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Abstract
We introduce new implicit and explicit iterative schemes for finding a common
element of the set of fixed points of k-strictly pseudocontractive mapping and the set
of zeros of the sum of two monotone operators in a Hilbert space. Then we establish
strong convergence of the sequences generated by the proposed schemes to a
common point of two sets, which is a solution of a certain variational inequality.
Further, we find the unique solution of the quadratic minimization problem, where
the constraint is the common set of two sets mentioned above. As applications, we
consider iterative schemes for the Hartmann-Stampacchia variational inequality
problem and the equilibrium problem coupled with fixed point problem.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let
C be a nonempty closed convex subset of H , and let T : C → C be a self-mapping on C.
We denote by F(T) the set of fixed points of T , that is, F(T) := {x ∈ C : Tx = x}.
Let A : C → H be a single-valued nonlinear mapping, and let B :H → H be a multival-

ued mapping. Then we consider the monotone inclusion problem (MIP) of finding x ∈H
such that

 ∈ Ax + Bx. (.)

The set of solutions of the MIP (.) is denoted by (A +B)–. That is, (A +B)– is the set
of zeros ofA+B. TheMIP (.) provides a convenient framework for studying a number of
problems arising in structural analysis, mechanics, economics and others; see, for instance
[, ]. Also, various types of inclusion problems have been extended and generalized, and
there are many algorithms for solving variational inclusions. For more details, see [–]
and the references therein.
The class of pseudocontractive mappings is one of the most important classes of map-

pings among nonlinear mappings. We recall that a mapping T : C → H is said to be
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k-strictly pseudocontractive if there exists a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Note that the class of k-strictly pseudocontractive mappings includes the class of non-
expansive mappings as a subclass. That is, T is nonexpansive (i.e., ‖Tx – Ty‖ ≤ ‖x – y‖,
∀x, y ∈ C) if and only if T is -strictly pseudocontractive. The mapping T is also said to be
pseudocontractive if k = , and T is said to be strongly pseudocontractive if there exists
a constant λ ∈ (, ) such that T – λI is pseudocontractive. Clearly, the class of k-strictly
pseudocontractive mappings falls into the one between classes of nonexpansive mappings
and pseudocontractive mappings. Also, we remark that the class of strongly pseudocon-
tractive mappings is independent of the class of k-strictly pseudocontractive mappings
(see []). Recently,many authors have been devoting the studies on the problems of finding
fixed points for pseudocontractive mappings (see, for example, [–] and the references
therein).
Recently, in order to study theMIP (.) coupled with the fixed point problem, many au-

thors have introduced some iterative schemes for finding a common element of the set of
solutions of theMIP (.) and the set of fixed points of a countable family of nonexpansive
mappings (see [, , ] and the references therein).
Inspired and motivated by the above-mentioned recent works, in this paper, we intro-

duce new implicit and explicit iterative schemes for finding a common element of the set
of the solutions of the MIP (.) with a set-valued maximal monotone operator B and an
inverse-strongly monotone mapping A and the set of fixed points of a k-strictly pseudo-
contractive mapping T . Then we establish results of the strong convergence of the se-
quences generated by the proposed schemes to a common point of two sets, which is a
solution of a certain variational inequality. As a direct consequence, we find the unique
solution of the quadratic minimization problem:

‖x̃‖ =min
{‖x‖ : x ∈ F(T)∩ (A + B)–

}
.

Moreover, as applications,we consider iterative algorithms for theHartmann-Stampacchia
variational inequality problem and the equilibrium problem coupled with fixed point
problem of nonexpansive mappings.

2 Preliminaries and lemmas
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . In
the following, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x.
xn → x implies that {xn} converges strongly to x.
Recall that a mapping f : C → C is said to be contractive if there exists l ∈ [, ) such that

∥∥f (x) – f (y)
∥∥ ≤ l‖x – y‖, ∀x, y ∈ C.

A mapping A of C into H is called inverse-strongly monotone if there exists a positive
real number α such that

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/272
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for all x, y ∈ C. For such a case, A is called α-inverse-strongly monotone. If A is an
α-inverse-strongly monotone mapping of C into H , then it is obvious that A is 

α
-

Lipschitzian and continuous. Let B be a mapping of H into H . The effective domain of B
is denoted by dom(B), that is, dom(B) = {x ∈H : Bx �= ∅}. A multi-valued mapping B is said
to be amonotone operator onH if 〈x– y,u– v〉 ≥  for all x, y ∈ dom(B), u ∈ Bx, and v ∈ By.
A monotone operator B on H is said to bemaximal if its graph is not properly contained
in the graph of any other monotone operator on H . For a maximal monotone operator
B on H and r > , we may define a single-valued operator Jr = (I + rB)– : H → dom(B),
which is called the resolvent of B for r. Let B be a maximal monotone operator on H , and
let B– = {x ∈ H :  ∈ Bx}. It is well known that B– = F(Jr) for all r >  and the resolvent
Jr is firmly nonexpansive, i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈H , (.)

and that the resolvent identity

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx

)
(.)

holds for all λ,μ >  and x ∈ H . It is worth mentioning that the resolvent operator Jλ is
nonexpansive and -inverse-strongly monotone, and that a solution of the MIP (.) is a
fixed point of the operator Jλ(I – λA) for all λ >  (see []).
In a real Hilbert space H , we have

‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉 (.)

for all x, y ∈ H and λ ∈ R. For every point x ∈ H , there exists a unique nearest point in C,
denoted by PCx, such that

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}
.

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive,
and PC is characterized by the property

u = PCx ⇐⇒ 〈x – u,u – y〉 ≥ , ∀x ∈H , y ∈ C. (.)

It is also well known thatH satisfies theOpial condition, that is, for any sequence {xn}with
xn ⇀ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x. For these facts, see [].
We need the following lemmas for the proof of our main results.

Lemma . In a real Hilbert space H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .
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Lemma . [] For all x, y, z ∈ H and α,β ,γ ∈ [, ] with α + β + γ = , the following
equality holds:

‖αx + βy + γ z‖ = α‖x‖ + β‖y‖ + γ ‖z‖ – αβ‖x – y‖ – βγ ‖y – z‖ – γα‖z – x‖.

