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1 Introduction and preliminaries
Banach’s contraction principle [] is one of the pivotal results in nonlinear analysis. Ba-
nach’s contraction principle and its generalizations havemany applications in solving non-
linear functional equations. In a metric space setting, it can be stated as follows.

Theorem . Let (X,d) be a complete metric space. Suppose that a mapping T : X → X
satisfies

d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X,

where  ≤ k < .
Then T has a unique fixed point in X.

Ćirić [] introduced quasi contraction, which is one of the most general contraction
conditions.

Theorem . Let (X,d) be a complete metric space. Suppose that a mapping T : X → X
satisfies

d(Tx,Ty) ≤ kmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}

for all x, y ∈ X, where  ≤ k < .
Then T has a unique fixed point in X.

In [], Berinde generalized Ćirić’s result.
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Theorem . Let (X,d) be a complete metric space. Suppose that a mapping T : X → X
satisfies

d(Tx,Ty) ≤ φ
(
max

{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

})

for all x, y ∈ X, where φ : [,∞) → [,∞) is nondecreasing and continuous such that
limn→∞ φn(t) =  for all t > .
If T has bounded orbits, then T has a unique fixed point in X .

Recently, Samet et al. [] introduced the notion of α-ψ contractive mapping and gave
some fixed point theorems for such mappings. Then, Asl et al. [] gave generalizations of
some of the results in [], and Mohammadi et al. [] generalized the results in [].
The purpose of the paper is to introduce a concept of α-ψ-quasi contractive mappings

and to give some new fixed point theorems for such mappings.

2 Fixed point theorems
Let � be the family of all nondecreasing functions ψ : [,∞)→ [,∞) such that

lim
n→∞ψn(t) = 

for all t > .

Lemma . If ψ ∈ � , then the following are satisfied.
(a) ψ(t) < t for all t > ;
(b) ψ() = ;
(c) ψ is right continuous at t = .

Remark .
(a) If ψ : [,∞)→ [,∞) is nondecreasing such that

∑∞
n= ψ

n(t) <∞ for each t > ,
then ψ ∈ � .

(b) If ψ : [,∞) → [,∞) is upper semicontinuous such that ψ(t) < t for all t > , then
limn→∞ ψn(t) =  for all t > .

Let (X,d) be a metric space, and let α : X ×X → [,∞) be a function.
A mapping T : X → X is called α-ψ-quasi contractive if there exists ψ ∈ � such that,

for all x, y ∈ X,

α(x, y)d(Tx,Ty)≤ ψ
(
M(x, y)

)
,

whereM(x, y) =max{d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}.
For A⊂ X, we denote by δ(A) the diameter of A.
Let � be the family of all functions α : X ×X → [,∞).

Theorem . Let (X,d) be a complete metric space, α ∈ �, and let ψ ∈ � be such that ψ

is upper semicontinuous. Suppose that T : X → X is α-ψ-quasi contractive. Assume that
there exists x ∈ X such that

O(x,T ;∞) =
{
Tnx : n = , , , . . .

}
is bounded and α

(
Tix,Tjx

) ≥  (.)

for all i, j ∈N∪ {} with i < j.

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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Suppose that either T is continuous or

lim
n→∞ infα

(
Tnx,x

) ≥  (.)

for any cluster point x of {Tnx}.
Then T has a fixed point in X .

Proof Let x ∈ X be such that O(x,T ;∞) is bounded and α(Tix,Tjx) ≥  for all i, j ∈
N∪ {} with i < j.
Define a sequence {xn} ⊂ X by xn+ = Txn for n ∈N∪ {}.
If xn = xn+ for some n ∈N∪ {}, then xn is a fixed point.
Assume that xn 	= xn+ for all n ∈N∪ {}.
We now show that {xn} is a Cauchy sequence.
Let Bn = {xi : i≥ n}, for n = , , , . . . , and let δ(B) = B.
We claim that for n = , , , . . . ,

δ(Bn) ≤ ψn(B). (.)

If n = , then obviously, (.) holds.
Suppose that (.) holds when n = k, i.e., δ(Bk) ≤ ψk(B).
Let xi,xj ∈ Bk+ for any i, j ≥ k + . Then

d(xi,xj) = d(Txi–,Txj–)

≤ α(xi–,xj–)d(Txi–,Txj–)

≤ ψ
(
max

{
d(xi–,xj–),d(xi–,Txi–),d(xj–,Txj–),d(xi–,Txj–),d(xj–,Txi–)

})
=ψ

(
max

{
d(xi–,xj–),d(xi–,xi),d(xj–,xj),d(xi–,xj),d(xj–,xi)

})
≤ ψ

(
δ(Bk)

)
≤ ψ

(
ψk(B)

)
=ψk+(B).

