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1 Introduction
Let X be a real locally convex Hausdorff topological vector space, whose dual space X∗ is
endowed with the weak∗ topologies W ∗(X∗,X). Let T be an arbitrary (possibly infinite)
index set, C be a nonempty convex subset of X, and let h,ht : X → R := R ∪ {+∞}, t ∈ T ,
be proper convex functions. Consider the following optimization problem (cf. [–] and
the references therein):

(P)
Min h(x),
s.t. ht(x)≤ , t ∈ T ,

x ∈ C,
(.)

and its Lagrange dual problem

(D) sup
λ∈R(T)

+

inf
x∈C

{
h(x) +

∑
t∈T

λtht(x)
}
, (.)

where R
(T)
+ is the cone consisting of vector (λt) ∈ R

T with nonnegative and only finitely
many nonzero coordinates, that is,

R
(T)
+ =

{
(λt) ∈ R

T : λt ≥  for each t ∈ T and only finitely many λ 	= 
}
.

The optimal values of problems (P) and (D) are denoted by v(P) and v(D), respectively.
Usually, there is a so-called duality gap between the optimal values of primal problem

(P) and its Lagrange dual problem (D). A challenge in convex analysis is to give sufficient
conditions which guarantee the strong Lagrange duality, that is, v(P) = v(D) and the dual
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problem (D) has an optimal solution. Several sufficient and/or necessary conditions were
given in the past in order to eliminate the above-mentioned duality gap, see, for example,
[–, ] and the references therein. In particular, the authors in [] established a com-
plete characterization for the strong Lagrange duality under assumption that f and ft are
not necessarily convex, and in [], the authors considered the optimization problem (P),
but with h := f – g and ht := ft – gt , t ∈ T being DC (difference of two convex functions)
functions, and they obtained some complete characterizations for the weak and strong
Lagrange dualities. As pointed in [], problems of DC programming are highly impor-
tant from both viewpoints of optimization theory and applications, and they have been
extensively studied in the literature (cf. [–] and the references therein).
Inspired by the works mentioned above, we continue to study the optimization problem

which was studied in [], that is,

(P)
Min f (x) – g(x),
s.t. ft(x) – gt(x) ≤ , t ∈ T ,

x ∈ C,
(.)

where T , C are as in (.), f , g, ft , gt : X →R, t ∈ T , are proper convex functions. Through-
out this paper, we assume that

∅ 	= A :=
{
x ∈ C : ft(x) – gt(x)≤ ,∀t ∈ T

}
. (.)

Following [], we define the Lagrange function L :H∗×R
(T)
+ →R for theDCoptimization

problem (.) by

L
(
w∗,λ

)
:= g∗(u∗) +∑

t∈T
λtg∗

t
(
v∗
t
)
–

(
f + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t

)

for any (w∗,λ) ∈H∗ ×R
(T)
+ withw∗ = (u∗, (v∗

t )) ∈H∗ := dom g∗ ×∏
t∈T dom g∗

t and λ = (λt) ∈
R

(T)
+ . Then the Lagrange dual problem for the DC optimization problem (.) is defined

by

(D) sup
λ∈R(T)

+

inf
w∗∈H∗ L

(
w∗,λ

)
, (.)

where and throughout the whole paper, following [, p.], we adopt the convention that
(+∞) + (–∞) = (+∞) – (+∞) = +∞ and  · (∞) = . Then, for any two proper convex
functions h,h : X →R, we have that

h(x) – h(x)

⎧⎪⎪⎨
⎪⎪⎩

∈ R, x ∈ domh ∩ domh,

= –∞, x ∈ domh \ domh,

= +∞, x /∈ domh;

(.)

hence,

h – h is proper ⇐⇒ domh ⊆ domh. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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As mentioned in [], in the case when g and gt , t ∈ T are lsc, then the dual problem (.)
is equivalent to the following problem

sup
λ∈R(T)

+

inf
x∈C

{
f (x) – g(x) +

∑
t∈T

λt
(
ft(x) – gt(x)

)}
. (.)