Lemma . [] Let H be a Hilbert space, let C be a closed convex subset of H . If T is a
k-strictly pseudocontractive mapping on C, then the fixed point set F(T) is closed convex,
so that the projection PF(T) is well defined, and F(PCT) = F(T).

Lemma . [] Let H be a real Hilbert space, let C be a closed convex subset of H , and
let T : C → H be a k-strictly pseudocontractive mapping. Define a mapping T : C → H by
Sx = λx+ ( – λ)Tx for all x ∈ C. Then, as λ ∈ [k, ), S is a nonexpansive mapping such that
F(S) = F(T).

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping A : C → H be α-inverse strongly monotone, and let r >  be a constant. Then
we have

∥∥(I – rA)x – (I – rA)y
∥∥ ≤ ‖x – y‖ + r(r – α)‖Ax –Ay‖, ∀x, y ∈ C.

In particular, if  ≤ r ≤ α, then I – rA is nonexpansive.

Lemma . [] Let B :H → H be amaximalmonotone operator, and let A :H →H be a
Lipschitz continuous mapping. Then the mapping B+A :H → H is a maximal monotone
operator.

Remark . Lemma . implies that (A + B)– is closed and convex if B : H → H is a
maximal monotone operator and A :H →H is an inverse-strongly monotone mapping.

The following lemma is a variant of a Minty lemma (see []).

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . Assume
that the mapping G : C → H is monotone and weakly continuous along segments, that is,
G(x + ty)→G(x) weakly as t → . Then the variational inequality

x̃ ∈ C, 〈Gx̃,p – x̃〉 ≥ , ∀p ∈ C,

is equivalent to the dual variational inequality

x̃ ∈ C, 〈Gp,p – x̃〉 ≥ , ∀p ∈ C.

Lemma . [] Let {xn} and {zn} be bounded sequences in a real Banach space E, and let
{γn} be a sequence in [, ], which satisfies the following condition:

 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < .
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Suppose that xn+ = γnxn + ( – γn)zn for all n ≥ , and

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖zn – xn‖ = .

Lemma . [] Let {sn} be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – ξn)sn + ξnδn, ∀n≥ ,

where {ξ} and {δn} satisfy the following conditions:
(i) {ξn} ⊂ [, ] and

∑∞
n= ξn =∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= ξnδn < ∞.
Then limn→∞ sn = .

3 Iterative schemes
Throughout the rest of this paper, we always assume as follows: Let H be a real Hilbert
space, and let C be a nonempty closed convex subset of H . Let A : C →H be an α-inverse
strongly monotone mapping, and let B be a maximal monotone operator on H such that
the domain of B is included in C. Let Jλ = (I + λB)– be the resolvent of B for λ > . Let f :
C → C be a contractive mapping with constant l ∈ (, ), and let T : C → C be a k-strictly
pseudocontractive mapping. Define a mapping S : C → C by Sx = λx + ( – λ)Tx, ∀x ∈ C,
where λ ∈ [k, ). Then, by Lemma ., S is nonexpansive.
In this section, we introduce the following iterative scheme that generates a net {xt} in

an implicit way:

xt = tf (xt) + ( – t)SJλt (xt – λtAxt), t ∈ (, ), (.)

where  < a ≤ λt ≤ b < α. We prove strong convergence of {xt}, as t → , to a point x̃ in
F(T)∩ (A + B)–, which is a solution of the following variational inequality:

〈
(I – f )x̃,p – x̃

〉 ≥ , ∀p ∈ F(T)∩ (A + B)–. (.)

Equivalently, x̃ = PF(T)∩(A+B)–(I – f )x̃.
If we take f ≡  in (.), then we have

xt = ( – t)SJλt (xt – λtAxt), t ∈ (, ). (.)

We also propose the following iterative scheme which generates a sequence {xn} in an
explicit way:

xn+ = αnf (xn) + βnxn + ( – αn – βn)SJλn (xn – λnAxn), ∀n≥ , (.)

where {αn}, {βn} ⊂ (, ), {λn} ⊂ (, α) and x ∈ C is an arbitrary initial guess, and estab-
lish the strong convergence of this sequence to a fixed point x̃ of T , which is also a solution
of the variational inequality (.). If we take f ≡  in (.), then we have

xn+ = βnxn + ( – αn – βn)SJλn (xn – λnAxn), ∀n≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/272
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3.1 Strong convergence of the implicit algorithm
For t ∈ (, ), consider the following mapping Qt on C defined by

Qtx = tf (x) + ( – t)SJλt (x – λtAx), ∀x ∈ C.

By Lemma ., we have

‖Qtx –Qty‖
=

∥∥tf (x) + ( – t)SJλt (x – λtAx) –
(
tf (y) + ( – t)SJλt (y – λtAy)

)∥∥
≤ t

∥∥f (x) – f (y)
∥∥ + ( – t)

∥∥SJλt (x – λtAx) – SJλt (y – λtAy)
∥∥

≤ tl‖x – y‖ + ( – t)
∥∥(I – λtA)x – (I – λtA)y

∥∥
≤ tl‖x – y‖ + ( – t)‖x – y‖
=

[
 – ( – l)t

]‖x – y‖.

Since  <  – ( – l)t < , Qt is a contractive mapping. Therefore, by the Banach contrac-
tion principle, Qt has a unique fixed point xt ∈ C, which uniquely solves the fixed point
equation

xt = tf (xt) + ( – t)SJλt (xt – λtAxt), t ∈ (, ).

Now, we prove strong convergence of the sequence {xt}, and show the existence of x̃ ∈
F(T)∩ (A + B)–, which solves the variational inequality (.).

Theorem . Suppose that F(T) ∩ (A + B)–. Then the net {xt} defined by the implicit
method (.) converges strongly, as t → , to a point x̃ ∈ F(T) ∩ (A + B)–, which is the
unique solution of the variational inequality (.).

Proof First, we can show easily the uniqueness of a solution of the variational inequality
(.). In fact, if x̃ ∈ F(T)∩ (A+B)– and x̂ ∈ F(T)∩ (A+B)– both are solutions to (.).
Then we have

〈
(I – f )x̃, x̂ – x̃

〉 ≥ , (.)
〈
(I – f )x̂, x̃ – x̂

〉 ≥ . (.)

