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1 Introduction
The study of existence and unique problems by iterative approximation originates from
the work of Banach [] concerning contractive maps.

Theorem . Let (X,d) be a complete metric space and let T : X → X. If
(B) (Banach []) ∃≤λ<∀x,y∈X{d(T(x),T(y))≤ λd(x, y)},

then: (a) T has a unique fixed point w in X; and (b) ∀w∈X{limm→∞ T [m](w) = w}.

The Banach [] result was an important tool to solve the following equation:

T(x) = x, (.)

where T : X → X and x ∈ X. If we replace the identity map on X with somemap S : X → X
on the right-hand side of equation (.), then we obtain the following equation:

T(x) = S(x). (.)

Equation (.) is called a coincidence point equation and plays a very important role in
many physical formulations. To solve equation (.), we can use the Jungck [, ] iterative
procedure, i.e.,

S(xn+) = T(xn), n = , , , . . . .

In , Czerwik [] introduced the following definition of a b-metric space.
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Definition . Let X be a nonempty subset and s ≥  be a given real number. A function
d : X ×X → [,∞) is b-metric if the following three conditions are satisfied:
(d) ∀x,y∈X{d(x, y) =  ⇔ x = y};
(d) ∀x,y∈X{d(x, y) = d(y,x)}; and
(d) ∀x,y,z∈X{d(x, z)≤ s[d(x, y) + d(y, z)]}.

The pair (X,d) is called a b-metric space (with constant s ≥ ). It is easy to see that each
metric space is a b-metric space.
Recently, in , Singh and Prasad [] introduced and established the following inter-

esting and important coincidence points theorem for four maps in b-metric space.

Theorem . Let (X,d) be a b-metric space (with s ≥ ), where d : X × X → [,∞) is
continuous on X,Y ⊆ X, and let A,B,S,T : Y → X be such that T(Y ) ⊆ B(Y ),A(Y )⊆ S(Y )
and the following condition holds: there exists q ∈ (, ) such that qs <  and λs <  (where
λ =max{q, qs

–qs }) and such that for all x, y ∈ X, we have

d
(
T(x),A(y)

) ≤ qmax
{
d
(
S(x),B(y)

)
,d

(
S(x),T(x)

)
,d

(
B(y),A(y)

)
,[

d
(
S(x),A(y)

)
+ d

(
B(y),T(x)

)]
/

}
. (.)

If one of the images A(Y ), B(Y ), S(Y ) or T(Y ) is a complete subspace of X, then:
(i) T and S have a coincidence point, i.e., there exists v ∈ Y such that S(v) = T(v);
(ii) A and B have a coincidence point, i.e., there exists w ∈ Y such that B(w) = A(w).
It is worth noticing that condition (.) is a generalization of the following conditions,

which are known in literature:

∃q∈(,)∀x,y∈Y
{
d
(
T(x),T(y)

) ≤ qd
(
S(x),S(y)

)}
; (.)

and

∃q∈(,)∀x,y∈Y
{
d
(
T(x),T(y)

) ≤ qmax
{
d
(
S(x),S(y)

)
,d

(
S(x),T(x)

)
,

d
(
S(y),T(y)

)
,
[
d
(
S(x),T(y)

)
+ d

(
S(y),T(x)

)]
/

}}
. (.)

In literature, the pair of maps S : Y → X, T : Y → X satisfying (.) is called the Jungck
contraction, and q is called the Jungck constant. Condition (.) with Y = X and S = id (the
identity map on X) was considered by Rhoades [].
On the other hand, the famous Banach’s result has been given extensive applications in

many fields of mathematics and applied mathematics and has been extended in many dif-
ferent directions. One of the courses was to replace metric d by some more general maps.
In the complete metric spaces (X,d), w-distances [] and τ -distances [] have been found
to have substantial applications in fixed point theory. Due to them, some generalizations of
Banach contractions have been introduced.Many interesting extensions of Theorem . to
w-distances and τ -distances settings have been given and techniques based on these dis-
tances have been presented (see, for example, [, ]). It is worth noticing that τ -distances
generalizew-distances andmetrics d. In ,Włodarczyk and Plebaniak [] introduced
the concepts of J -families of generalized pseudodistances in uniform spaces which gen-
eralized distances of Tataru [], w-distances of Kada et al. [], τ -distances of Suzuki [,
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Section ] and τ -functions of Lin and Du [] in metric spaces and distances of Vályi []
in uniform spaces. The distance was researched in [–].
The main interest of this paper is the following.

Question . Do a new kind of asymmetric distances (which extend b-metric) on
b-metric spaces and a new kind of completeness of b-metric spaces exist?

Question . Does a new kind of contractions of (.) type with respect to these new
distances exist?

The answer is affirmative. In this paper, in a b-metric space, we introduce the concept
of b-generalized pseudodistances which are the extension of b-metric. Next, inspired by
the ideas of Singh and Prasad [], we define a new contractive condition of (.) type with
respect to this b-generalized pseudodistance, and the condition guaranteeing the exis-
tence of coincidence points for four mappings. The examples which illustrate the main
result are given. The paper includes also the comparison of our result with those existing
in literature.

2 On generalized pseudodistance, b-generalized pseudodistance and
admissible b-generalized pseudodistance in b-metric spaces

In the rest of the paper, we assume that the b-metric d : X ×X → [,∞) is continuous on
X. At the very beginning, in a b-metric space, we introduce the concept of b-generalized
pseudodistance, which is an essential generalization of b-metric.

Definition . Let X be a b-metric space (with constant s ≥ ). The map J : X × X →
[,∞) is said to be a generalized pseudodistance on X if the following two conditions
hold:

(J) ∀x,y,z∈X{J(x, z) ≤ J(x, y) + J(y, z)}; and
(J) For any sequences (xm :m ∈N) and (ym :m ∈N) in X such that

lim
n→∞ sup

m>n
J(xn,xm) =  (.)

and

lim
m→∞ J(xm, ym) = , (.)

we have

lim
m→∞d(xm, ym) = . (.)