However, without assuming the lower semicontinuity of g and gt , problems (.) and (D)
are in general not equivalent.
The present paper is centered around the total Lagrangian duality for the DC problem

(P) and its dual problem (D). For the problem of total Lagrange duality, one seeks condi-
tions ensuring that the following implication holds for x ∈ dom(f – g)∩A:

[
f (x) – g(x) =min

x∈A
{
f (x) – g(x)

}]

�⇒ [∃λ ∈R
(T)
+ ,∀w∗ ∈H∗,L

(
w∗,λ

)
= f (x) – g(x)

]
. (.)

Clearly, the strong Lagrange duality ensures the total Lagrange duality, but the converse
does not necessarily hold in general. To our knowledge, notmany results are known to pro-
vide complete characterizations for the total Lagrangian duality for the DC optimization
problem (.). Except the works in paper [] by Fang et al., where, assuming in addition
that g = gt = , t ∈ T , a complete characterization was established for the stable total La-
grangian duality for problem (.), that is, the characterization for (.) to hold for f + p
in place of f with any p ∈ X∗. However, the approaches in [] do not work for the DC
optimization problem (.).
In this paper, we do not impose any topological assumption on C or on f , g , ft and gt ,

that is, C is not necessarily closed, and f , g , ft , t ∈ T are not necessarily lsc, and gt , t ∈ T
are necessarily differentiable. One of our main aims in the present paper is to use these
constraint qualifications (or their variations) involving subdifferentials, which have been
studied and extensively used, see, for example, [, , , , ], to provide characterizations
for the total Lagrangian duality. Most of results obtained in the present paper seem new
and are proper extensions of the results in [] in the special case when g = gt = , t ∈ T .
In particular, both our dual problem and the regularity conditions introduced here are
defined in terms of subdifferential of the convex functions f , g , ft and gt rather than those
of the DC functions f – g and ft – gt , which are different from the consideration in [].
The paper is organized as follows. The next section contains the necessary notations and

preliminary results. In Section , we provide some characterizations for theweak Lagrange
dualities and the total Lagrangian dualities to hold.

2 Notations and preliminaries
The notations used in this paper are standard (cf. []). In particular, we assume through-
out the whole paper that X is a real locally convex space, and let X∗ denote the dual space
of X. For x ∈ X and x∗ ∈ X∗, we write 〈x∗,x〉 for the value of x∗ at x, that is, 〈x∗,x〉 := x∗(x).
Let Z be a set in X. The closure of Z is denoted by clZ. IfW ⊆ X∗, then clW denotes the
weak∗ closure ofW . For the whole paper, we endow X∗ ×R with the product topology of
w∗(X∗,X) and the usual Euclidean topology.

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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Following [], we useR(T) to denote the space of real tuples λ = (λt)t∈T with only finitely
many λt 	= , and let R(T)

+ denote the nonnegative cone in R
(T), that is,

R
(T)
+ :=

{
(λt)t∈T ∈R

(T) : λt ≥  for each t ∈ T
}
.

The normal cone of the nonempty set Z at z ∈ Z is denoted by NZ(z) and is defined by

NZ(z) =
{
x∗ ∈ X∗ :

〈
x∗, z – z

〉 ≤  for all z ∈ Z
}
,

and the indicator function δZ of Z is defined by

δZ(z) :=

⎧⎨
⎩
, z ∈ Z,

+∞, otherwise.

Let f be a proper function defined onX.We use dom f , epi f and f ∗ to denote respectively
the effective domain, the epigraph and the conjugate function of f , that is,

dom f :=
{
x ∈ X : f (x) < +∞}

,

epi f :=
{
(x, r) ∈ X ×R : f (x)≤ r

}

and

f ∗(x∗) := sup
{〈
x∗,x

〉
– f (x) : x ∈ X

}
for each x∗ ∈ X∗.

Let x ∈ X. The subdifferential of f at x is defined by

∂f (x) :=
{
x∗ ∈ X∗ : f (x) +

〈
x∗, y – x

〉 ≤ f (y) for each y ∈ X
}

(.)

if x ∈ dom f , and ∂f (x) := ∅, otherwise. Then by definition,

NZ(x) = ∂δZ(x) for each x ∈ Z. (.)

By [, Theorems .. and ..(iii)], the Young-Fenchel inequality below holds

f (x) + f ∗(x∗) ≥ 〈
x,x∗〉 for each pair

(
x,x∗) ∈ X ×X∗, (.)

and the Young equality holds

f (x) + f ∗(x∗) = 〈
x∗,x

〉
if and only if x∗ ∈ ∂f (x). (.)

