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Abstract
In this paper we consider a particular case of a contractive self-mapping on a
complete metric space, namely the F-contraction introduced by Wardowski (Fixed
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examples are given.
MSC: Primary 28A80; secondary 47H10; 54E50

Keywords: contractive map; F-contraction; iterated function system; attractor;
Hausdorff-Pompeiu metric

1 Introduction
One of the basic concepts of fractals theory is undubitably the iterated function system
(IFS) introduced in  by Hutchinson [] and popularized by Barnsley [], IFS being the
main generator of fractals. This consists of a finite set of contractions (ωk)Kk= on a complete
metric spaceX into itself. For such an IFS, there is anyway a unique nonempty compact set
A ⊂ X such that A =

⋃K
k= ωk(A). A is, generally, a fractal set and it is called the attractor of

the respective IFS. During the last decades, many authors have been concerned with the
extension of this framework to more general spaces, generalized contractions and infinite
IFSs or, more generally, to multifunction systems.
Miculescu and Mihail introduced in [, ] the generalized iterated function system

(GIFS) consisting of a collection of contractions (respectively, contractive functions) on
XI = {(xi)i∈I ;xi ∈ X} endowed with the maximummetric into X, when X is a complete (re-
spectively compact) metric space and I is finite. Dumitru in [] and, respectively, Strobin
and Swaczyna in [] improved the work of Miculescu and Mihail by considering GIFSs
composed of Meir-Keeler type mappings and, respectively, ϕ-contractions. Secelean []
investigated the iterated function systems composed of a countable family of contractive,
respectively ϕ-contractions, Meir-Keeler type maps. Some remarkable results concerning
extensions of themetric spaces, on which the IFSs are defined, and generalizations of their
contractions can be found, for example, in [, ] and others.
The famous Banach-Picard-Caccioppoli theorem (also called the contraction principle)

states that, given a complete metric space (X, d) and a function ω : X → X for which there
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is r ∈ (, ) such that

d
(
ω(x),ω(y)

) ≤ rd(x, y), ∀x, y ∈ X,

there exists a unique e ∈ X such that ω(e) = e. Furthermore, for every x ∈ X, the sequence
(ωp(x))p converges to e, where ωp = ω ◦ ωp– (p time composition of ω), p≥ . The map ω

which satisfies the previous condition is called r-contraction or,more,Banach contraction.
Also, in the above setting, we say that e is the fixed point of ω.
Many authors have provided several extensions of this result. In this respect, they con-

sidered the contractive mappings, namely those functions ω : X → X that satisfy the in-
equality

d
(
ω(x),ω(y)

)
< d(x, y), ∀x, y ∈ X,x 	= y.

Niemytzki-Edelstein’s theorem (see, e.g., [, Th. ., p.]) states that each contractive
mapping on a compact metric space into itself has a unique fixed point which is succes-
sively approximated by the iterates of the respective map at every point of the space. Some
other particular cases in which the consideredmetric space is complete are investigated in
fixed point theory. In this regard, starting from a function F : (,∞) →R satisfying some
suitable properties,Wardowski provided in [] a new type of such a contractive mapping,
namely F-contraction, and proved a fixed point theorem concerning F-contractions on a
complete metric space. Further, an example of a map which is an F-contraction while it is
not a Banach contraction was given.
In this paper, we simplify one of the required conditions for F (Remark .) and describe

a large class of such functions F (Proposition ., Remark . and Remark .). Next, we
consider an iterated function system (IFS) composed of F-contractions and prove that it
always has a unique attractor (Theorem.).We further provide some conditions inwhich
the limit of a sequence of IFSs is also an IFS and its attractor is the limit of the sequence of
the corresponding attractors (Theorem .). A significant example in this respect is given.
Notice that all the mappings which compose the IFSs from that example are not Banach
contractions.
Throughout the whole paper, by R we understand the set of real numbers and by R+ we

denote the set of all positive real numbers (,∞). The set of all positive integers will be
denoted by N.

2 Preliminary facts: Hausdorff-Pompeiumetric
Let (X, d) be a metric space and K(X) be the class of all nonempty compact subsets of X.
The function h :K(X)×K(X) → [,∞), h(A,B) =max{D(A,B),D(B,A)}, where D(A,B) =
supx∈A infy∈B d(x, y) for all A,B ∈K(X), is a metric called the Hausdorff-Pompeiu metric.
The metric space (K(X),h) is complete provided that (X, d) is complete.
Some simple standard facts, which will be used in the sequel, are described in the fol-

lowing lemmas (for details, see, e.g., [, §..]).

Lemma . [, Prop. .] Let A,B,C ∈K(X). Then

(α) A ⊂ B⇔ D(A,B) = ,
(β) D(A,C) ≤D(A,B) + D(B,C).

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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Lemma. [, Th. .] If (Ei)i∈�, (Fi)i∈� are two finite collections of sets in (K(X),h), then

h
(⋃

i∈�
Ei,

⋃
i∈�

Fi
)

≤ sup
i∈�

h(Ei,Fi).