Definition . Let X be a b-metric space (with s ≥ ). The map J : X × X → [,∞) is
called a b-generalized pseudodistance on X if the conditions (J′) and (J) hold, where

(J′) ∀x,y,z∈X{J(x, y)≤ s[J(x, z) + J(z, y)]}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/270
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Now, we introduce the following denotation. Let X be a b-metric space (with s ≥ ), and
let J : X ×X → [,∞) be a b-generalized pseudodistance on X. Then

X
J =

{
x ∈ X :

{
J(x,x) = 

}}
and

X+
J =

{
x ∈ X :

{
J(x,x) > 

}}
.

(.)

Then, of course, X = X
J ∪X+

J .

Remark . (A) If (X,d) is a b-metric space (with s ≥ ), then the b-metric d : X × X →
[,∞) is a b-generalized pseudodistance onX. However, there exists a b-generalized pseu-
dodistance on X which is not b-metric (for details, see Example .).
(B) It is clear that if the map J is a generalized pseudodistance on X, then J is a

b-generalized pseudodistance on X (for s = ).
(C) From (J′) and (J) it follows that if x = y, x, y ∈ X, then

J(x, y) > ∨ J(y,x) > .

Indeed, if J(x, y) =  and J(y,x) = , then J(x,x) = , since by (J′) we get J(x,x)≤ s[J(x, y) +
J(y,x)] = s[+] = . Now, defining (xm = x :m ∈ N) and (ym = y :m ∈N), we conclude that
(.) and (.) hold. Consequently, by (J), we get (.), which implies d(x, y) = . However,
since x = y, we have d(x, y) = , a contradiction.

Now, we apply a b-generalized pseudodistance to establish a new kind of completeness,
which is an extension of natural sequential completeness.

Definition . Let (X,d) be a b-metric space (with s ≥ ), and let the map J : X × X →
[,∞) be a b-generalized pseudodistance on X. We call that X is J-complete if for all se-
quence (xm :m ∈N) in X such that

lim
n→∞ sup

m>n
J(xn,xm) = ,

there exists x ∈ X such that

lim
m→∞ J(xm,x) = lim

m→∞ J(x,xm) = .

Remark. It is worth noticing that if J = d, then by (d) the definitions of J-completeness
and completeness are identical.

Definition . Let (X,d) be a b-metric space (with s ≥ ), and let the map J : X × X →
[,∞) be a b-generalized pseudodistance on X. We call that the map J is admissible if for
all the sequences (xm : m ∈ N) and (ym : m ∈ N) such that: (i) condition (.) (for these
sequences, i.e., limn→∞ supm>n J(xn,xm) = , limn→∞ supm>n J(yn, ym) = ) holds; and (ii)
limm→∞ d(xm,x) = limm→∞ d(ym, y) = ; the following property is true:

lim
m→∞ J(xm, ym) = J(x, y).

http://www.fixedpointtheoryandapplications.com/content/2013/1/270
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Remark . (A) It is clear that if x ∈ X
J , then by (.) for a constant sequence (xm = x :

m ∈N), we have that

lim
n→∞ sup

m>n
J(xn,xm) = lim

n→∞ sup
m>n

J(x,x) = .

(B) Let x ∈ X
J be arbitrary and fixed, and let (xm = x :m ∈ N). Then, of course, by (d)

we obtain limm→∞ d(xm,x) = . Next, from (A) and Definition . it follows that if a se-
quence (ym :m ∈N) satisfies the following conditions: (i) limn→∞ supm>n J(yn, ym) = ; and
(ii) limm→∞ d(ym, y) = , then limm→∞ J(xm, ym) = J(x, y).Moreover, similarly we can obtain
that limm→∞ J(ym,xm) = J(y,x).

Remark . It is worth noticing that if (X,d) is a b-metric space (with s ≥ ), then the
b-metric d : X ×X → [,∞) is an admissible b-generalized pseudodistance on X.

Definition . Let (X,d) be a b-metric space (with s ≥ ), Y ⊆ X. Let T : Y → X and
S : Y → X be single-valued maps. A point z ∈ Y is called a coincidence point of T and S if
T(z) = S(z) = u for some u ∈ X.

The main result of this paper is the following coincidence theorem.

Theorem . Let (X,d) be a b-metric space (with s ≥ ), Y ⊆ X, and let the map J : X ×
X → [,∞) be an admissible b-generalized pseudodistance on X . Let A,B,S,T : Y → X be
such that T(Y ) ⊆ B(Y ), A(Y ) ⊆ S(Y ). Let T(Y ) ⊆ X

J and A(Y ) ⊆ X
J , and assume that the

following condition holds: there exists q ∈ (, ) such that λs <  (where λ = max{q, qs
–qs })

and such that for all x, y ∈ Y we have

max
{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
≤ qmax

{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
,

J
(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,
[
J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
. (.)

If one of the images of Y under the mapping A, B, S or T is a J-complete subspace of X ,
then:

(i) T and S have a coincidence point v ∈ Y ;
(ii) A and B have a coincidence point z ∈ X .
Moreover, for each w ∈ Y , if we define the sequences (wn : n ∈ {} ∪ N) and (vn : n ∈

{} ∪N) such that for each n ∈N we get

vn– = B
(
wn–) = T

(
wn–) and vn = S

(
wn) = A

(
wn–),

then the sequence (vn : n ∈ {} ∪N) is convergent to u (i.e., limn→∞ d(vn,u) = ), where

u = T(v) = S(v) = A(z) = B(z).

http://www.fixedpointtheoryandapplications.com/content/2013/1/270
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3 Proof of Theorem 2.1
Before starting the proof of Theorem ., we present a simple consequence of property
(.) and prove an auxiliary lemma. First, we can see that (.) implies that

J
(
T(x),A(y)

) ≤ qmax
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
, J

(
S(x),T(x)

)
,

J
(
B(y),A(y)

)
,
[
J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
(.)

and

J
(
A(y),T(x)

) ≤ qmax
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
, J

(
S(x),T(x)

)
,

J
(
B(y),A(y)

)
,
[
J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
. (.)