Furthermore, if g , h are proper functions, then

g ≤ h ⇒ g∗ ≥ h∗ ⇔ epi g∗ ⊆ epih∗ (.)

and

∂g(a) + ∂h(a) ⊆ ∂(g + h)(a) for each a ∈ dom g ∩ domh. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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The closure of f is denoted by cl f , which is defined by

epi(cl f ) = cl(epi f ).

Then (cf. [, Theorems ..]),

f ∗ = (cl f )∗. (.)

By [, Theorem ..], if cl f is proper and convex, then the following equality holds:

f ∗∗ = cl f . (.)

Moreover, by [, Theorem ..], if ∂f (x) 	= ∅, then

(cl f )(x) = f (x) and ∂(cl f )(x) = ∂f (x). (.)

Finally, note that an element p ∈ X∗ can be naturally regarded as a function on X in such
way that

p(x) := 〈p,x〉 for each x ∈ X. (.)

Then the following facts are clear for any a ∈R and a real-valued proper function f :

epi(f + p + a)∗ = epi f ∗ + (p, –a), (.)

and

∂(f + p + a)(x) = ∂f (x) + p for each x ∈ dom f . (.)

3 The total Lagrange dualities
Unless explicitly stated otherwise, let f , g , T , C, {ft , gt : t ∈ T} and A be as in Section ,
namely,T is an index set,C ⊆ X is a convex set, f , g , ft , gt , t ∈ T are proper convex functions
on X such that f – g and ft – gt , t ∈ T are proper, and A is the solution set of the following
system:

x ∈ C; ft(x) – gt(x)≤  for each t ∈ T . (.)

Then by (.), we have that

∅ 	= dom f ⊆ dom g and ∅ 	= dom ft ⊆ dom gt . (.)

To avoid the triviality, we always assume that A∩ dom(f – g) 	= ∅. For simplicity, we denote

H∗ := dom g∗ ×
∏
t∈T

dom g∗
t (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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and

∂H(x) := ∂g(x)×
∏
t∈T

∂gt(x) for each x ∈ X. (.)

To make the dual problem considered here well defined, we further assume that cl g and
cl gt , t ∈ T are proper. Then H∗ 	= ∅. For the whole paper, any elements λ ∈ R

(T) and v∗ ∈∏
t∈T dom g∗

t are understood as λ = (λt) ∈ R
(T) and v∗ = (v∗

t ) ∈
∏

t∈T dom g∗
t , respectively.

Replacing f by all of its linear perturbed functions f – p, where p ∈ X∗, we consider the
following DC infinite optimization problem

(Pp)
Min f (x) – g(x) – 〈p,x〉,
s.t. ft(x) – gt(x)≤ , t ∈ T ,

x ∈ C
(.)

and its dual problem

(Dp) sup
λ∈R(T)

+

inf
w∗∈H∗ Lp

(
w∗,λ

)
, (.)

where the Lagrange function Lp :H∗ ×R
(T)
+ →R is defined by

Lp
(
w∗,λ

)
:= g∗(u∗) +∑

t∈T
λtg∗

t
(
v∗
t
)
–

(
f – p + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t

)
(.)

for any (w∗,λ) ∈H∗ ×R
(T)
+ with w∗ = (u∗, v∗) ∈H∗ and λ = (λt) ∈R

(T)
+ . In particular, in the

case when p = , problem (Pp), as well as its dual problem (Dp), are reduced to problem
(P), and its dual problem (D) as defined in (.) and (.), respectively.
Let v(Pp) and v(Dp) denote the optimal values of (Pp) and (Dp), respectively. For each

p ∈ X∗, we use S(Pp) to denote the optimal solution set of (Pp). In particular, we write S(P)
for S(P). Obviously, for each p ∈ X∗, S(Pp) ⊆ A. This section is devoted to the study of
characterizing the total Lagrange dualities. Unlike the convexity case, the cases for DC op-
timization problems are more complicated.We begin with the following definition, where
the notations of the weak Lagrange duality and the stable weak Lagrange duality were
introduced in [].