Adding up (.) and (.) yields

〈
(I – f )x̃ – (I – f )x̂, x̃ – x̂

〉 ≤ .

This implies that ( – l)‖x̃– x̂‖ ≤ . So x̃ = x̂, and the uniqueness is proved. Below, we use
x̃ ∈ F(T)∩ (A + B)– to denote the unique solution of the variational inequality (.).
Now, we prove that {xt} is bounded. Set yt = Jλt (xt – λtAxt) for all t ∈ (, ). Take

p ∈ F(T) ∩ (A + B)–. It is clear that p = Jλt (p – λtAp) = SJλt (p – λtAp) and p = Sp (by
Lemma .). Since Jλt is nonexpansive and A is α-inverse-strongly monotone, we have

http://www.fixedpointtheoryandapplications.com/content/2013/1/272
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from Lemma . that

‖yt – p‖ = ∥∥Jλt (xt – λtAxt) – Jλt (p – λtAp)
∥∥

≤ ∥∥xt – λtAxt – (p – λtAp)
∥∥

≤ ‖xt – p‖ + λt(λt – α)‖Axt –Ap‖

≤ ‖xt – p‖. (.)

So, we have that

‖yt – p‖ ≤ ‖xt – p‖. (.)

Moreover, from (.), it follows that

‖xt – p‖ = ∥∥tf (xt) + (I – t)SJλt (xt – λtAxt) – p
∥∥

≤ ∥∥t(f (xt) – f (p)
)∥∥ + t

∥∥f (p) – p
∥∥ + ( – t)

∥∥Jλt (xt – λtAxt) – p
∥∥

≤ tl‖xt – p‖ + t
∥∥f (p) – p

∥∥ + ( – t)‖yt – p‖
≤ tl‖xt – p‖ + t

∥∥f (p) – p
∥∥ + ( – t)‖xt – p‖

≤ [
 – t( – l)

]‖xt – p‖ + t
∥∥f (p) – p

∥∥, (.)

that is,

‖xt – p‖ ≤ ‖f (p) – p‖
 – l

.

Hence, {xt} is bounded, and so are {yt}, {f (xt)}, {Axt} and {Syt}.
From (.) and (.), we have

( – tl)‖xt – p‖ ≤ [
( – t)‖yt – p‖ + t

∥∥f (p) – p
∥∥]

= ( – t)‖yt – p‖ + t
∥∥f (p) – p

∥∥

+ ( – t)t
∥∥f (p) – p

∥∥‖yt – p‖
≤ ‖yt – p‖ + tM

≤ ‖xt – p‖ + λt(λt – α)‖Axt –Ap‖ + tM, (.)

whereM >  is an appropriate constant. This means that

a(α – b)‖Axt –Ap‖ ≤ λt(α – λt)‖Axt –Ap‖

≤ t
(
l – tl

)‖xt – p‖ + tM →  as t → .

Since a(α – b) > , we deduce that

lim
t→

‖Axt –Ap‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/272
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From (.) and (.), we also obtain

‖yt – p‖

=
∥∥Jλt (xt – λtAxt) – Jλt (p – λtAp)

∥∥

≤ 〈
(xt – λtAxt) – (p – λtAp), yt – p

〉

=


(∥∥(xt – λtAxt) – (p – λtAp)

∥∥ + ‖yt – p‖

–
∥∥(xt – p) – λt(Axt –Ap) – (yt – p)

∥∥)

≤ 

(‖xt – p‖ + ‖yt – p‖ – ∥∥(xt – yt) – λt(Axt –Ap)

∥∥)

=


(‖xt – p‖ + ‖yt – p‖ – ‖xt – yt‖ + λt〈xt – yt ,Axt –Ap〉 – λ

t ‖Axt –Ap‖).
So, we get

‖yt – p‖ ≤ ‖xt – p‖ – ‖xt – yt‖

+ λt〈xt – yt ,Axt –Ap〉 – λ
t ‖Axt –Ap‖. (.)

Since ‖ · ‖ is a convex function, by (.), we have

‖xt – p‖ = ∥∥t(f (xt) – p
)
+ ( – t)

(
SJλt (xt – λtAxt) – p

)∥∥

≤ t
(∥∥f (xt) – f (p)

∥∥ +
∥∥f (p) – p

∥∥) + ( – t)‖Syt – Sp‖

≤ t
(
l‖xt – p‖ + ∥∥f (p) – p

∥∥) + ( – t)‖yt – p‖

≤ t
(
l‖xt – p‖ + ∥∥f (p) – p

∥∥)
+ ( – t)

(‖xt – p‖ – ‖xt – yt‖ + λt〈xt – yt ,Axt –Ap〉). (.)

We deduce from (.) that

( – t)‖xt – yt‖ ≤ (
t + ‖Axt –Ap‖)M, (.)

whereM >  is an appropriate constant. Since t →  and ‖Axt –Ap‖ → , we have

lim
t→∞‖xt – yt‖ = . (.)

Observing that

‖Syt – xt‖ =
∥∥Syt – (

tf (xt) + ( – t)Syt
)∥∥

= t
∥∥Syt – f (xt)

∥∥ →  as t → ,

by (.), we obtain

‖Sxt – xt‖ ≤ ‖Sxt – Syt‖ + ‖Syt – xt‖
≤ ‖xt – yt‖ + ‖Syt – xt‖ →  as t → . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/272
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Let {tn} ⊂ (, ) be a sequence such that tn →  as n → ∞. Put xn := xtn , yn := ytn and
λn := λtn . Since {xn} is bounded, there exists a subsequence {xni} of {xn}, which converges
weakly to x̃.
Next, we show that x̃ ∈ F(T) ∩ (A + B)–. Since C is closed and convex, C is weakly

closed. So, we have x̃ ∈ C. Let us show x̃ ∈ F(T). Assume that x̃ /∈ F(T) (= F(S)). Since
xni ⇀ x̃ and x̃ �= Sx̃, it follows from the Opial condition and (.) that

lim inf
i→∞ ‖xni – x̃‖ < lim inf

i→∞ ‖xni – Sx̃‖

≤ lim inf
i→∞

(‖xni – Sxni‖ + ‖Sxni – Sx̃‖)

≤ lim inf
i→∞ ‖xni – x̃‖,

which is a contradiction. So we get x̃ ∈ F(T).
We shall show that x̃ ∈ (A + B)–. Since ‖xt – yt‖ →  as t → , it follows that {yni}

converges weakly to x̃. We choose a subsequence {λni} of {λn} such that λni → λ. Let v ∈
Bu. Noting that

yt = Jλt (xt – λtAxt) = (I + λtB)–(xt – λtAxt),

we have that

xt – λtAxt ∈ yt + λtByt ,

and so,

xt – yt
λt

–Axt ∈ Byt .