Lemma . Let w ∈ Y be arbitrary and fixed. Then, for the sequences (wn : n ∈ {} ∪ N)
and (vn : n ∈ {} ∪N) defined as follows:

∀n∈N
{
vn– = B

(
wn–) = T

(
wn–) ∧ vn = S

(
wn) = A

(
wn–)}, (.)

we have

∃λ=max{q, qs
–qs }<∀n∈N

{
J
(
vn+, vn+

) ≤ λJ
(
vn, vn+

)}
.

Proof For fixed n ∈ N, by (.) and (.) (for x = wn– and y = wn–), we obtain

J
(
vn–, vn

)
= J

(
T

(
wn–),A(

wn–))
≤ qmax

{
min

{
J
(
S
(
wn–),B(

wn–)), J(B(
wn–),S(wn–))},

J
(
S
(
wn–),T(

wn–)), J(B(
wn–),A(

wn–)),[
J
(
S
(
wn–),A(

wn–)) + J
(
B
(
wn–),T(

wn–))]/}
= qmax

{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
, J

(
vn–, vn–

)
, J

(
vn–, vn

)
,[

J
(
vn–, vn

)
+ J

(
vn–, vn–

)]
/

}
. (.)

Now, since by (.), vn– = T(wn–) and by assumption T(Y ) ⊆ X
J , we have vn– ∈ X

J
(i.e., J(vn–, vn–) = ). Consequently, by (.) we get

J
(
vn–, vn

) ≤ qmax
{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
,

J
(
vn–, vn–

)
, J

(
vn–, vn

)
,
[
J
(
vn–, vn

)
+ J

(
vn–, vn–

)]
/

}
= qmax

{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
, J

(
vn–, vn–

)
J
(
vn–, vn

)
, J

(
vn–, vn

)
/

}
. (.)

Let us consider the following three cases.
Case . If

max
{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
, J

(
vn–, vn–

)
, J

(
vn–, vn

)
, J

(
vn–, vn

)
/

}
=min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}

http://www.fixedpointtheoryandapplications.com/content/2013/1/270
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or

max
{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
, J

(
vn–, vn–

)
, J

(
vn–, vn

)
, J

(
vn–, vn

)
/

}
= J

(
vn–, vn–

)
,

then, since min{J(vn–, vn–), J(vn–, vn–)} ≤ J(vn–, vn–), in both situations, by (.)
we obtain

J
(
vn–, vn

) ≤ qJ
(
vn–, vn–

)
. (.)

Case . If

max
{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
, J

(
vn–, vn–

)
, J

(
vn–, vn

)
, J

(
vn–, vn

)
/

}
= J

(
vn–, vn

)
then by (.) we have

J
(
vn–, vn

) ≤ qJ
(
vn–, vn

)
< J

(
vn–, vn

)
,

which gives

J
(
vn–, vn

)
= . (.)

Case . If

max
{
min

{
J
(
vn–, vn–

)
, J

(
vn–, vn–

)}
, J

(
vn–, vn–

)
, J

(
vn–, vn

)
, J

(
vn–, vn

)
/

}
= J

(
vn–, vn

)
/

then by (.) and (J′) we get

J
(
vn–, vn

) ≤ qJ
(
vn–, vn

)
/

≤ qs[J(vn–, vn–) + J(vn–, vn)]


=
qsJ(vn–, vn–) + qsJ(vn–, vn)


.

Hence

J
(
vn–, vn

)
–
qsJ(vn–, vn)


≤ qsJ(vn–, vn–)


,

which gives

 – qs


J
(
vn–, vn

) ≤ qs

J
(
vn–, vn–

)
.

In consequence, we obtain

J
(
vn–, vn

) ≤ qs
 – qs

J
(
vn–, vn–

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/270
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Conditions (.)-(.) imply that

J
(
vn–, vn

) ≤max

{
q,

qs
 – qs

}
J
(
vn–, vn–

)
. (.)

Similarly, for fixed n ∈N, by (.) and (.) (for x = wn and y = wn–), we obtain

J
(
vn, vn+

)
= J

(
A

(
wn–),T(

wn))
≤ qmax

{
min

{
J
(
S
(
wn),B(

wn–)), J(B(
wn–),S(wn))},

J
(
S
(
wn),T(

wn)), J(B(
wn–),A(

wn–)),[
J
(
S
(
wn),A(

wn–)) + J
(
B
(
wn–),T(

wn))]/}
= qmax

{
min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
, J

(
vn, vn+

)
,

J
(
vn–, vn

)
,
[
J
(
vn, vn

)
+ J

(
vn–, vn+

)]
/

}
. (.)

Now, since by (.), vn = A(wn–) and by assumption A(Y ) ⊆ X
J , we have vn ∈ X

J (i.e.,
J(vn, vn) = ). Consequently, since

[
J
(
vn, vn

)
, J

(
vn–, vn+

)]
/ = J

(
vn–, vn+

)
/,

by (.) we get

J
(
vn, vn+

) ≤ qmax
{
min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
, J

(
vn, vn+

)
,

J
(
vn–, vn

)
, J

(
vn–, vn+

)
/

}
. (.)

We will consider the following three cases.
Case . If

max
{
min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
, J

(
vn, vn+

)
, J

(
vn–, vn

)
, J

(
vn–, vn+

)
/

}
=min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
or

max
{
min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
, J

(
vn, vn+

)
, J

(
vn–, vn

)
, J

(
vn–, vn+

)
/

}
= J

(
vn–, vn

)
,

then, sincemin{J(vn, vn–), J(vn–, vn)} ≤ J(vn–, vn), in both situations, by (.) we ob-
tain

J
(
vn, vn+

) ≤ qJ
(
vn–, vn

)
. (.)