Definition . Let X be a subset of X. Between problems (P) and (D), we say that
(i) the weak Lagrange duality holds if v(D)≤ v(P);
(ii) the stable weak Lagrange duality holds if v(Dp) ≤ v(Pp) for each p ∈ X∗;
(iii) the stable X-total Lagrange duality holds if, for each p ∈ X∗, v(Pp) = v(Dp) and

problem (Dp) has an optimal solution provided that S(Pp)∩X 	= ∅. In particular, in
the case when X = X , the stable X-total duality is called the stable total duality.

Unlike the convexity case, theweak Lagrange duality does not necessarily hold in general
as shown in [, Example .]. In order to provide some sufficient conditions ensuring the
weak Lagrange duality, we consider the following optimization problem, which plays a

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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bridging role for our study:

(
Pcl
p
) Min f (x) – (cl g)(x) – 〈p,x〉,

s.t. ft(x) – (cl gt)(x)≤ , t ∈ T ,
x ∈ C,

(.)

where p ∈ X∗. Let Acl denote the solution set of the system {x ∈ C; ft(x) – (cl gt)(x)≤ , t ∈
T}, that is,

Acl :=
{
x ∈ C : ft(x) – (cl gt)(x)≤  for each t ∈ T

}
. (.)

Then, Acl ⊆ A. As usual, we use v(Pcl
p ) to define the optimal value of problem (Pcl

p ). Then,

v(Pp) ≤ v
(
Pcl
p
)

for each p ∈ X∗. (.)

Moreover, by [, (.)], we see that

v(Dp) ≤ v
(
Pcl
p
)

for each p ∈ X∗. (.)

Thus, if g and gt , t ∈ T , are lsc, then theweak Lagrange duality holds. The following propo-
sition provides a weaker condition for the weak Lagrange duality to hold.

Proposition . Let x ∈ S(P). Suppose that g and each gt are lsc at x. Then the weak
Lagrange duality holds.

Proof Since x ∈ S(P), it follows that

v(P) = f (x) – g(x) + δA(x) = f (x) – g(x). (.)

Note that g and each gt are lsc at x. Then for each x ∈ X,

f (x) – (cl g)(x) + δAcl (x) = f (x) – g(x) + δA(x)

≤ f (x) – g(x) + δA(x)

≤ f (x) – (cl g)(x) + δAcl (x),

the last inequality holds because cl g ≤ g and Acl ⊆ A. This implies that v(P) = v(Pcl).
Hence, by (.), one gets v(D)≤ v(P) and the proof is complete. �

Let � denote the set of all points x ∈ X such that ∂H(x) 	= ∅. Below we will make use of
the subdifferential ∂h(x) for a general proper function (not necessarily convex) h : X → R;
see (.). Clearly, the following equivalence holds:

x is a minimizer of h if and only if  ∈ ∂h(x). (.)

Form (.), if x ∈ �, then g and each gt are lsc at x. Hence, the following corollary
follows from Proposition . directly.

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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Corollary . Let p ∈ X∗. If S(Pp)∩ � 	= ∅, then v(Dp) ≤ v(Pp).

Motivating by [], we introduce the following condition (LSC) to characterize the re-
lationships between (P) and (Pcl) and the weak Lagrange duality.

Definition . The family {f , g, δC ; ft , gt : t ∈ T} is said to satisfy the lower semi-continuity
closure (LSC) if

epi(f – g + δA)∗ = epi(f – cl g + δAcl )∗. (.)

Remark .
(a) Since cl g ≤ g and Acl ⊆ A, it follows that f – g + δA ≤ f – cl g + δAcl . Hence, by (.),

the family {f , g, δC ; ft , gt : t ∈ T} satisfies the (LSC) if and only if

epi(f – g + δA)∗ ⊇ epi(f – cl g + δAcl )∗. (.)

(b) Obviously, if g and gt , t ∈ T are lsc, then the (LSC) holds. But the converse is not
true, in general, as to be shown by Example . below.

Example . LetX = C :=R, and letT := {}. Let f , g, f, g :R →R be defined respectively
by

f (x) :=

⎧⎪⎪⎨
⎪⎪⎩
, x≥ ,

, x = ,

+∞, x < ,

g(x) :=

⎧⎪⎪⎨
⎪⎪⎩
, x > ,

, x = ,

+∞, x < 

for each x ∈R,

f := δ[,+∞) and g := . Then f , g , f, g are proper convex functions and

epi f ∗ = epi g∗ = (–∞, ]× [, +∞).

