ψ(ε)


ϕ(t)dt = lim sup

k→∞

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt

≤ lim sup
k→∞

φ

(∫ ψ(M(xm(k)–,xn(k)–))


ϕ(t)dt

)

≤ φ

(∫ ψ(ε)


ϕ(t)dt

)
<

∫ ψ(ε)


ϕ(t)dt,

which is a contradiction.
Assume that (a) holds. Note that (.) implies that there exists K ∈N with

M(xm(k)–,xn(k)–) >
ε


, ∀k ≥ K . (.)

By virtue of (a) and (.), we deduce that

ψ
(
M(xm(k)–,xn(k)–)

)
> ψ

(
ε



)
> , ∀k ≥ K . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/267
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In terms of (.), (.) and (a), we get that

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt ≤ φ

(∫ ψ(M(xm(k)–,xn(k)–))


ϕ(t)dt

)

<
∫ ψ(M(xm(k)–,xn(k)–))


ϕ(t)dt, ∀k ≥ K ,

which yields that

ψ
(
d(xm(k),xn(k))

)
< ψ

(
M(xm(k)–,xn(k)–)

)
, ∀k ≥ K ,

that is,

d(xm(k),xn(k)) <M(xm(k)–,xn(k)–), ∀k ≥ K ,

which together with (.), (.) and (.) implies that

lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

M(xm(k)–,xn(k)–) = ε. (.)

Taking upper limit in (.) and using (.), (a) and Lemma ., we conclude that

∫ ψ(ε+)


ϕ(t)dt = lim sup

k→∞

∫ ψ(d(xm(k),xn(k)))


ϕ(t)dt

≤ lim sup
k→∞

φ

(∫ ψ(M(xm(k)–,xn(k)–))


ϕ(t)dt

)

≤ φ

(∫ ψ(ε+)


ϕ(t)dt

)

<
∫ ψ(ε+)


ϕ(t)dt,

which is a contradiction.
Thus, {xn}n∈N is a Cauchy sequence. It follows from completeness of (X,d) that there

exists a point a ∈ X with limn→∞ xn = a.
Next, we show that a is a fixed point of T in X. Suppose that a 	= Ta. Notice that

M(xn,a) =max

{
d(xn,a),d(xn,Txn),d(a,Ta),



[
d(xn,Ta) + d(a,Txn)

]}

=max

{
d(xn,a),d(xn,xn+),d(a,Ta),



[
d(xn,Ta) + d(a,xn+)

]}

→ d(a,Ta) as n→ ∞,

which guarantees that there exists K ∈N satisfying

M(xn,a) = d(a,Ta), ∀n≥ K. (.)
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Let (a) hold. In light of (.), (.) and Lemma ., we infer that

∫ ψ(d(a,Ta))


ϕ(t)dt = lim sup

n→∞

∫ ψ(d(xn+,Ta))


ϕ(t)dt

= lim sup
n→∞

∫ ψ(d(Txn ,Ta))


ϕ(t)dt

≤ lim sup
n→∞

φ

(∫ ψ(M(xn ,a))


ϕ(t)dt

)

= φ

(∫ ψ(d(a,Ta))


ϕ(t)dt

)
<

∫ ψ(d(a,Ta))


ϕ(t)dt,

which is a contradiction.
Let (a) hold. In view of (.) and (.), we deduce that

∫ ψ(d(xn+,Ta))


ϕ(t)dt =

∫ ψ(d(Txn ,Ta))


ϕ(t)dt ≤ φ

(∫ ψ(M(xn ,a))


ϕ(t)dt

)

= φ

(∫ ψ(d(a,Ta))


ϕ(t)dt

)
<

∫ ψ(d(a,Ta))


ϕ(t)dt, ∀n≥ K, (.)

which yields that

ψ
(
d(xn+,Ta)

)
< ψ

(
d(a,Ta)

)
, ∀n≥ K,

that is,

d(xn+,Ta) < d(a,Ta), ∀n≥ K,

which together with (.) and (ϕ,φ,ψ) ∈ � × � × � means that

∫ ψ(d(a,Ta))


ϕ(t)dt =

∫ ψ(d(a,Ta)–)


ϕ(t)dt = lim sup

n→∞

∫ ψ(d(xn+,Ta))


ϕ(t)dt

≤ φ

(∫ ψ(d(a,Ta))


ϕ(t)dt

)
<

∫ ψ(d(a,Ta))


ϕ(t)dt,

which is a contradiction.
Hence T has a fixed point a ∈ X. Finally, we show that a is a unique fixed point of T in X.