Case . If

max
{
min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
, J

(
vn, vn+

)
, J

(
vn–, vn

)
, J

(
vn–, vn+

)
/

}
= J

(
vn, vn+

)
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/270
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then by (.) we have

J
(
vn, vn+

) ≤ qJ
(
vn, vn+

)
< J

(
vn, vn+

)
,

which gives

J
(
vn, vn+

)
= . (.)

Case . If

max
{
min

{
J
(
vn, vn–

)
, J

(
vn–, vn

)}
, J

(
vn, vn+

)
, J

(
vn–, vn

)
, J

(
vn–, vn+

)
/

}
= J

(
vn–, vn+

)
/

then, by (.) and (J′), we get

J
(
vn, vn+

) ≤ qJ
(
vn–, vn+

)
/

≤ qs[J(vn–, vn) + J(vn, vn+)]


=
qsJ(vn–, vn) + qsJ(vn, vn+)


.

Hence

J
(
vn, vn+

)
–
qsJ(vn, vn+)


≤ qsJ(vn–, vn)


,

which gives

 – qs


J
(
vn, vn+

) ≤ qs

J
(
vn–, vn

)
.

In consequence, we obtain

J
(
vn, vn+

) ≤ qs
 – qs

J
(
vn–, vn

)
. (.)

Conditions (.)-(.) imply that

J
(
vn, vn+

) ≤max

{
q,

qs
 – qs

}
J
(
vn–, vn

)
. (.)

Next, conditions (.) and (.) imply that

∃λ=max{q, qs
–qs }<∀n∈N

{
J
(
vn+, vn+

) ≤ λJ
(
vn, vn+

)}
.

The proof of the lemma is now completed. �

Now we can start the proof of the main theorem.
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Proof of Theorem .
Step I. Let w ∈ Y be arbitrary and fixed. Construct the sequences (wn : n ∈ {} ∪N) and

(vn : n ∈ {} ∪N) as in (.), i.e., such that for each n ∈N we get

vn– = B
(
wn–) = T

(
wn–) and vn = S

(
wn) = A

(
wn–).

Then, by Lemma ., we obtain

∃λ=max{q, qs
–qs }<∀n∈N

{
J
(
vn+, vn+

) ≤ λJ
(
vn, vn+

)}
. (.)

Step II.We show that the sequence (vn : n ∈ {} ∪N) satisfies the following equation:

lim
n→∞ sup

m>n
J
(
vn, vm

)
= . (.)

Indeed, for arbitrary and fixed n ∈N and allm ∈ N,m > n, by (J′), we calculate

J
(
vn, vm

) ≤ sJ
(
vn, vn+

)
+ sJ

(
vn+, vm

)
≤ sJ

(
vn, vn+

)
+ s

(
sJ

(
vn+, vn+

)
+ sJ

(
vn+, vm

))
= sJ

(
vn, vn+

)
+ sJ

(
vn+, vn+

)
+ s

(
sJ

(
vn+, vn+

)
+ sJ

(
vn+, vm

)) ≤ · · ·

≤
m–n∑
i=

siJ
(
vn+i–, vn+i

)
.

Hence, by (.), since λ < , we obtain

J
(
vn, vm

) ≤
m–n∑
i=

siJ
(
vn+i–, vn+i

) ≤
m–n∑
i=

si
[
λn+i–J

(
v, v

)]
=

m–n∑
i=

siλn+i–J
(
v, v

)
= J

(
v, v

)m–n∑
i=

siλn+i–

= J
(
v, v

)
λn–

m–n∑
i=

(sλ)i = J
(
v, v

)
λn–

m–n∑
i=

γ i

<

[
J
(
v, v

)m–n∑
i=

(
γ i)] · λn–, (.)

where γ = sλ < . Therefore, (.) we have

sup
m>n

J
(
vn, vm

) ≤
∑
m>n

J
(
vn, vm

) ≤
[
J
(
v, v

) ∞∑
m=n+

m–n∑
i=

(
γ i)] · λn–

=
[

γ

 – γ
J
(
v, v

)] · λn–. (.)

Since λ < , thus, as n → ∞ in (.), we obtain

lim
n→∞ sup

m>n
J
(
vn, vm

)
= .

Thus, condition (.) holds.
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Step III.Now we show that if S(Y ) is J-complete, then there exists a unique u ∈ S(Y ) such
that limn→∞ vn = u.
Indeed, let S(Y ) be J-complete. By (.) and Definition ., there exists u ∈ S(Y ) such

that

lim
n→∞ J

(
vn,u

)
= lim

n→∞ J
(
u, vn

)
= . (.)

The facts that limn→∞ vn = u and the point u is unique are proved together. Indeed, let
us suppose that there exists ũ ∈ S(Y ), ũ = u, such that

lim
n→∞ J

(
vn, ũ

)
= lim

n→∞ J
(̃
u, vn

)
= . (.)

Then for sequences (xn = vn : n ∈N), (yn = u : n ∈ N) and (ỹn = ũ : n ∈N), by (.), (.)
and (.), we have, respectively,

lim
n→∞ sup

m>n
J(xn,xm) = , (.)

lim
n→∞ J(xn, yn) =  and (.)

lim
n→∞ J(xn, ỹn) = . (.)

By (.) and (.), for sequences (xn : n ∈ N) and (yn : n ∈ N), properties (.) and
(.) hold, and similarly by (.) and (.), for sequences (xn : n ∈ N) and (ỹn : n ∈ N),
properties (.) and (.) also hold. Hence, by (J) we obtain

lim
n→∞d

(
vn,u

)
= lim

n→∞d(xn, yn) =  (.)

and

lim
n→∞d

(
vn, ũ

)
= lim

n→∞d(xn, ỹn) = . (.)