Moreover, it is easy to see that A = Acl = [,+∞) and

f – g + δA = g, f – cl g + δAcl = f .

Hence,

epi(f – g + δA)∗ = epi(f – cl g + δAcl )∗ = (–∞, ]× [, +∞).

This implies that the (LSC) holds. However, the function g is not lsc at x = .

The following proposition gives an equivalent condition to ensure that

v(Pp) = v
(
Pcl
p
)

for each p ∈ X∗, (.)

in terms of the (LSC). For this purpose, we first give the following lemma by the definition
of conjugate functions. The proof is standard (cf. [, Lemma .]), and so we omit it.

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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Lemma . Let p ∈ X∗, and let r ∈R. Then the following statements hold:

(p, r) ∈ epi(f – g + δA)∗ ⇐⇒ v(Pp) ≥ –r; (.)

(p, r) ∈ epi(f – cl g + δAcl )∗ ⇐⇒ v
(
Pcl
p
) ≥ –r. (.)

Proposition . The family {f , g, δC ; ft , gt : t ∈ T} satisfies the (LSC) if and only if (.)
holds. Consequently, if the (LSC) holds, then the weak Lagrange duality holds.

Proof Suppose that the (LSC) holds. Then (.) holds. Let p ∈ X∗. To show that v(Pp) =
v(Pcl

p ), it suffices to show that v(Pp) ≥ v(Pcl
p ) by (.). To do this, suppose, on the contrary,

that v(Pp) < v(Pcl
p ). Then there exists r ∈ R such that v(Pp) < –r < v(Pcl

p ). Thus, by (.),
(p, r) ∈ epi(f –cl g +δAcl )∗, and so (p, r) ∈ epi(f –g +δA)∗ by (.). It follows from (.) that
v(Pp) ≥ –r. This contradicts v(Pp) < –r and completes the proof of the inequality v(Pp) ≥
v(Pcl

p ).
Conversely, suppose that (.) holds. By Remark .(b), it suffices to show that (.)

holds. To do this, let (p, r) ∈ epi(f – cl g + δAcl )∗. Then, by (.), v(Pcl
p ) ≥ –r, and so v(Pp) ≥

–r, thanks to (.). Hence, by (.), (p, r) ∈ epi(f – g + δA)∗. Therefore, (.) is proved.
The proof is complete. �

The remainder of this paper is devoted to studying the stable total Lagrange duality
between (P) and (D). For each x ∈ X, let T(x) be the active index set of system (.), that
is,

T(x) :=
{
t ∈ T : ft(x) – gt(x) = 

}
.

For simplicity, we define N ′(x) by

N ′(x) :=
⋃

λ∈R(T)
+

( ⋂
(u∗ ,v∗)∈H∗

(
∂

(
f + δC +

∑
t∈T(x)

λt ft
)
(x) – u∗ –

∑
t∈T(x)

λtv∗
t

))
(.)

and N ′
(x) by

N ′
(x) :=

⋃
λ∈R(T)

+

( ⋂
(u∗ ,v∗)∈∂H(x)

(
∂

(
f + δC +

∑
t∈T(x)

λt ft
)
(x) – u∗ –

∑
t∈T(x)

λtv∗
t

))
, (.)

where, following [, p.], we adapt the convention that
⋂

t∈∅ St = X. Then for each x ∈ X,

N ′(x)⊆N ′
(x).

The following proposition provides an estimate for the subdifferential of the DC function
f – g + δA in terms of the subdifferentials of the convex functions involved.

Proposition . Suppose that the family {f , g, δC ; ft , gt : t ∈ T} satisfies the (LSC). Then for
each x ∈ �,

N ′(x) ⊆ ∂(f – g + δA)(x). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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Proof Let x ∈ � and p ∈ N ′(x). Then there exists λ ∈ R
(T)
+ such that for each (u∗, v∗) ∈

H∗,

 ∈ ∂

(
f + δC +

∑
t∈T(x)

λt ft
)
(x) – p – u∗ –

∑
t∈T(x)

λtv∗
t .