Therefore, (.) is true for n = , , , . . . .
Hence, from (.), we have limn→∞ δ(Bn) = . Thus, {xn} is a Cauchy sequence in X. It

follows from the completeness of X that there exists

x∗ = lim
n→∞xn ∈ X.

If T is continuous, then limn→∞ xn = Tx∗, and so x∗ = Tx∗.
Assume that (.) is satisfied.
Then, limn→∞ infα(xn,x∗) ≥ , and so there exists N ∈ N such that α(xn,x∗) ≥  for all

n >N . Thus, we have

d(xn+,Tx∗)

= d(Txn,Tx∗)

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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≤ 
α(xn,x∗)

ψ
(
M(xn,x∗)

)

≤ ψ
(
M(xn,x∗)

)
(.)

for all n >N , where

M(xn,x∗) =max
{
d(xn,x∗),d(xn,xn+),d(x∗,Tx∗),d(xn,Tx∗),d(x∗,xn+)

}
.

Assume that d(x∗,Tx∗) > .
We obtain limn→∞ M(xn,x∗) = d(x∗,Tx∗).
Using (.), and using upper semicontinuity of ψ , we have

d(x∗,Tx∗) = lim
n→∞ supd(xn+,Tx∗)

≤ lim
n→∞ supψ

(
M(xn,x∗)

) ≤ ψ
(
d(x∗,Tx∗)

)
.

Since d(x∗,Tx∗) > ,

d(x∗,Tx∗) ≤ ψ
(
d(x∗,Tx∗)

)
< d(x∗,Tx∗),

which is a contradiction. Hence, d(x∗,Tx∗) = , and hence, x∗ = Tx∗. �

Example . Let X = [,∞) and d(x, y) = |x – y| for all x, y ∈ X, and let

ψ(t) =

⎧⎨
⎩


 t, if t ∈ [, ],
t

+t , if otherwise.

Then ψ ∈ � .
Note that ψ is not continuous at t = , and

∑∞
n= ψ

n(  ) =
∑∞

n=


+n =∞.
Define a mapping T : X → X by

Tx =

⎧⎪⎪⎨
⎪⎪⎩
x + , if x ∈ [, ),

 – 
x, if x ∈ [, ],

x – , if x ∈ (,∞).

We define α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
, if x, y ∈ [, ],

, if x /∈ [, ] or y /∈ [, ].

Clearly, T is an α-ψ quasi contractive mapping. Condition (.) holds with x = 
 , and

O(x,T ;∞) is bounded. Obviously, (.) is satisfied.
Applying Theorem ., T has a fixed point. Note that 

 and  are two fixed points of T .

The following example shows that if we do not have the condition of which O(x,T ;∞)
is bounded for some x ∈ X, then Theorem . does not hold. Thus, we have to have the
condition above.

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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Example . Let X =N, and let

d(x, y) =

⎧⎨
⎩

∑k
i=


i (x = n, y = n + k,k ≥ ),

 (x = y)

for all x, y ∈ X.
Then (X,d) is a complete metric space.
Let T : X → X be a mapping defined by T(n) = n + , and let α(x, y) =  for all x, y ∈ X.
Let tk =

∑k
i=


i for k = , , , . . . .

Define a function ψ : [,∞) → [,∞) by

ψ(t) =

⎧⎨
⎩


 t ( ≤ t ≤ 

 ),
tk–tk–
tk+–tk

(t – tk+) + tk (tk ≤ t ≤ tk+,k = , , , . . .).

Then, it easy to see that ψ ∈ � .
We show that T is α-ψ-quasi contractive.
For xn,xn+k ∈ X (k ≥ ), we have

α(n,n + k)d
(
T(n),T(n + k)

)
= d

(
T(n),T(n + k)

)
= d(n + ,n + k + )

= tk

=ψ(tk+)

=ψ
(
d(n,n + k + )

)
=ψ

(
n,T(n + k)

)
≤ ψ

(
M(n,n + k)

)
.

Hence, T is α-ψ-quasi contractive. But the orbits are not bounded, and T has no fixed
points.