Now, from (.), (.) and (d)-(d), since ũ = u, we have that

∀n∈N
{
 < η = d(̃u,u) ≤ s

[
d
(̃
u, vn

)
+ d

(
vn,u

)]
= sd

(
vn, ũ

)
+ sd

(
vn,u

)}
. (.)

Finally, by (.), (.) and (.), we have  < η = d(̃u,u) ≤ s limn→∞ d(vn, ũ) +
s limn→∞ d(vn,u) = . Absurd.
Consequently, (.) holds for a unique u, and (.) gives that limn→∞ vn = u.
Moreover, by (.), using a similar argumentation, for the subsequences (vn : n ∈ N)

and (vn+ : n ∈ N), we have

lim
n→∞ J

(
vn,u

)
= lim

n→∞ J
(
u, vn

)
= ,

and

lim
n→∞ J

(
vn+,u

)
= lim

n→∞ J
(
u, vn+

)
= .
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For clarity of the rest of the proof, let v = S–(u). Then S(v) = u.
Step IV.We can show that

J
(
S(v),u

)
= J

(
u,S(v)

)
= . (.)

Indeed, by (J′) we have ∀n∈N{≤ J(u,u) ≤ sJ(u, vn) + sJ(vn,u)}. Hence, by (.), we get

 ≤ J(u,u) ≤ s lim
n→∞ J

(
u, vn

)
+ s lim

n→∞ J
(
vn,u

)
= .

Thus, u ∈ X
J , i.e.,

J(u,u) = . (.)

Now, since S(v) = u, we obtain that (.) holds.
Step V.We can show that

max
{
J
(
T(v),u

)
, J

(
u,T(v)

)} ≤ qJ
(
S(v),T(v)

)
. (.)

Indeed, from (.) and (.), for x = v and y = wn+, we calculate

∀n∈N
{
max

{
J
(
T(v), vn+

)
, J

(
vn+,T(v)

)}
=max

{
J
(
T(v),A

(
wn+)), J(A(

wn+),T(v))}
≤ qmax

{
min

{
J
(
S(v),B

(
wn+)), J(B(

wn+),S(v))}, J(S(v),T(v)),
J
(
B
(
wn+),A(

wn+)), [J(S(v),A(
wn+)) + J

(
B
(
wn+),T(v))]/}

= qmax
{
min

{
J
(
S(v), vn+

)
, J

(
vn+,S(v)

)}
, J

(
S(v),T(v)

)
,

J
(
vn+, vn+

)
,
[
J
(
S(v), vn+

)
+ J

(
vn+,T(v)

)]
/

}}
. (.)

Now, since: (a) T(v) ∈ T(Y ) ⊂ X
J ; (b) S(v) = u ∈ X

J ; (c) for sequences (xn = vn+ : n ∈N),
(yn = vn+ : n ∈ N) by Step III, we have limn→∞ supm>n J(xn,xm) = , limn→∞ supm>n J(yn,
ym) = ; (d) limn→∞ xn = limn→∞ yn = u; thus using the fact that J is admissible, by Re-
mark ., we have:

(i) limn→∞ J(T(v), vn+) = limn→∞ J(T(v),xn) = J(T(v),u);
(ii) limn→∞ J(vn+,T(v)) = limn→∞ J(xn,T(v)) = J(u,T(v));
(iii) limn→∞ J(S(v), vn+) = limn→∞ J(S(v), yn) = J(S(v),u);
(iv) limn→∞ J(vn+,S(v)) = limn→∞ J(yn,S(v)) = J(u,S(v));
(v) limn→∞ J(vn+, vn+) = limn→∞ J(yn,xn) = J(u,u) = ;
(vi) limn→∞ J(S(v), vn+) = limn→∞ J(S(v),xn) = J(S(v),u);
(vii) limn→∞ J(vn+,T(v)) = limn→∞ J(yn,T(v)) = J(u,T(v)).
Hence, in the limit, (.), (.) and (.) give

max
{
J
(
T(v),u

)
, J

(
u,T(v)

)}
≤ qmax

{
min

{
J
(
S(v),u

)
, J

(
u,S(v)

)}
, J

(
S(v),T(v)

)
, J(u,u),

[
J
(
S(v),u

)
+ J

(
u,T(v)

)]
/

}
= qmax

{
J
(
S(v),T(v)

)
, J

(
S(v),T(v)

)
/

}
= qJ

(
S(v),T(v)

)
,

thus (.) holds.
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Step VI.We claim that

J
(
S(v),T(v)

)
= ∧ J

(
T(v),S(v)

)
= . (.)

First, we can observe that

J
(
S(v),T(v)

)
= . (.)

Indeed, supposing this claim is not true, then

J
(
S(v),T(v)

)
> . (.)

By (.) and (.), since S(v) = u, we obtain that

 < J
(
S(v),T(v)

)
= J

(
u,T(v)

) ≤max
{
J
(
T(v),u

)
, J

(
u,T(v)

)}
≤ qJ

(
S(v),T(v)

)
< J

(
S(v),T(v)

)
.

Contradiction. Thus (.) holds. Now, by (.) and (.), we obtain

 < J
(
T(v),S(v)

)
= J

(
T(v),u

) ≤max
{
J
(
T(v),u

)
, J

(
u,T(v)

)} ≤ qJ
(
S(v),T(v)

)
= .

Hence, by (.) we obtain that (.) holds.
Step VII. Now, we show that S(v) = T(v).
Indeed, this is the consequence of (.) and Remark .(C).
Step VIII. Now, we can show that

J
(
B(z),A(z)

)
= J

(
A(z),B(z)

)
=  (.)

for some z ∈ Y .
Indeed, since u = S(v), thus by Step VII, u = T(v) ∈ T(Y ) ⊆ B(Y ), so there exists z ∈ Y

such that u = B(z). Next, from (.) and (.) (for x = wn and y = z), we calculate

∀n∈N
{
max

{
J
(
vn+,A(z)

)
, J

(
A(z), vn+

)}
=max

{
J
(
T

(
wn),A(z)), J(A(z),T(

wn))}
≤ qmax

{
min

{
J
(
S
(
wn),B(z)), J(B(z),S(wn))},

J
(
S
(
wn),T(

wn)), J(B(z),A(z)),[
J
(
S
(
wn),A(z)) + J

(
B(z),T

(
wn))]/}

= qmax
{
min

{
J
(
vn,B(z)

)
, J

(
B(z), vn

)}
, J

(
vn, vn+

)
,

J
(
B(z),A(z)

)
,
[
J
(
vn,A(z)

)
+ J

(
B(z), vn+

)]
/

}}
. (.)