Since B is monotone, we have for (u, v) ∈ B,
〈
xt – yt

λt
–Axt – v, yt – u

〉
≥ . (.)

Since 〈xt – x̃,Axt – Ax̃〉 ≥ α‖Axt – Ax̃‖ and xni ⇀ x̃, we have Axni → Ax̃. Then by (.)
and (.), we obtain

〈–Ax̃ – v, x̃ – u〉 ≥ .

Since B is maximal monotone, this implies that –Ax̃ ∈ Bx̃, that is,  ∈ (A + B)x̃. Hence, we
have x̃ ∈ (A + B)–. Thus, we conclude that x̃ ∈ F(T)∩ (A + B)–.
On the one hand, we note that for p ∈ F(T)∩ (A + B)–,

xt – p = t
(
f (xt) – f (p)

)
+ t

(
f (p) – p

)
+ ( – t)

(
SJλt (xt – λtAxt) – p

)
.

Then it follows that

‖xt – p‖ = 〈xt – p,xt – p〉
=

〈
t
(
f (xt) – f (p)

)
,xt – p

〉
+ t

〈
f (p) – p,xt – p

〉

http://www.fixedpointtheoryandapplications.com/content/2013/1/272
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+ ( – t)
〈
SJλt (xt – λtAxt) – p,xt – p

〉
≤ tl‖xt – p‖ + t

〈
f (p) – p,xt – p

〉
+ ( – t)‖xt – p‖

=
(
 – ( – l)t

)‖xt – p‖ + t
〈
f (p) – p,xt – p

〉
.

Hence, we have

‖xt – p‖ ≤ 
 – l

〈
f (p) – p,xt – p

〉
. (.)

In particular,

‖xni – p‖ ≤ 
 – l

〈
f (p) – p,xni – p

〉
. (.)

Since x̃ ∈ F(T)∩ (A + B)–, by (.), we obtain

‖xni – x̃‖ 
 – l

〈
f (x̃) – x̃,xni – x̃

〉
. (.)

Since xni ⇀ x̃, it follows from (.) that xni → x̃ as i → ∞.
Now, we return to (.) and take the limit as i → ∞ to get

‖x̃ – p‖ ≤ 
 – l

〈
(I – f )p,p – x̃

〉
. (.)

In particular, x̃ solves the following variational inequality

x̃ ∈ F(T)∩ (A + B)–,
〈
(I – f )p,p – x̃

〉 ≥ , p ∈ F(T)∩ (A + B)–,

or the equivalent dual variational inequality (see Lemma .)

x̃ ∈ F(T)∩ (A + B)–,
〈
(I – f )x̃,p – x̃

〉 ≥ , p ∈ F(T)∩ (A + B)–. (.)

Finally, we show that the net {xt} converges strongly, as t → , to x̃. To this end, let
{sk} ⊂ (, ) be another sequence such that sk →  as k → ∞. Put xk := xsk , yk := ysk and
λk := λsk . Let {xkj} be a subsequence of {xk}, and assume that xkj ⇀ x̂. By the same proof
as the one above, we have x̂ ∈ F(T)∩ (A + B)–. Moreover, it follows from (.) that

〈
(I – f )x̃, x̃ – x̂

〉 ≤ . (.)

Interchanging x̃ and x̂, we obtain

〈
(I – f )x̂, x̂ – x̃

〉 ≤ . (.)

Adding up (.) and (.) yields

〈
(I – f )x̃ – (I – f )x̂, x̃ – x̂

〉 ≤ .
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Hence,

‖x̃ – x̂‖ ≤ 〈
f (x̃) – f (x̂), x̃ – x̂

〉 ≤ l‖x̃ – x̂‖,

that is, (– l)‖x̃– x̂‖ ≤ . Since l ∈ (, ), we have x̃ = x̂. Therefore, we conclude that xt → x̃
as t → .
Note that PF(T)∩(A+B)– is well defined by Lemma . and Remark .. The variational

inequality (.) can be rewritten as

〈
(I – f )x̃ – x̃,p – x̃

〉 ≥ , ∀p ∈ F(T)∩ (A + B)–.

By (.), this is equivalent to the fixed point equation

x̃ = PF(T)∩(A+B)–(I – f )x̃.

This completes the proof. �

From Theorem ., we can deduce the following result.

Corollary . Suppose that F(T)∩ (A+B)– �= ∅. Then the net {xt} defined by the implicit
method (.) converges strongly, as t → , to x̃, which solves the following minimum norm
problem: find x̃ ∈ F(T)∩ (A + B)– such that

‖x̃‖ = min
x∈F(T)∩(A+B)–

‖x‖. (.)

Proof From (.) with f ≡  and l = , we have

‖x̃ – p‖ ≤ 〈p,p – x̃〉, ∀p ∈ F(T)∩ (A + B)–.

Equivalently,

〈x̃,p – x̃〉 ≥ , ∀p ∈ F(T)∩ (A + B)–.

This obviously implies that

‖x̃‖ ≤ 〈p, x̃〉 ≤ ‖p‖‖x̃‖, ∀p ∈ F(T)∩ (A + B)–.