Let x ∈ X. Then for each (u∗, v∗) ∈H∗,

(
f + δC +

∑
t∈T(x)

λt ft
)
(x) –

〈
p + u∗ +

∑
t∈T(x)

λtv∗
t ,x

〉

≤
(
f + δC +

∑
t∈T(x)

λt ft
)
(x) –

〈
p + u∗ +

∑
t∈T(x)

λtv∗
t ,x

〉
;

hence,

f (x) + δC(x) +
∑

t∈T(x)
λt ft(x) – 〈p,x〉 –

{〈
u∗,x

〉
– g∗(u∗)}

–
∑

t∈T(x)
λt

{〈
v∗
t ,x

〉
– g∗

t
(
v∗
t
)}

≤ f (x) + δC(x) +
∑

t∈T(x)
λt ft(x) – 〈p,x〉 – {〈

u∗,x
〉
– g∗(u∗)}

–
∑

t∈T(x)
λt

{〈
v∗
t ,x

〉
– g∗

t
(
v∗
t
)}
.

Taking the infimum over H∗, we get that

f (x) + δC(x) +
∑

t∈T(x)
λt ft(x) – 〈p,x〉 – (cl g)(x) –

∑
t∈T(x)

λt(cl gt)(x)

≤ f (x) + δC(x) +
∑

t∈T(x)
λt ft(x) – 〈p,x〉 – (cl g)(x) –

∑
t∈T(x)

λt(cl gt)(x). (.)

Since x ∈ �, it follows from (.) that (cl g)(x) = g(x) and (cl gt)(x) = gt(x) for each
t ∈ T . Note that x ∈ Acl and ft(x) – gt(x) =  for each t ∈ T(x). Then, by (.), one has
that for each x ∈ X,

f (x) – (cl g)(x) – 〈p,x〉 + δAcl (x)

≤ f (x) – (cl g)(x) – 〈p,x〉 + δC(x) +
∑

t∈T(x)
λt(ft – cl gt)(x)

≤ f (x) – (cl g)(x) – 〈p,x〉 + δAcl (x).

Hence,

v
(
Pcl
p
)
= f (x) – g(x) – 〈p,x〉 + δA(x). (.)
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Moreover, by Proposition ., the (LSC) implies that v(Pcl
p ) = v(Pp). This together with

(.) implies that for each x ∈ X,

f (x) – g(x) – 〈p,x〉 + δA(x) ≤ f (x) – g(x) – 〈p,x〉 + δA(x).

Hence, p ∈ ∂(f – g + δA)(x), and inclusion (.) holds. �

Considering the possible inclusions among ∂(f –g+δA)(x),N ′(x) andN ′
(x), we introduce

the following definition.

Definition . The family {f , g, δC ; ft , gt : t ∈ T} is said to satisfy
(a) the quasi weakly basic constraint qualification (the quasi (WBCQ)) at x ∈ A if

∂(f – g + δA)(x)⊆N ′
(x); (.)

(b) the weakly basic constraint qualification (the (WBCQ)) at x ∈ A if

∂(f – g + δA)(x)⊆N ′(x). (.)

We say that the family {f , g, δC ; ft , gt : t ∈ T} satisfies the quasi (WBCQ) (resp. the (WBCQ))
if it satisfies the quasi (WBCQ) (resp. the (WBCQ)) at each point x ∈ A.

Remark .
(a) The following implication holds:

the (WBCQ) �⇒ the quasi (WBCQ).

(b) In the special case, when g = gt = , t ∈ T , the quasi (WBCQ) and (WBCQ) are
reduced to the (WBCQ)f for the family {δC ; ft : t ∈ T} introduced in [].

For our main theorems in this section, the following lemma is helpful.

Lemma . Let x ∈ X and p ∈ X∗ with x ∈ S(Pp). If p ∈N ′(x), then there exists λ ∈ R
(T)
+

such that for each w∗ = (u∗, v∗) ∈H∗,

Lp
(
w∗,λ

) ≥ v(Pp). (.)

Proof Let p ∈N ′(x). Then there exists λ = (λt)t∈T ∈R
(T)
+ with

∑
t∈T

λt(ft – gt)(x) =  (.)

such that for each (u∗, v∗) ∈H∗,

p ∈ ∂

(
f + δC +

∑
t∈T

λt ft
)
(x) – u∗ –

∑
t∈T

λtv∗
t .
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Let (u∗, v∗) ∈H∗. Then there exists x∗ ∈ ∂(f + δC +
∑

t∈T λt ft)(x) such that

p = x∗ – u∗ –
∑
t∈T

λtv∗
t . (.)