Now, since: (a) A(z) ∈ A(Y ) ⊂ X
J ; (b) B(z) = u ∈ X

J ; (c) for sequences (xn = vn : n ∈ N),
(yn = vn+ : n ∈ N) by Step III, we have limn→∞ supm>n J(xn,xm) = , limn→∞ supm>n J(yn,
ym) = ; (d) limn→∞ xn = limn→∞ yn = u; thus using the fact that J is admissible, by Re-
mark ., we have:
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(i) limn→∞ J(vn+,A(z)) = limn→∞ J(yn,A(z)) = J(u,A(z));
(ii) limn→∞ J(A(z), vn+) = limn→∞ J(A(z), yn) = J(A(z),u);
(iii) limn→∞ J(vn,B(z)) = limn→∞ J(xn,B(z)) = J(u,B(z));
(iv) limn→∞ J(B(z), vn) = limn→∞ J(B(z),xn) = J(B(z),u);
(v) limn→∞ J(vn, vn+) = limn→∞ J(xn, yn) = J(u,u) = ;
(vi) limn→∞ J(vn,A(z)) = limn→∞ J(xn,A(z)) = J(u,A(z));
(vii) limn→∞ J(B(z), vn+) = limn→∞ J(B(z), yn) = J(B(z),u).
Hence, in the limit, (.) gives

max
{
J
(
u,A(z)

)
, J

(
A(z),u

)} ≤ qmax
{
min

{
J
(
u,B(z)

)
, J

(
B(z),u

)}
,

J(u,u), J
(
B(z),A(z)

)
,
[
J
(
u,A(z)

)
+ J

(
B(z),u

)]
/

}
, (.)

and consequently, since u = B(z) and u = S(v), by (.) and (.), we obtain that

max
{
J
(
B(z),A(z)

)
, J

(
A(z),B(z)

)}
≤ qmax

{
J(u,u), J(u,u), J

(
B(z),A(z)

)
,
[
J
(
u,A(z)

)
+ J(u,u)

]
/

}
= qmax

{
J
(
u,S(v)

)
, J

(
u,S(v)

)
, J

(
B(z),A(z)

)
,
[
J
(
B(z),A(z)

)
+ J

(
u,S(v)

)]
/

}
= qmax

{
J
(
B(z),A(z)

)
,
[
J
(
B(z),A(z)

)]
/

}
= qJ

(
B(z),A(z)

)
. (.)

Now, we can observe that

J
(
B(z),A(z)

)
= . (.)

Indeed, supposing this claim is not true, then

J
(
B(z),A(z)

)
> . (.)

By (.) and (.) we obtain that

 < J
(
B(z),A(z)

) ≤max
{
J
(
B(z),A(z)

)
, J

(
A(z),B(z)

)}
≤ qJ

(
B(z),A(z)

)
< J

(
B(z),A(z)

)
.

Contradiction. Thus J(B(z),A(z)) = , i.e., (.) holds.
Moreover, by (.) we get J(A(z),B(z)) ≤ max{J(B(z),A(z)), J(A(z),B(z))} ≤ qJ(B(z),

A(z)) < J(B(z),A(z)), which by (.) gives that

J
(
A(z),B(z)

)
= . (.)

In consequence of (.), (.), we get that (.) holds.
Step IX. Now, we show that A(z) = B(z).
Indeed, this is the consequence of (.) and Remark .(C).
Step X. Now, we see that limn→∞ d(vn,u) = .
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Indeed, since u = S(v) and u = B(z), thus by Steps VII and IX, we obtain that u = S(v) =
T(v) = A(z) = B(z). Moreover, by (.) and (.) we know that for the sequence (vn : n ∈
N), conditions (.) and (.) respectively hold, thus using (J) we obtain

lim
n→∞d

(
vn,u

)
= .

Step XI. If A(Y ), B(Y ) or T(Y ) are J-complete, then the assertions (i) and (ii) hold.
Indeed, if A(Y ) is J-complete, then since A(Y ) ⊂ S(Y ), the assertions (i) and (ii) are true.

If B(Y ) or T(Y ) is J-complete, then an analogous argument as that in Steps I-IX yields (i)
and (ii). �

4 Remarks, examples and comparison
Now, we present some examples illustrating the concepts which have been introduced so
far. We will show a fundamental difference between Theorem . and Theorem .. At the
very beginning, we give the following remark.

Remark . (A) We can observe that if (X,d) is a b-metric space (with s ≥ ) and J = d,
then Theorem . and Theorem . are identical. Indeed, if J = d, then:

() b-metric d : X ×X → [,∞) is a b-generalized pseudodistance on X (see
Remark .(A));

() b-metric d : X ×X → [,∞) is an admissible b-generalized pseudodistance on X
(see Remark .);

() from (d) and (.) we have X
d = X , and consequently T(Y ) ⊆ X = X

d and
A(Y ) ⊆ X = X

d ;
() definition of J-completeness and usual completeness of images Y under the

mapping A, B, S or T are identical (see Remark .);
() from symmetry of d (the property (d)), we have that

∀x,y∈Y
{
max

{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
=max

{
d
(
T(x),A(y)

)
,d

(
A(y),T(x)

)}
= d

(
T(x),A(y)

)}
,

and, similarly,

∀x,y∈Y
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
=min

{
d
(
S(x),B(y)

)
,d

(
B(y),S(x)

)}
= d

(
S(x),B(y)

)}
,

so conditions (.) and (.) are, in this case, identical.
(B) Generally, Theorem . is the essential extension of Theorem . (for details, see

Example .).