It turns out that ‖x̃‖ ≤ ‖p‖ for all p ∈ F(T)∩ (A+B)–. Therefore, x̃ is theminimum-norm
point of F(T)∩ (A + B)–. �

3.2 Strong convergence of the explicit algorithm
Now, using Theorem ., we establish the strong convergence of an explicit iterative
scheme for finding a solution of the variational inequality (.), where the constraint set
is the common set of the fixed point set F(T) of the k-strictly pseudocontractive mapping
T and the solution set (A + B)– of the MIP (.).
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Theorem . Suppose that F(T)∩ (A+B)– �= ∅. Let {αn}, {βn} ⊂ (, ) and {λn} ⊂ (, α)
satisfy the following conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < c≤ βn ≤ d < ;
(C)  < a≤ λn ≤ b < α and limn→∞(λn – λn+) = .

Let the sequence {xn} be generated iteratively by (.):

xn+ = αnf (xn) + βnxn + ( – αn – βn)SJλn (xn – λnAxn), ∀n≥ , (.)

where x ∈ C is an arbitrary initial guess. Then the sequence {xn} converges strongly to a
point x̃ in F(T)∩ (A+B)–,which is the unique solution of the variational inequality (.).

Proof First, from condition (C), without loss of generality, we assume that (–l)αn
–αnl < , and

we note that F(T) = F(S). From now, we put yn = Jλn (xn – λnAxn).
We divide the proof several steps as follows.
Step . We show that ‖xn – p‖ ≤ max{‖x – p‖, ‖f (p)–p‖

–l } for all n ≥  and all p ∈ F(T) ∩
(A+B)– (= F(S)∩ (A+B)–). Indeed, let p ∈ F(T)∩ (A+B)–. From p = Jλn (p–λnAp) =
SJλn (p – λnAp), Sp = p and Lemma ., we get

‖yn – p‖ = ∥∥Jλn (xn – λnAxn) – Jλn (p – rAp)
∥∥

≤ ∥∥(xn – λnAxn) – (p – λnAp)
∥∥

=
∥∥(xn – p) – λn(Axn –Ap)

∥∥

= ‖xn – p‖ – λn〈xn – p,Axn –Ap〉 + λ
n‖Axn –Ap‖

≤ ‖xn – p‖ – λnα‖Axn –Ap‖ + λ
n‖Axn –Ap‖

= ‖xn – p‖ + λn(λn – α)‖Axn –Ap‖

≤ ‖xn – p‖. (.)

Using (.), we have

‖xn+ – p‖ = ∥∥αnf (xn) + βnxn + ( – αn – βn)SJλn (xn – λnAxn) – p
∥∥

=
∥∥αn

(
f (xn) – p

)
+ βn(xn – p) + ( – αn – βn)(Syn – Sp)

∥∥
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + βn‖xn – p‖

+ ( – αn – βn)‖yn – p‖
≤ αnl‖xn – p‖ + αn

∥∥f (p) – p
∥∥ + βn‖xn – p‖ + ( – αn – βn)‖xn – p‖

=
(
 – ( – l)αn

)‖xn – p‖ + ( – l)αn
‖f (p) – p‖

 – l
.

Using an induction, we have

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – l

}
.

Hence, {xn} is bounded, and so are {yn}, {Axn}, {f (xn)} and {Syn}.
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Step . We show that limn→∞ ‖xn+ – xn‖ = . Put un = xn – λnAxn, and define

xn+ = βnxn + ( – βn)zn, ∀n≥ . (.)

Then we have

zn+ – zn

=
xn+ – βn+xn+

 – βn+
–
xn+ – βnxn

 – βn

=
αn+f (xn+) + βn+xn+ + ( – αn+ – βn+)SJλn+un+ – βn+xn+

 – βn+

–
αnf (xn) + βnxn + ( – αn – βn)SJλnun – βnxn

 – βn

=
αn+f (xn+) + ( – αn+ – βn+)SJλn+un+

 – βn+

–
αnf (xn) + ( – αn – βn)SJλnun

 – βn

=
αn+

 – βn+
f (xn+) –

αn

 – βn
f (xn) + SJλn+un+ – SJλnun

–
αn+

 – βn+
SJλn+un+ +

αn

 – βn
SJλnun

=
αn+

 – βn+

(
f (xn+) – SJλn+un+

)
+

αn

 – βn

(
SJλnun – f (xn)

)

+ SJλn+un+ – SJλnun. (.)

Since I – λn+A is nonexpansive for λn+ ∈ (, α) (by Lemma .), we have

∥∥(I – λn+A)xn+ – (I – λn+A)xn
∥∥ ≤ ‖xn+ – xn‖. (.)

By the resolvent identity (.) and (.), we get

‖Jλn+un+ – Jλnun‖

=
∥∥∥∥Jλn

(
λn

λn+
un+ +

(
 –

λn

λn+

)
Jλn+un+

)
– Jλnun

∥∥∥∥
≤

∥∥∥∥ λn

λn+
un+ +

(
 –

λn

λn+

)
Jλn+un+ – un

∥∥∥∥
≤ λn

λn+
‖un+ – un‖ +

∣∣∣∣ – λn

λn+

∣∣∣∣‖Jλn+un+ – un‖

≤ ‖un+ – un‖ +
∣∣∣∣ – λn

λn+

∣∣∣∣(‖un+ – un‖ + ‖Jλn+un+ – un‖
)

≤ ∥∥(xn+ – λn+Axn+) – (xn – λnAxn)
∥∥

+
∣∣∣∣λn+ – λn

a

∣∣∣∣(‖un+ – un‖ + ‖Jλn+un+ – un‖
)

≤ ∥∥(I – λn+A)xn+ – (I – λn+A)xn
∥∥ + |λn+ – λn|‖Axn‖
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+ |λn+ – λn| a
(‖un+ – un‖ + ‖Jλn+un+ – un‖

)

≤ ‖xn+ – xn‖ + |λn+ – λn|M, (.)

whereM >  is an appropriate constant. Hence, from (.) and (.), we obtain

‖zn+ – zn‖
≤ αn+

 – βn+

(∥∥f (xn+)∥∥ + ‖SJλn+un+‖
)
+

αn

 – βn

(‖SJλnun‖ + ∥∥f (xn)∥∥)

+ ‖SJλn+un+ – SJλnun‖
≤ αn+

 – βn+

(∥∥f (xn+)∥∥ + ‖SJλn+un+‖
)
+

αn

 – βn

(‖SJλnun‖ + ∥∥f (xn)∥∥)

+ ‖Jλn+un+ – Jλnun‖
≤ αn+

 – βn+

(∥∥f (xn+)∥∥ + ‖SJλn+un+‖
)
+

αn

 – βn

(‖SJλnun‖ + ∥∥f (xn)∥∥)

+ ‖xn+ – xn‖ + |λn+ – λn|M. (.)