Suppose that T has another fixed point b ∈ X \ {a}. It follows from (.) and one of (a)
and (a) that

 <
∫ ψ(d(a,b))


ϕ(t)dt =

∫ ψ(d(Ta,Tb))


ϕ(t)dt

≤ φ

(∫ ψ(d(a,b))


ϕ(t)dt

)
<

∫ ψ(d(a,b))


ϕ(t)dt,

which is a contradiction. This completes the proof. �

Remark . Theorem . extends Theorem  in []. The following example is an appli-
cation of Theorem ..
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Example . Let X = [, ]∪ {n : n ∈N} be endowed with the Euclidean metric d = | · |.
Define T : X → X and ϕ,φ,ψ :R+ → R

+ by

Tx =

⎧⎨
⎩

x
 , ∀x ∈ [, ],

x , ∀x ∈ {n : n ∈ N},

ϕ(t) = t, ∀t ∈R
+,

φ(t) =

⎧⎨
⎩

t
 , ∀t ∈ [, ],
t
+t , ∀t ∈ (, +∞),

ψ(t) =

⎧⎨
⎩

t
 , ∀t ∈ [, ],
√
t
 , ∀t ∈ (, +∞).

Clearly, (a) holds, φ and ψ are strictly increasing in R
+. Put x, y ∈ X with x < y. To prove

(.), we need to consider three possible cases as follows.
Case . Let x, y ∈ [, ]. It follows that

M(x, y) =max

{
|x – y|,

∣∣∣∣x – 

x
∣∣∣∣,

∣∣∣∣y – 

y
∣∣∣∣, 

(∣∣∣∣x – 

y
∣∣∣∣ +

∣∣∣∣y – 

x
∣∣∣∣
)}

∈ (, ]

and

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ(  |x–y|)


ϕ(t)dt =




(x – y) ≤ 

(x – y)

= φ

(


(x – y)

)
= φ

(∫ ψ(d(x,y))


ϕ(t)dt

)
≤ φ

(∫ ψ(M(x,y))


ϕ(t)dt

)
.

Case . Let x, y ∈ {n : n ∈N}. Notice that

M(x, y) =max

{
|x – y|,

∣∣∣∣x – 
x

∣∣∣∣,
∣∣∣∣y – 

y

∣∣∣∣, 
(∣∣∣∣x – 

y

∣∣∣∣ +
∣∣∣∣y – 

x

∣∣∣∣
)}

> .

Suppose thatM(x, y) ∈ (, ]. It follows that

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ(| x– 
y |)


ϕ(t)dt =

∫ 
 | x– 

y |


ϕ(t)dt =




(

x
–

y

)

<



<


M(x, y) = φ

(


M(x, y)

)
= φ

(∫ 

√

M(x,y)


ϕ(t)dt

)

= φ

(∫ ψ(M(x,y))


ϕ(t)dt

)
.

Suppose thatM(x, y) > . It follows that

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ(| x– 
y |)


ϕ(t)dt =

∫ 
 | x– 

y |


ϕ(t)dt =




(

x
–

y

)

<



<
M(x, y)

 + M(x, y)
=


M

(x, y)
 + 

M(x, y)

= φ

(


M(x, y)

)
= φ

(∫ 

√

M(x,y)


ϕ(t)dt

)

= φ

(∫ ψ(M(x,y))


ϕ(t)dt

)
.
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Case . Let x ∈ [, ] and y ∈ {n : n ∈N}. It follows that

M(x, y) =max

{
|x – y|,

∣∣∣∣x – x


∣∣∣∣,
∣∣∣∣y – 

y

∣∣∣∣, 
(∣∣∣∣x – 

y

∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
)}

≥
∣∣∣∣y – 

y

∣∣∣∣ > 

and

∫ ψ(d(Tx,Ty))


ϕ(t)dt =

∫ ψ(| x – 
y |)


ϕ(t)dt =

∫ 
 | x – 

y |


ϕ(t)dt

=



(
x

–

y

)

≤ 


<max

{


M(x, y),

M(x, y)
 + M(x, y)

}

= φ

(


M(x, y)

)
= φ

(∫ ψ(M(x,y))


ϕ(t)dt

)
,

that is, (.) holds. Thus, Theorem . implies that T has a unique fixed point  ∈ X and
limn→∞ Tnx =  for each x ∈ X.
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