Now we show that Theorem . is the essential generalization of Theorem .. First, we
present an example of a b-generalized pseudodistance.
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Example . Let X be a b-metric space (with a constant s ≥ ) equipped in b-metric d :
X × X → [,∞). Let the closed set E ⊂ X, containing at least two different points, be
arbitrary and fixed. Let c >  be such that c > δ(E), where δ(E) = sup{d(x, y) : x, y ∈ X} is
arbitrary and fixed. Define the map J : X ×X → [,∞) as follows:

J(x, y) =

{
d(x, y) if {x, y} ∩ E = {x, y},
c if {x, y} ∩ E = {x, y}. (.)

(I)We show that the map J is a b-generalized pseudodistance on X.
Indeed, it is worth noticing that the condition (J′) does not hold only if some x, y, z ∈

X such that J(x, z) > s[J(x, y) + J(y, z)] exist. This inequality is equivalent to c >
s[d(x, y) +d(y, z)], where J(x, z) = c, J(x, y) = d(x, y) and J(y, z) = d(y, z). How-
ever, by (.): J(x, z) = c shows that there exists v ∈ {x, z} such that v /∈ E; J(x, y) =
d(x, y) gives {x, y} ⊂ E; J(y, z) = d(y, z) gives {y, z} ⊂ E. This is impossible. There-
fore, ∀x,y,z∈X{J(x, y)≤ s[J(x, z) + J(z, y)]}, i.e., the condition (J′) holds.
Proving that (J) holds, we assume that the sequences (xm :m ∈ N) and (ym :m ∈ N) in

X satisfy (.) and (.). Then, in particular, (.) yields

∀<ε<c∃m=m(ε)∈N∀m≥m

{
J(xm, ym) < ε

}
. (.)

By (.) and (.), since ε < c, we conclude that

∀m≥m

{
E ∩ {xm, ym} = {xm, ym}}. (.)

From (.), (.) and (.), we get

∀<ε<c∃m∈N∀m≥m

{
d(xm, ym) < ε

}
.

Therefore, the sequences (xm : m ∈ N) and (ym : m ∈ N) satisfy (.). Consequently, the
property (J) holds.
(II)We will show that J is an admissible b-generalized pseudodistance.
Indeed, let the sequences (xm :m ∈ N) and (ym :m ∈ N), such that xm → x and ym → y,

m → ∞ and

lim
n→∞ sup

m>n
J(xn,xm) = , and (.)

lim
n→∞ sup

m>n
J(yn, ym) = , (.)

be arbitrary and fixed. Then by (.), (.) and (.) we obtain that

∃m∈N∀m≥m

{{xm, ym} ∩ E = {xm, ym}},
and by (.) we obtain

∀m≥m

{
J(xm, ym) = d(xm, ym)

}
. (.)
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Moreover, since the set E is closed, and xm → x, ym → y by m → ∞, so we have that
{x, y} ∩ E = {x, y} and, consequently, by (.) we have

J(x, y) = d(x, y). (.)

Finally, (.), (.) and continuity of d give that

lim
m→∞ J(xm, ym) = lim

m→∞d(xm, ym) = d(x, y) = J(x, y).

In the following, we illustrate how to satisfy condition (.) of Theorem . by an ele-
mentary example.

Example . LetX be a b-metric space (with a constant s =  > ) equipped in b-metric d :
X ×X → [,∞), where X = [, ] and d(x, y) = |x– y|, x, y ∈ X. Let the set E = {, , , } ⊂
X and J : X → [,∞) be defined by the formula

J(x, y) =

{
d(x, y) if E ∩ {x, y} = {x, y},
 if E ∩ {x, y} = {x, y}, x, y ∈ X. (.)

Of course, δ(E) = sup{|x – y| : x, y ∈ E} =  < , thus by Example .(I) the map J is the
b-generalized pseudodistance onX.Moreover, since E is a closed set, so by Example .(II)
the map J is admissible on X.
Let Y = [, ] ⊂ X and let T ,A,S,B : Y → X be given by the formulas

T(x) =

⎧⎪⎨⎪⎩
 if x = ,
 if x ∈ {  ,  ,  , },
 if x ∈ Y\{,  ,  ,  , },

(.)

A(x) =

{
 if x ∈ Y\{  },
 if x = 

 ,
(.)

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

 for x ∈ Y\{  ,  ,  },
 for x = 

 ,
 for x = 

 ,
 for x = 

 ,

and (.)

B(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

 for x ∈ Y\{  ,  , },
 for x = 

 ,
 for x = 

 ,
 for x = .

(.)

First, we can immediately see that T(Y ) = {, , } ⊂ {,  , , } = B(Y ) and A(Y ) =
{, } ⊂ {, ,  , } = S(Y ).
Now, we will show that the maps T ,A,S,B : Y → X satisfy condition (.) for (q = 

 ).
Indeed, first we can observe that since s = , we get qs = 

 <  and λs = max{q, qs
–qs }s =

max{ 
 ,




– 

} = max{ 

 ,

 } = 

 < . Moreover, since T(Y ) = {, , } ⊂ E and A(Y ) =

{, } ⊂ E, by (.) we get T(Y ) ⊂ X
J , A(Y )⊂ X

J and

∀x,y∈Y
{
max

{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
= d

(
T(x),A(y)

) ≤ 
}
. (.)
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Now, let x, y ∈ Y be arbitrary and fixed. We consider the following four cases.
Case . If {x, y} ∩ {  ,  ,  , } = ∅, then {x, y} ⊂ Y\{  ,  ,  , }, which by (.) and (.)

gives B(x) = B(y) = S(x) = S(y) = 
 and 

 /∈ E. By (.), we get J(S(x),B(y)) = , and con-
sequently, since {S(x),B(y)} ∩ E = ∅, by (.) we have that J(S(x),T(x)) = J(B(y),A(y)) =
J(S(x),A(y)) = J(B(y),T(x)) = , thus

max
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
, J

(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,[

J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
= J

(
S(x),B(y)

)
= . (.)