It follows from conditions (C) and (C) that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Thus, by Lemma ., we have

lim
n→∞‖zn – xn‖ = . (.)

Consequently, we obtain

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖zn – xn‖ = .

Step .We show that limn→∞ ‖Axn–Ap‖ =  for p ∈ F(T)∩ (A+B)–. From (.), (.)
and Lemma ., we have

‖xn+ – p‖

=
∥∥αnf (xn) + βnxn + ( – αn – βn)SJλn (xn – λnAxn) – p

∥∥

=
∥∥αn

(
f (xn) – p

)
+ βn(xn – p) + ( – αn – βn)(Syn – p)

∥∥

= αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + ( – αn – βn)‖Syn – p‖

– αnβn
∥∥f (xn) – xn

∥∥ – βn( – αn – βn)‖xn – Syn‖

– αn( – αn – βn)
∥∥Syn – f (xn)

∥∥

≤ αn
(∥∥f (xn) – f (p)

∥∥ +
∥∥f (p) – p

∥∥) + βn‖xn – p‖ + ( – αn – βn)‖yn – p‖

≤ αn
(
l‖xn – p‖ + l‖xn – p‖∥∥f (p) – p

∥∥ +
∥∥f (p) – p

∥∥) + βn‖xn – p‖

+ ( – αn – βn)‖xn – p‖ + ( – αn – βn)λn(λn – α)‖Axn –Ap‖
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≤ (
 – ( – l)αn

)‖xn – p‖ + ( – αn – βn)λn(λn – α)‖Axn –Ap‖

+ αn
(
l‖xn – p‖∥∥f (p) – p

∥∥ +
∥∥f (p) – p

∥∥)
≤ ‖xn – p‖ + ( – αn – βn)λn(λn – α)‖Axn –Ap‖ + αnM, (.)

where M >  is an appropriate constant. From (.) and conditions (C) and (C), we
deduce that

( – αn – d)a(α – b)‖Axn –Ap‖ ≤ ( – αn – βn)λn(α – λn)‖Axn –Ap‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + αnM.

Since αn →  (by condition (C)) and ‖xn+ – xn‖ →  (by Step ), we conclude that

lim
n→∞‖Axn –Ap‖ = .

Step . We show that limn→∞ ‖xn – yn‖ = . First, from (.) and (.), we get for p ∈
F(T)∩ (A + B)–,

‖yn – p‖ = ∥∥Jλn (xn – λnAxn) – p
∥∥

=
∥∥Jλn (xn – λnAxn) – Jλn (p – λnAp)

∥∥

≤ 〈
(xn – λnAxn) – (p – λnAp), yn – p

〉

=


(∥∥(xn – λnAxn) – (p – λnAp)

∥∥ + ‖yn – p‖

–
∥∥(xn – λnAxn) – (p – λnAp) – (yn – p)

∥∥)

≤ 

(‖xn – p‖ + ‖yn – p‖ – ∥∥xn – yn – λn(Axn –Ap)

∥∥)

=


(‖xn – p‖ + ‖yn – p‖ – ‖xn – yn‖

+ λn〈xn – yn,Axn –Ap〉 – λ
n‖Axn –Ap‖).

So, we have

‖yn – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖ + λn〈xn – yn,Axn –Ap〉
– λ

n‖Axn –Ap‖

≤ ‖xn – p‖ – ‖xn – yn‖ + λn〈xn – yn,Axn –Ap〉. (.)

Using (.) and (.), we obtain

‖xn+ – p‖

≤ αn
(
l‖xn – p‖ + l‖xn – p‖∥∥f (p) – p

∥∥ +
∥∥f (p) – p

∥∥) + βn‖xn – p‖

+ ( – αn – βn)‖yn – p‖

≤ αnl‖xn – p‖ + αnM + βn‖xn – p‖
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+ ( – αn – βn)
(‖xn – p‖ – ‖xn – yn‖ + λn〈xn – yn,Axn –Ap〉)

=
(
 – ( – l)αn

)‖xn – p‖ – ( – αn – βn)‖xn – yn‖

+ λn〈xn – yn,Axn –Ap〉 + αnM

≤ ‖xn – p‖ – ( – αn – βn)‖xn – yn‖ + bM‖Axn –Ap‖ + αnM, (.)

whereM,M >  are appropriate constants. This implies that

( – αn – d)‖xn – yn‖

≤ ( – αn – βn)‖xn – yn‖

≤ ‖xn – xn+‖
(‖xn+ – p‖ + ‖xn – p‖) + bM‖Axn –Ap‖ + αnM.

Thus, from condition (C), Step  and Step , we deduce that

lim
n→∞‖xn – yn‖ = .

Step . We show that limn→∞ ‖Sxn – xn‖ = . First, by (.), we have

‖Syn – xn‖ ≤ ‖Syn – xn+‖ + ‖xn+ – xn‖
=

∥∥Syn – (
αnf (xn) + βnxn + ( – αn – βn)Syn

)∥∥ + ‖xn+ – xn‖
≤ αn

∥∥Syn – f (xn)
∥∥ + βn‖xn – Syn‖ + ‖xn+ – xn‖,

and so,

‖Syn – xn‖ ≤ 
 – βn

(
αn

∥∥Syn – f (xn)
∥∥ + ‖xn+ – xn‖

)
.

By conditions (C) and (C) and Step , we obtain

lim
n→∞‖Syn – xn‖ = .

This together with Step  yields that

‖Sxn – xn‖ ≤ ‖Sxn – Syn‖ + ‖Syn – xn‖
≤ ‖xn – yn‖ + ‖Syn – xn‖ →  as n→ ∞.