Corollary . Let (X,d) be a complete metric space, α ∈ �, and let ψ ∈ � be such that ψ

is upper semicontinuous. Suppose that T : X → X is α-ψ-quasi contractive. Assume that
there exists x ∈ X such that

d(x,Tx) < lim
t→∞

(
t –ψ(t)

)
and α

(
Tix,Tjx

) ≥ 

for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous or limn→∞ infα(Tnx,x) ≥  for any cluster point x

of {Tnx}.
Then T has a fixed point in X .

Proof Define a sequence {xn} ⊂ X by xn = Tnx for n = , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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By assumption, d(x,x) < limt→∞(t – φ(t)). Hence, there exists M >  such that for all
t >M,

d(x,x) < t – φ(t). (.)

If  ≤ i < j ≤ n, then we have

α(xi–,xj–)d(xi,xj)

≤ ψ
(
max

{
d(xi–,xj–),d(xi–,xi),d(xj–,xj),d(xi–,xj),d(xj–,xi)

})
≤ ψ(v),

where v =max{d(xi–,xj–),d(xi–,xi),d(xj–,xj),d(xi–,xj),d(xj–,xi)} ≤ δ(O(xi–,T ;n – i +
)).
Thus, we have

d(xi,xj)

≤ α(xi–,xj–)d(xi,xj)

≤ ψ
(
δ
(
O(xi–,T ;n – i + )

))
≤ ψ

(
δ
(
O(x,T ;n)

))
. (.)

So we obtain

d(xi,xj) ≤ ψ
(
δ
(
O(x,T ;n)

))
< δ

(
O(x,T ;n)

)
.

Hence, we have

δ
(
O(x,T ;n)

)
=max

{
d(x,xk) :  ≤ k ≤ n

}
.

From (.), we obtain

δ
(
O(x,T ;n)

)
= d(x,xk)

≤ d(x,x) + d(x,xk)

≤ d(x,x) +ψ
(
δ
(
O(x,T ;n)

))
.

Thus, we have

δ
(
O(x,T ;n)

)
–ψ

(
δ
(
O(x,T ;n)

)) ≤ d(x,x). (.)

From (.) and (.), we have δ(O(x,T ;n)) ≤ M for all n ∈ N. Hence, O(x,T ;n) is
bounded. By Theorem ., T has a fixed point in X. �

Corollary . Let (X,d) be a complete metric space, α ∈ �, and let ψ ∈ � be such that ψ

is upper semicontinuous. Suppose that T : X → X is α-ψ-quasi contractive. Assume that

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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limt→∞(t –ψ(t)) = ∞, and there exists x ∈ X such that

α
(
Tix,Tjx

) ≥ 

for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous or limn→∞ infα(Tnx,x) ≥  for any cluster point x

of {Tnx}.
Then T has a fixed point in X .

Corollary . Let (X,�,d) be a complete orderedmetric space, and letψ ∈ � be such that
ψ is upper semicontinuous.
Suppose that a mapping T : X → X satisfies

d(Tx,Ty) ≤ ψ
(
M(x, y)

)

for all comparable elements x, y ∈ X. Assume that there exists x ∈ X such that O(x,T ;n)
is bounded, and Tix and Tjx are comparable for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous, or Tnx and x are comparable for all n ∈ N ∪ {}

and for any cluster point x of {Tnx}.
Then T has a fixed point in X .

Proof Define α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
 (x and y are comparable),

 (otherwise).

Using Theorem ., T has a fixed point in X. �

Remark . Let (X,d) be a metric space, and let α ∈ �.
Consider the following conditions:
() for each x, y, z ∈ X , α(x, y)≥  and α(y, z) ≥  implies α(x, z)≥ ;
() for each x, y ∈ X , α(x, y)≥  implies α(Tx,Ty) ≥ ;
() there exists x ∈ X such that α(x,Tx) ≥ ;
() if {xn} is a sequence with α(xn,xn+) ≥  for all n ∈N∪ {} and limn→∞ xn = x ∈ X ,

then α(xn,x)≥  for all n ∈ N∪ {};
() there exists x ∈ X such that α(Tix,Tjx)≥  for all i, j ∈ N∪ {} with i < j;
() lim infα(Tnx,x)≥  for all cluster point x of {Tnx}.
Then conditions (), () and () imply (), and condition () implies ().

Remark . If we replace condition (.) of Theorem . with the conditions (), ()
and () above and replace condition (.) of Theorem . with the condition () above,
then T has a fixed point.