Lemma . [, Th. .] Let (An)n be a sequence of nonempty compact subsets of X .
(a) If An ⊂ An+ for all n≥ , and the set A :=

⋃
n≥An is relatively compact, then

limn An = A.
(b) If An+ ⊂ An for every n≥ , then limn An =

⋂
n≥An,

the limit being taken in the Hausdorff-Pompeiu metric and the bar means the closure.

Throughout this paper, by K(X) we understand the metric space (K(X),h).

3 F-contractions
We describe here a new type of contractive mappings, namely F-contractions, defined by
Wardowski in [] and add some results about them.
Throughout this section, (X, d) denotes a metric space.

Definition . [] Let F :R+ →R be a mapping satisfying:
(F) F is strictly increasing, i.e., for all t, s ∈R+, t < s, one has F(t) < F(s),
(F) for each sequence (tk)k of positive numbers, limk tk =  if and only if

limk F(tk) = –∞,
(F) there exists λ ∈ (, ) such that limt↘ tλF(t) = .
A mapping ω : X → X is said to be an F-contraction if there is τ >  such that

τ + F
(
d
(
ω(x),ω(y)

)) ≤ F
(
d(x, y)

)
, ∀x, y ∈ X,ω(x) 	= ω(y). ()

We denote by F the family of all F :R+ →R which satisfy conditions (F), (F) and (F).

We will show that condition (F) can be replaced by an equivalent but a more simple
one. First, we need to prove the following two elementary lemmas.

Lemma . If (tk)k is a bounded sequence of real numbers such that all its convergent
subsequences have the same limit l, then (tk)k is convergent and limk tk = l.

Proof There are two subsequences (tkn )n, (tkp )p of (tk)k such that

lim
n
tkn = lim inf tk , respectively, lim

p
tkp = lim sup tk .

Therefore, by hypothesis, we infer that lim inf tk = lim sup tk = l, that is, limk tk = l. �

Lemma . Let F : R+ → R be an increasing map and (tk)k be a sequence of positive real
numbers. Then the following assertions hold:
(a) if F(tk) −→

k
–∞, then tk −→

k
;

(b) if infF = –∞ and tk −→
k

, then F(tk) −→
k

–∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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Proof (a) First of all, we observe that (tk)k is bounded. Indeed, if the sequence is un-
bounded above, one can find a subsequence (tkp )p such that tkp −→

p
∞. Then, for ev-

ery ε > , there is pε ∈ N such that tkp ≥ ε for any p ≥ pε . So F(ε) ≤ F(tkp ), that is,
F(ε) ≤ limp F(tkp ) = –∞, which is a contradiction.
Thereby (tk)k is bounded, hence it has a convergent subsequence. Let (tkn )n be such a

subsequence and α = limn tkn . Clearly α ≥ .
Suppose that α >  and choose ε > , ε < α. Then there exists nε ∈ N such that tkn ∈

(α – ε,α + ε) for all n ≥ nε . As F is increasing, we deduce that F(α – ε) ≤ limn F(tkn ) = –∞
which contradicts F(α – ε) ∈R.
Accordingly α = . Next we apply Lemma ..
(b) Assume that infF = –∞ and tk −→

k
. Choose ε > . There is α >  such that F(α) <

–ε. Next, there exists kα ∈ N such that tk < α for all k ≥ kα . So, F(tk) ≤ F(α) < –ε, for k ≥ kα .
Thus F(tk) −→

k
–∞. �

Remark . According to Lemma ., condition (F) fromDefinition . may be replaced
by

(F′) infF = –∞
or, also, by

(F′′) there is (tk)k ⊂R+ such that limk F(tk) = –∞.

By means of the previous remark, one can obtain new examples of functions of F . In
this respect, for α ∈ (, ), we can consider F(t) = –t–α , F(t) = tα

–et and F(t) = –
arctan tα (to

check (F) we take λ ∈ (α, )).
Some properties of the set F are emphasized in the next proposition.

Proposition . Let consider N ∈ N, F, . . . ,FN ∈ F and α, . . . ,αN ∈ R+. We define
F ,G,H :R+ → R by F :=min{F, . . . ,FN }, G :=max{F, . . . ,FN } and H := αF + · · · + αNFN .
Then F ,G,H ∈F .

Proof If (tk)k ⊂ R+ is such that limk Fn(tk) = –∞ for some n ∈ {, . . . ,N}, then limk F(tk) =
–∞ and, also, limk H(tk) = –∞. Next, since infFn = –∞ for all  ≤ n ≤ N , we get
infG = –∞.
In order to verify (F), we set λ :=max{λ, . . . ,λN }, where limt↘ tλnFn(t) = ,  ≤ n≤N .

Then, for every t ∈ (, ), one has tλ ≤ tλn hence tλ|F(t)| ≤ tλn |Fn(t)| and tλ|H(t)| ≤
αtλ|F(t)| + · · · + αNtλ|FN (t)| for all t ∈ R+ and n ∈ {, . . . ,N}. So, limt↘ tλF(t) =  and
limt↘ tλH(t) = . Finally, as limt↘ tλ|Fn(t)| ≤ limt↘ tλn |Fn(t)| =  for every n, we deduce
that limt↘ tλG(t) = . �

In the following remarks we provide a large subclass of F .