Step . We show that

lim sup
n→∞

〈
f (x̃) – x̃,xn – x̃

〉 ≤ ,

where x̃ = limt→ xt with xt being defined by (.). We note that from Theorem ., x̃ ∈
Fix(T) ∩ (A + B)–, and x̃ is the unique solution of the variational inequality (.). To
show this, we can choose a subsequence {xni} of {xn} such that

lim
i→∞

〈
f (x̃) – x̃,xni – x̃

〉
= lim sup

n→∞

〈
f (x̃) – x̃,xn – x̃

〉
.
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Since {xni} is bounded, there exists a subsequence {xnij } of {xni}, which converges weakly
to w. Without loss of generality, we can assume that xni ⇀ w. By the same argument as in
the proof of Theorem . together with Step , we have w ∈ F(T) ∩ (A + B)–. Since x̃ =
PF(T)∩(A+B)–(I – f )x̃ is the unique solution of the variational inequality (.), we deduce
that

lim sup
n→∞

〈
f (x̃) – x̃,xn – x̃

〉
= lim

i→∞
〈
f (x̃) – x̃,xni – x̃

〉

=
〈
f (x̃) – x̃,w – x̃

〉 ≤ .

Step . We show that limn→∞ ‖xn – x̃‖ = , where x̃ = limt→ xt with xt being defined by
(.), and x̃ is the unique solution of the variational inequality (.). Indeed, from (.), we
note that

xn+ – x̃ = αnf (xn) + βnxn + ( – αn – βn)SJλn (xn – λnAxn) – x̃

= αn
(
f (xn) – x̃

)
+ βn(xn – x̃) + ( – αn – βn)(SJλnyn – x̃).

Applying Lemma ., we have

‖xn+ – x̃‖ ≤ ∥∥βn(xn – x̃) + ( – αn – βn)(SJλnyn – x̃)
∥∥

+ αn
〈
f (xn) – f (x̃),xn+ – x̃

〉
+ αn

〈
f (x̃) – x̃,xn+ – x̃

〉
≤ (

βn‖xn – x̃‖ + ( – αn – βn)‖yn – x̃‖)
+ αnl‖xn – x̃‖‖xn+ – x̃‖ + αn

〈
f (x̃) – x̃,xn+ – x̃

〉
≤ ( – αn)‖xn – x̃‖ + αnl

(‖xn – x̃‖ + ‖xn+ – x̃‖)
+ αn

〈
f (x̃) – x̃,xn+ – x̃

〉
.

This implies that

‖xn+ – x̃‖ ≤  – ( – l)αn + α
n

 – αnl
‖xn – x̃‖ + αn

 – αnl
〈
f (x̃) – x̃,xn+ – x̃

〉

=
 – ( – l)αn

 – αnl
‖xn – x̃‖ + α

n
 – αnl

‖xn – x̃‖

+
αn

 – αnl
〈
f (x̃) – x̃,xn+ – x̃

〉

=
(
 –

( – l)αn

 – αnl

)
‖xn – x̃‖ + α

n
 – αnl

‖xn – x̃‖

+
αn

 – αnl
〈
f (x̃) – x̃,xn+ – x̃

〉

≤
(
 –

( – l)αn

 – αnl

)
‖xn – x̃‖

+
( – l)αn

 – αnl

(
αnM

( – l)
+


 – l

〈
f (x̃) – x̃,xn+ – x̃

〉)

= ( – ξn)‖xn – x̃‖ + ξnδn,
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whereM >  is an appropriate constant, ξn = (–l)αn
–αnl and

δn =
αnM

( – l)
+


 – l

〈
f (x̃) – x̃,xn+ – x̃

〉
.

From conditions (C) and (C) and Step , it is easy to see that ξn → ,
∑∞

n= ξn = ∞
and lim supn→∞ δn ≤ . Hence, by Lemma ., we conclude that xn → x̃ as n → ∞. This
completes the proof. �

From Theorem ., we deduce immediately the following result.

Corollary . Suppose that F(T)∩ (A+B)– �= ∅. Let {αn}, {βn} ⊂ (, ) and {λn} ⊂ (, α)
satisfy the following conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < c≤ βn ≤ d < ;
(C)  < a≤ λn ≤ b < α.

Let the sequence {xn} be generated iteratively by (.):

xn+ = βnxn + ( – αn – βn)SJλn (xn – λnAxn), ∀n≥ , (.)

where x ∈ C is an arbitrary initial guess. Then the sequence {xn} converges strongly to a
point x̃ in F(T) ∩ (A + B)–, which is the unique solution of the minimum norm prob-
lem (.).

Proof The variational inequality (.) is reduced to the inequality

〈x̃,p – x̃〉 ≥ , ∀p ∈ F(T)∩ (A + B)–.

This is equivalent to ‖x̃‖ ≤ 〈p, x̃〉 ≤ ‖p‖‖x̃‖ for all p ∈ F(T) ∩ (A + B)–. It turns out
that ‖x̃‖ ≤ ‖p‖ for all p ∈ F(T) ∩ (A + B)– and x̃ is the minimum-norm point of F(T) ∩
(A + B)–. �

Remark . It is worth pointing out that our iterative schemes (.) and (.) are new
ones different from those in the literature. The iterative schemes (.) and (.) are also
new ones different from those in the literature (see [, ] and the references therein).

4 Applications
LetH be a real Hilbert space, and let g be a proper lower semicontinuous convex function
of H into (–∞,∞]. Then the subdifferential ∂g of g is defined as follows:

∂g(x) =
{
z ∈H | g(x) + 〈z, y – x〉 ≤ g(y), y ∈H

}

for all x ∈ H . From Rockafellar [], we know that ∂g is maximal monotone. Let C be a
closed convex subset of H , and let iC be the indicator function of C, i.e.,

iC(x) =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.
(.)
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Since iC is a proper lower semicontinuous convex function on H , the subdifferential ∂iC
of iC is a maximal monotone operator. It is well known that if B = ∂iC , then the MIP (.)
is equivalent to find u ∈ C such that

〈Au, v – u〉 ≥ , ∀v ∈ C. (.)

This problem is called Hartman-Stampacchia variational inequality (see []). The set of
solutions of the variational inequality (.) is denoted by VI(C,A).
The following result is proved by Takahashi et al. [].