In consequence, by (.) and (.) we calculate

max
{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
≤  <




=



· 

= qmax
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
,

J
(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,
[
J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
. (.)

Case . If {x, y} ∩ {  ,  ,  , } = {x}, then {y} ⊂ Y \ {  ,  ,  , }, which by (.) gives B(y) =

 and 

 /∈ E. By (.), we get J(S(x),B(y)) = J(B(y),S(x)) = , and consequently, since all
images T(Y ), A(Y ), S(Y ) and B(Y ) are subsets of E ∪ {  }, we have that δ(l) ≤ , where
l ∈ {T(Y ),A(Y ),S(Y ),B(Y )}. Hence, we calculate

max
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
, J

(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,[

J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
= J

(
S(x),B(y)

)
= . (.)

In consequence, by (.) and (.) we calculate

max
{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
≤  <




=



· 

= qmax
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
,

J
(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,
[
J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
. (.)

Case . If {x, y} ∩ {  ,  ,  , } = {y}, then {x} ⊂ Y\{  ,  ,  , }, which by (.) gives
S(x) = 

 and 
 /∈ E. By (.), we get = J(B(y),S(x)) = , and consequently, since all im-

ages T(Y ), A(Y ), S(Y ) and B(Y ) are subsets of E ∪ {  }, we have that δ(l) ≤ , where
l ∈ {T(Y ),A(Y ),S(Y ),B(Y )}. Hence, we calculate

max
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
, J

(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,[

J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
= J

(
S(x),B(y)

)
= . (.)
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In consequence, by (.) and (.) we calculate

max
{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
≤  <




=



· 

= qmax
{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
, J

(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,[

J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
. (.)

Case . If {x, y}∩{  ,  ,  , } = {x, y}, then (.) and (.) giveT(x) = T(y) = A(x) = A(y) =
 and  ∈ E. By (.), we get J(T(x),A(y)) = J(A(y),T(x)) = d(T(x),A(y)) = d(, ) = , and
consequently,

max
{
J
(
T(x),A(y)

)
, J

(
A(y),T(x)

)}
=  ≤ qmax

{
min

{
J
(
S(x),B(y)

)
, J

(
B(y),S(x)

)}
,

J
(
S(x),T(x)

)
, J

(
B(y),A(y)

)
,
[
J
(
S(x),A(y)

)
+ J

(
B(y),T(x)

)]
/

}
. (.)

Consequently, (.), (.), (.) and (.) give that condition (.) holds.
Finally, we can observe, that: T(Y )⊂ X

J ; A(Y ) ⊂ X
J ; X

J = E; and E is a closed set. Con-
cluding, by (.) and Definition ., we have A(Y ) and T(Y ) are J-complete subsets of X.
All assumptions of Theorem . are satisfied. The maps T and S have a coincidence point
z = 

 ∈ Y (i.e., T(  ) =  = S(  )), which presents that the assertion (i) holds, and B and A
have a coincidence point w = 

 ∈ Y (i.e., A(  ) =  = B(  )), which gives that the assertion
(ii) holds.

The next example illustrates that Theorem . is an essential extension of Theorem ..

Example . Let X be a b-metric space (with constant s =  > ) equipped in b-metric
d : X×X → [,∞), whereX = [, ] and d(x, y) = |x–y|, x, y ∈ X. LetY ⊂ X, andA,B,S,T :
Y → X be such as in Example ..Wewill show that condition (.) does not hold. Indeed,
supposing that there exists q ∈ (, ) such that qs < , λs =max{q, qs

–qs }s <  and such that
for each x, y ∈ X, we have

d
(
T(x),A(y)

) ≤ qmax
{
d
(
S(x),B(y)

)
,d

(
S(x),T(x)

)
,d

(
B(y),A(y)

)
,[

d
(
S(x),A(y)

)
+ d

(
B(y),T(x)

)]
/

}
. (.)

Let x =  and y = 
 . Then by (.)-(.) we get:

(i) d(T(x),A(y)) = d(T(),A(  )) = d(, ) = ;
(ii) d(S(x),B(y)) = d(S(),B(  )) = d(  ,


 ) = ;

(iii) d(S(x),T(x)) = d(S(),T()) = d(  , ) = (  )
 = 

 ;
(iv) d(B(y),A(y)) = d(B(  ),A(


 )) = d(  , ) = (  )

 = 
 ;

(v) [d(S(x),A(y)) + d(B(y),T(x))]/ = [d(S(),A(  )) + d(B(  ),T())]/ =
[d(  , ) + d(  , )]/ = (/ + /)/ = /; and

(vi) max{d(S(x),B(y)),d(S(x),T(x)),d(B(y),A(y)), [d(S(x),A(y)) +
d(B(y),T(x))]/} = max{, /, /, /} = /.
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Now, since q < , by (i), (.) and (vi) we have

 = d
(
T(x),A(y)

)
≤ qmax

{
d
(
S(x),B(y)

)
,d

(
S(x),T(x)

)
,

d
(
B(y),A(y)

)
,
[
d
(
S(x),A(y)

)
+ d

(
B(y),T(x)

)]
/

}
< max

{
d
(
S(x),B(y)

)
,d

(
S(x),T(x)

)
,d

(
B(y),A(y)

)
,[

d
(
S(x),A(y)

)
+ d

(
B(y),T(x)

)]
/

}
=




,

which is absurd. This shows that condition (.) does not hold, so the main assumption of
Theorem . is not true.

Remark . Examples . and . show that there exist the maps and b-metrics such that
we cannot use Theorem ., but we can use Theorem ..
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