By the Young equality (.),

〈
x∗,x

〉
=

(
f + δC +

∑
t∈T

λt ft
)∗(

x∗) +
(
f + δC +

∑
t∈T

λt ft
)
(x), (.)

and by the Young-Fenchel inequality (.),

〈
u∗,x

〉 ≤ g∗(u∗) + g(x) and
〈
v∗
t ,x

〉 ≤ g∗
t
(
u∗) + gt(x) for each t ∈ T . (.)

Combining (.), (.) with (.), we have

Lp
(
w∗,λ

)
= g∗(u∗) +∑

t∈T
λtg∗

t
(
u∗
t
)
–

(
f + δC +

∑
t∈T

λt ft
)∗(

p + u∗ +
∑
t∈T

λtv∗
t

)

= g∗(u∗) +∑
t∈T

λtg∗
t
(
u∗
t
)
–

(
f + δC +

∑
t∈T

λt ft
)∗(

x∗)

≥ 〈
u∗,x

〉
– g(x) +

∑
t∈T

λt
(〈
v∗
t ,x

〉
– gt(x)

)
–

〈
x∗,x

〉

+
(
f + δC +

∑
t∈T

λt ft
)
(x)

= f (x) – g(x) – 〈p,x〉 + δC(x) +
∑
t∈T

λt
(
ft(x) – gt(x)

)

= f (x) – g(x) – 〈p,x〉,

where the last equality holds because of (.) and x ∈ A. Since x ∈ S(Pp), it follows that
(.) holds. The proof is complete. �

The following theorem provides a sufficient condition and a necessary condition for the
stable �-total Lagrange duality.

Theorem . Consider the following assertions:
(i) The family {f , g, δC ; ft , gt : t ∈ T} satisfies the (WBCQ).
(ii) The stable �-total Lagrange duality holds between (P) and (D).
(iii) The family {f , g, δC ; ft , gt : t ∈ T} satisfies the quasi (WBCQ).

Then (i) ⇒ (ii) ⇒ (iii).

Proof (i) ⇒ (ii) Suppose that (i) holds. Let p ∈ X∗ be such that S(Pp) ∩ � 	= ∅. Take x ∈
S(Pp)∩ �. Then

p ∈ ∂(f – g + δA)(x) ⊆N ′(x),

thanks to the assumed (WBCQ). Thus, by Lemma ., we get that there exists λ ∈ R
(T)
+

such that (.) holds for each w∗ = (u∗, v∗) ∈H∗. Moreover, we have that v(Pp) ≥ v(Dp) by

http://www.fixedpointtheoryandapplications.com/content/2013/1/269
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Corollary .. Thus, v(Dp) = v(Pp) and λ is an optimal solution of (Dp). This implies that
the stable �-total Lagrange duality holds.
(ii) ⇒ (iii) Suppose that (ii) holds. Let x ∈ A. Obviously, if ∂H(x) = ∅, then the quasi

(WBCQ) holds trivially because N ′
(x) = X∗. Below, we assume that ∂H(x) 	= ∅. Let p ∈

∂(f – g + δA)(x). Then by (.), we have that x ∈ S(Pp), and hence x ∈ S(Pp) ∩ �. By
the assumed �-total Lagrange duality, there exists λ = (λ)t∈T ∈ R

(T)
+ such that for each

(u∗, v∗) ∈ ∂H(x),

g∗(u∗) +∑
t∈T

λtg∗
t
(
u∗
t
)
–

(
f – p + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t

)
≥ v(Pp).

Noting that v(Pp) = f (x) – g(x) – 〈p,x〉, we have
(
f – p + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t

)
+ f (x) – 〈p,x〉

≤ g∗(u∗) + g(x) +
∑
t∈T

λtg∗
t
(
v∗
t
)
. (.)