Corollary . Let (X,�,d) be a complete orderedmetric space, and letψ ∈ � be such that
ψ is upper semicontinuous. Suppose that a nondecreasing mapping T : X → X satisfies

d(Tx,Ty) ≤ ψ
(
M(x, y)

)

for all x, y ∈ X with x� y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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Assume that there exists x ∈ X such that O(x,T ;n) is bounded, and x � Tx. Suppose
that either T is continuous or if {xn} is a sequence in X such that xn � xn+ for all n ∈ N and
limn→∞ xn = x, then xn � x for all n ∈N.
Then T has a fixed point in X .

Proof Define α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
 (x� y),

 (x� y).

Using Remark ., T has a fixed point in X. �

In Theorem ., if α(x, y) =  for all x, y ∈ X, we have the following corollary.

Corollary . Let (X,d) be a complete metric space, and letψ ∈ � be such thatψ is upper
semicontinuous. Suppose that a mapping T : X → X satisfies

d(Tx,Ty) ≤ ψ
(
M(x, y)

)

for all x, y ∈ X. If there exists x ∈ X such that O(x,T ;n) is bounded, then T has a fixed
point in X.

Remark . Corollary . is a generalization of Theorem  in [].

Theorem . Let (X,d) be a complete metric space, α ∈ �, and let ψ ∈ � . Suppose that a
mapping T : X → X satisfies

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)

for all x, y ∈ X.
Assume that there exists x ∈ X such that O(x,T ;∞) is bounded and

α
(
Tix,Tjx

) ≥ 

for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous, or

lim infα
(
Tnx,x

)
>  (.)

for any cluster point x of {Tnx}.
Then T has a fixed point in X .

Proof Define a sequence {xn} ⊂ X by xn+ = Txn for all n ∈ N ∪ {}. As in the proof of
Theorem ., {xn} is a Cauchy sequence in X. Since X is complete, there exists x∗ ∈ X such
that

lim
n→∞xn = x∗.

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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If T is continuous, then x∗ is a fixed point of T .
Assume that (.) is satisfied.
Then, L := lim infα(xn,x∗) > .
Let ε >  be given.
Then there exists N ∈N such that d(xn,x∗) < Lε and α(xn,x∗) >  for all n >N .
Since ψ is nondecreasing, ψ(d(xn,x∗)) ≤ ψ(Lε) for all n >N .
Thus, we have

d(xn+,Tx∗) = d(Txn,Tx∗)

≤ 
α(xn,x∗)

ψ
(
d(xn,x∗)

) ≤ 
α(xn,x∗)

ψ(Lε)

for all n >N .
Hence, we obtain

d(x∗,Tx∗) = lim supd(xn+,Tx∗)

≤ 
lim infα(xn,x∗)

ψ(Lε) =

L

ψ(Lε) < ε,

and so x∗ = Tx∗. �

Remark . Theorem . is a generalization of Theorem . and Theorem . in [].

Corollary . Let (X,d) be a complete metric space, α ∈ �, and let ψ ∈ � . Suppose that
a mapping T : X → X satisfies

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)

for all x, y ∈ X.
Assume that there exists x ∈ X such that

d(x,Tx) < lim
t→∞

(
t –ψ(t)

)
and α

(
Tix,Tjx

) ≥ 

for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous, or limn→∞ infα(Tnx,x) >  for any cluster point x

of {Tnx}.
Then T has a fixed point in X .

Proof Define a sequence {xn} ⊂ X by xn = Tnx for n = , , . . . .
As in the proof of Corollary ., O(x,T ;n) is bounded. By Theorem ., T has a fixed

point in X. �

Corollary . Let (X,d) be a complete metric space, α ∈ �, and let ψ ∈ � . Suppose that
a mapping T : X → X satisfies

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)

for all x, y ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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Assume that limt→∞(t –ψ(t)) = ∞, and there exists x ∈ X such that

α
(
Tix,Tjx

) ≥ 

for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous or limn→∞ infα(Tnx,x) >  for any cluster point x

of {Tnx}.
Then T has a fixed point in X .

Corollary . Let (X,�,d) be a complete ordered metric space, and let ψ ∈ � . Suppose
that a mapping T : X → X satisfies

d(Tx,Ty) ≤ ψ
(
d(x, y)

)

for all comparable elements x, y ∈ X.
Assume that there exists x ∈ X such that O(x,T ;∞) is bounded, and Tix and Tjx are

comparable for all i, j ∈N∪ {} with i < j.
Suppose that either T is continuous or Tnx and x are comparable for all n ∈N∪{} and

for any cluster point X of {Tnx}.
Then T has a fixed point in X .