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , let PC

be the metric projection from H onto C, let ∂iC be the subdifferential of iC , and let Jλ be the
resolvent of ∂iC for λ > , where iC is defined by (.) and Jλ = (I + λ∂iC)–. Then

u = Jλx ⇐⇒ u = PCx, ∀x ∈H , y ∈ C.

Applying Theorem ., we can obtain a strong convergence theorem for finding a com-
mon element of the set of solutions to the variational inequality (.) and the set of fixed
points of a nonexpansive mapping.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be
an α-inverse strongly monotonemapping of C into H , and let S be a nonexpansive mapping
of C into itself such that F(S)∩VI(C,A) �= ∅. Let {αn}, {βn} ⊂ (, ) and {λn} ⊂ (, α) satisfy
the following conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < c≤ βn ≤ d < ;
(C)  < a≤ λn ≤ b < α and limn→∞(λn – λn+) = .

Let the sequence {xn} be generated iteratively by

xn+ = αnf (xn) + βnxn + ( – αn – βn)SPC(xn – λnAxn), ∀n≥ ,

where x ∈ C is an arbitrary initial guess. Then the sequence {xn} converges strongly to a
point x̃ in F(S)∩VI(C,A).

Proof Put B = ∂iC . It is easy to show that VI(C,A) = (A + ∂iC)–. In fact,

x ∈ (A + ∂iC)– ⇐⇒  ∈ Ax + ∂iCx

⇐⇒ –Ax ∈ ∂iCx

⇐⇒ 〈Ax,u – x〉 ≥  (∀u ∈ C)

⇐⇒ x ∈VI(C,A).

From Lemma ., we get Jλn = PC for all λn. Hence, the desired result follows from Theo-
rem .. �
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As in [, ], we consider the problem for finding a common element of the set of solu-
tions of a mathematical model related to equilibrium problems and the set of fixed points
of a nonexpansive mapping in a Hilbert space.
Let C be a nonempty closed convex subset of a Hilbert space H , and let us assume that

a bifunction 
 : C ×C →R satisfies the following conditions:
(A) 
(x,x) =  for all x ∈ C;
(A) 
 is monotone, that is, 
(x, y) +
(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t↓ 


(
tz + ( – t)x, y

) ≤ 
(x, y);

(A) for each x ∈ C, y �→ 
(x, y) is convex and lower semicontinuous.
Then the mathematical model related to the equilibrium problem (with respect to C) is
find x̂ ∈ C such that


(x̂, y) ≥  (.)

for all y ∈ C. The set of such solutions x̂ is denoted by EP(
). The following lemma was
given in [, ].

Lemma . [, ] Let C be a nonempty closed convex subset of H , and let 
 be a bifunc-
tion of C × C into R satisfying (A)-(A). Then for any r >  and x ∈ H , there exists z ∈ C
such that


(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Moreover, if we define Tr :H → C as follows:

Trx =
{
z ∈ C :
(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H , then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, that is, for any x, y ∈ H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) = EP(
);
() EP(
) is closed and convex.

We call suchTr the resolvent of
 for r > . The following lemmawas given in Takahashi
et al. [].

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let
 be a bifunction of C×C intoR satisfying (A)-(A). Let A
 be amultivaluedmapping
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of H into itself defined by

A
x =

⎧⎨
⎩

{z ∈H :
(x, y) ≥ 〈y – x, z〉}, x ∈ C,

∅, x /∈ C.

Then EP(
) = A–

 , and A
 is a maximal monotone operator with dom(A
) ⊂ C. More-

over, for any x ∈H and r > , the resolvent Tr of 
 coincides with the resolvent of A
; i.e.,

Trx = (I + rA
)–x.

Applying Lemma . and Theorem ., we can obtain the following results.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and let

 be a bifunction of C × C into R satisfying (A)-(A). Let A
 be a maximal monotone
operator with dom(A
) ⊂ C defined as in Lemma ., and let Tλ be the resolvent of 


for λ > . Let A be an α-inverse strongly monotone mapping of C into H , and let S be a
nonexpansive mapping from C into itself such that F(S)∩ (A+A
)– �= ∅. Let {αn}, {βn} ⊂
(, ) and {λn} ⊂ (, α) satisfy the following conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < c≤ βn ≤ d < ;
(C)  < a≤ λn ≤ b < α and limn→∞(λn – λn+) = .

Let the sequence {xn} be generated iteratively by

xn+ = αnf (xn) + βnxn + ( – αn – βn)STλn (xn – λnAxn), ∀n≥ ,

where x ∈ C is an arbitrary initial guess. Then the sequence {xn} converges strongly to a
point x̃ in F(S)∩ (A +A
)–.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , and let

 be a bifunction of C × C into R satisfying (A)-(A). Let A
 be a maximal monotone
operator with dom(A
) ⊂ C defined as in Lemma ., and let Tλ be the resolvent of 
 for
λ > , and let S be a nonexpansive mapping from C into itself such that F(S) ∩ EP(
) �= ∅.
Let {αn}, {βn} ⊂ (, ) and {λn} ⊂ (, α) satisfy the following conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < c≤ βn ≤ d < ;
(C)  < a≤ λn ≤ b < α and limn→∞(λn – λn+) = .

Let the sequence {xn} be generated iteratively by

xn+ = αnf (xn) + βnxn + ( – αn – βn)STλn (xn), ∀n≥ ,

where x ∈ C is an arbitrary initial guess. Then the sequence {xn} converges strongly to a
point x̃ in F(S)∩ EP(
).

Proof Put A =  in Theorem .. From Lemma ., we also know that Jλn = Tλn for all
n≥ . Hence, the desired result follows from Theorem .. �
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Remark . () As in Corollary ., if we take f ≡  in Theorems ., . and ., then
we can obtain the minimum-norm point of F(S)∩VI(C,A), F(S)∩ (A+A
)– and F(S)∩
EP(
), respectively.
() For several iterative schemes for zeros of monotone operators, variational inequality

problems, generalized equilibrium problems, convex minimization problems, and fixed
point problems, we can also refer to [–] and the references therein. By combining our
methods in this paper and methods in [–], we will consider new iterative schemes
for the above-mentioned problems coupled with the fixed point problems of nonlinear
operators.
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