Since by the Young-Fenchel inequality (.),

(
f – p + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t

)

≥
〈
u∗ +

∑
t∈T

λtv∗
t + p,x

〉
– f (x) –

∑
t∈T

λt ft(x); (.)

and by the Young equality (.),

g∗(u∗) + g(x) =
〈
u∗,x

〉
and g∗

t
(
v∗
t
)
+ gt(x) =

〈
v∗
t ,x

〉
for each t ∈ T , (.)

it follows that

v(Pp) = f (x) – g(x) – 〈p,x〉

≤ g∗(u∗) +∑
t∈T

λtg∗
t
(
v∗
t
)
–

(
f – p + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t

)

≤ (〈
u∗,x

〉
– g(x)

)
+

∑
t∈T

λt
(〈
v∗
t ,x

〉
– gt(x)

)
–

〈
u∗ +

∑
t∈T

λtv∗
t + p,x

〉

+ f (x) +
∑
t∈T

λt ft(x)

= f (x) – g(x) – 〈p,x〉 +
∑
t∈T

λt
(
ft(x) – gt(x)

)

≤ f (x) – g(x) – 〈p,x〉,

where the last inequality holds because x ∈ A. Thus,

∑
t∈T

λt
(
ft(x) – gt(x)

)
= . (.)
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Moreover, by (.) and (.), we have

 ≤
(
f + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t + p

)

+
(
f + δC +

∑
t∈T

λt ft
)
(x) –

〈
u∗ +

∑
t∈T

λtv∗
t + p,x

〉

≤ g∗(u∗) + g(x) +
∑
t∈T

λtg∗
t
(
v∗
t
)
+

∑
t∈T

λt ft(x) –
〈
u∗,x

〉
–

∑
t∈T

λt
〈
v∗
t ,x

〉

= g∗(u∗) + g(x) –
〈
u∗,x

〉
+

∑
t∈T

λt
(
g∗
t
(
v∗
t
)
+ gt(x) –

〈
v∗
t ,x

〉)
+

∑
t∈T

λt
(
ft(x) – gt(x)

)

= ,

where the last equality holds by (.) and (.). This implies that

(
f + δC +

∑
t∈T

λt ft
)∗(

u∗ +
∑
t∈T

λtv∗
t + p

)

+
(
f + δC +

∑
t∈T

λt ft
)
(x) –

〈
u∗ +

∑
t∈T

λtv∗
t + p,x

〉
= .

Hence, by the Young equality (.),

u∗ +
∑
t∈T

λtv∗
t + p ∈ ∂

(
f + δC +

∑
t∈T

λt ft
)
(x).

Consequently,

p =
(
u∗ +

∑
t∈T

λtv∗
t + p

)
– u∗ –

∑
t∈T

λtv∗
t ∈ ∂

(
f + δC +

∑
t∈T

λt ft
)
(x) – u∗ –

∑
t∈T

λtv∗
t

and

p ∈
⋂

(u∗ ,v∗)∈∂H(x)

(
∂

(
f + δC +

∑
t∈T

λt ft
)
(x) – u∗ –

∑
t∈T

λtv∗
t

)

as (u∗, v∗) ∈ ∂H(x) is arbitrary. Hence, p ∈ N ′
(x). Therefore, (.) holds, and the proof

is complete. �

Theorem . below provides sufficient conditions ensuring the stable total Lagrange
duality.

Theorem . Suppose that the family {f , g, δC ; ft , gt : t ∈ T} satisfies the (WBCQ), and that
the stable weak Lagrange duality holds between (P) and (D).Then the stable total Lagrange
duality holds.

Proof Let p ∈ X∗. Suppose that S(Pp) 	= ∅. Let x ∈ S(Pp). Then p ∈ ∂(f – g + δA)(x) and
hence p ∈ N ′(x) by the assumed (WBCQ). Thus, Lemma . is applied to get that there
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exists λ ∈ R
(T)
+ such that (.) holds for each w∗ = (u∗, v∗) ∈ H∗. This together with the

stable weak Lagrange duality implies that v(Dp) = v(Pp), and λ is an optimal solution of
(Dp). Thus, the stable total Lagrange duality holds, and the proof is complete. �

In the casewhen g = gt = , t ∈ T , by Theorem., we have the following corollary, which
was given in [, Theorem .].

Corollary . The family {f , δC ; ft : t ∈ T} satisfies the (WBCQ)f if and only if the following
formula holds for each p ∈ X∗ satisfying S(Pp) 	= ∅:

min
x∈A

{
f (x) – 〈p,x〉} = max

λ∈R(T)
+

inf
x∈C

{
f (x) – 〈p,x〉 +

∑
t∈T

λt ft(x)
}
.
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