Corollary . Let (X,�,d) be a complete ordered metric space, and let ψ ∈ � . Suppose
that a mapping T : X → X is nondecreasing such that d(Tx,Ty)≤ ψ(d(x, y)) for all x, y ∈ X
with x � y.
Assume that there exists x ∈ X such that O(x,T ;∞) is bounded, and x � Tx. Suppose

that either T is continuous, or if {xn} is a sequence in X such that xn � xn+ for all n ∈ N

and limn→∞ xn = x, then xn � x for all n ∈N.
Then T has a fixed point in X .

Remark . Corollary . and Corollary . are generalizations of the results of [].

3 An application to integral equations
We consider the following integral equation:

x(t) =
∫ t

a
K

(
t, s,x(s)

)
ds + g(t), t ∈ I, (.)

where K : I × I ×Rn →Rn and g : I →Rn are continuous.
Recall that the Bielecki-type norm on X,

‖x‖B =max
t∈I

∣∣x(t)∣∣e–τ (t–a) for all x ∈ X,

where τ > , is arbitrarily chosen.
Let dB(x, y) = ‖x – y‖B =maxt∈[a,b] |x(t) – y(t)|e–τ (t–a) for all x, y ∈ X.
Then it is well known that (X,dB) is a complete metric space.

Theorem . Let ξ : Rn × Rn → R be a function. Suppose that the following conditions
()-() are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2013/1/268
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() for all u, v,w ∈Rn, ξ (u, v)≥  and ξ (v,w)≥  implies ξ (u,w) ≥ ;
() for all s, t ∈ I and for all u, v ∈Rn with ξ (u, v)≥ 

∣∣K (t, s,u) –K (t, s, v)
∣∣ ≤ ψ

(|u – v|),

where ψ ∈ � such that limt→∞(t –ψ(t)) = ∞ and ψ(λt)≤ λψ(t) for all t ≥  and for
all λ ≥ ;

() there exists x ∈ X such that for all t ∈ I ,

ξ

(
x(t),

∫ t

a
K

(
t, s,x(s)

)
ds + g(t)ds

)
≥ ;

() for all x, y ∈ X and for all t ∈ I ,

ξ
(
x(t), y(t)

) ≥  implies ξ

(∫ t

a
K

(
t, s,x(s)

)
ds+g(t),

∫ t

a
K

(
t, s, y(s)

)
ds+g(t)

)
≥ ;

() if {xn} is a sequence in X such that limn→∞ xn = x ∈ X and ξ (xn,xn+)≥  for all
n ∈N, then ξ (xn,x) ≥  for all n ∈N.

Then the integral equation (.) has at least one solution x∗ ∈ X.

Proof

Tx(t) =
∫ t

a
K

(
t, s,x(s)

)
ds + g(t) for all t ∈ I.

Let x, y ∈ X such that ξ (x(t), y(t))≥  for all t ∈ I .
From (), we have

∣∣Tx(t) – Ty(t)
∣∣

=
∣∣∣∣
∫ t

a

[
K

(
t, s,x(s)

)
–K

(
t, s, y(s)

)]
ds

∣∣∣∣
≤

∫ t

a

∣∣K(
t, s,x(s)

)
–K

(
t, s, y(s)

)∣∣ds

≤
∫ t

a
ψ

(∣∣x(s) – y(s)
∣∣)ds

=
∫ t

a
ψ

(∣∣x(s) – y(s)
∣∣e–τ (s–a)eτ (s–a))ds

≤
∫ t

a
eτ (s–a)ψ

(∣∣x(s) – y(s)
∣∣e–τ (s–a))ds

≤ ψ
(‖x – y‖B

)∫ t

a
eτ (s–a) ds

≤ 
τ

ψ
(‖x – y‖B

)
eτ (s–a) for all s ∈ I.

Hence, for τ ≥ , we obtain dB(Tx,Ty) ≤ ψ(dB(x, y)) for all x, y ∈ X with ξ (x, y)≥ .
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We define α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
, if ξ (x(t), y(t))≥ , t ∈ I,

, otherwise.

Then, for all x, y ∈ X, we have

α(x, y)dB(Tx,Ty) ≤ ψ
(
dB(x, y)

)
.

It is easy to see that conditions ()-() of Remark . are satisfied. By Corollary ., T has
a fixed point in X. �
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