Remark . Let F be the family of mappings F : R+ → R given by F = G ◦ f + g , where
G ∈F , and the functions f :R+ →R+ and g :R+ →R satisfy the following conditions:
(a) f is strictly increasing, inf f =  and there areM, δ ∈R+ such that t ≤Mf (t) for all

t ∈ (, δ);
(b) g is strictly increasing and there exists η ∈ (, ) such that limt↘ tηg(t) = .
Then F ⊂F .

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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Proof Choose F ∈F. Clearly, F is strictly increasing. If (tk)k ⊂ R+ is such that limk f (tk) =
, then limk G(f (tk)) = –∞ and so limk F(tk) = –∞, this happens since the sequence (g(tk))k
is bounded from above. Indeed, as limk f (tk) = , there exists k such that tk

M ≤ f (tk) ≤ ,
hence tk ≤ M, so g(tk) ≤ g(M) for each k > k. According to Remark ., it follows that F
satisfies (F).
Next, let λ ∈ (, ) be such that lims↘ sλG(s) = . Then, for every λ ≥max{η,λ}, λ < ,

one has

lim
t↘

∣∣tλF(t)∣∣ ≤ lim
t↘

∣∣∣∣ tλ

(f (t))λ
(
f (t)

)λG
(
f (t)

)∣∣∣∣ + lim
t↘

∣∣tλg(t)∣∣ ≤Mλ lim
s↘

∣∣sλG(s)∣∣ = .

Thereby (F) is also verified.
Consequently, F ∈F . �

Remark . Let f :R+ →R+ and g :R+ →R be two maps satisfying the following condi-
tions:
(a) f is strictly increasing and inf f = ;
(b) g is strictly increasing and there exists η ∈ (, ) such that limt↘ tηg(t) = ;
(c) there exists λ ∈ (, ) such that limt↘ tλ ln f (t) = . In particular, this condition

holds if f is differentiable and there are M, δ ∈R+ such that tf ′(t) ≤Mf (t) for every
t ∈ (, δ).

Then the function F :R+ →R, F(t) := ln f (t) + g(t) belongs to F .

Proof Conditions (F) and (F) can be checked as in Remark . taking into account that
G ∈F , where G(t) = ln t, and (F) follows from the hypothesis (c).
In the particular case, when f is differentiable, we use L’Hospital’s rule and obtain

lim
t↘

tλ ln f (t) =

λ
lim
t↘

f ′(t)tλ+

f (t)
≤ M

λ
lim
t↘

tλ = 

for every λ ≥max{η,λ}, λ < . Since limt↘ tλg(t) = , we deduce limt↘ tλF(t) = . �

Some examples of functions f which satisfy the requirement (a) from Remark . and
the requirements (a) and (c) from Remark . are the following:

f(t) = atα ( < α < ), f(t) = a arctan tα ,

f(t) = a ln
(
tα + 

)
, f(t) = a

(
bt – 

)
,

for every t ∈ R+, where a > ,  < α ≤ , b > . For Remark ., we can further consider
f(t) = antαn + an–tαn– + · · · + atα , where α, . . . ,αn ∈ R+ and a, . . . ,an are nonnegative
numbers, an 	= , n ∈ N. Indeed, as example for f, assuming that α ≤ α ≤ · · · ≤ αn, one
has

lim
t↘

tf ′(t)
f (t)

= lim
t↘

t(αnantαn– + · · · + αatα–)
antαn + · · · + atα

= lim
t↘

αnantαn–α + · · · + αatα–α + αa
antαn–α + · · · + atα–α + a

< ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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The next theorem states a similar result as the Banach contraction principle for F-
contractions.

Theorem . [, Th. .] Assume that (X, d) is a complete metric space, F ∈ F and ω :
X → X is an F-contraction. Then ω has a unique fixed point e and for every x ∈ X, the
sequence (ωp(x))p converges to e.

The Banach contractions are particular cases of F-contractions, where F(t) = ln t. In
the following example, we show that there are F-contractions on a complete metric space
which are not Banach contractions.

Example . Let (αm)m≥ be the sequence of real numbers given by αm =m – lnm and
X = [, ] ∪ {αm;m = , , . . . } endowed with the Euclidian metric d(x, y) = |x – y|. Then
(X, d) is a complete metric space. Consider the maps F : R+ → R, ω : X → X defined by
F(t) = ln tδ + βt, ω(x) = ηx + λ if x ∈ [, ] and ω(αm) = αm– for m ≥ , where δ,β ,η ∈
R+, η < , λ ∈ [,  – η]. Then F ∈ F and ω is an F-contraction which is not a Banach
contraction, e = λ

–η
being its fixed point.

Proof We first observe that αm+ – αm = m +  – ln( +m–) > , hence  ≤ αm < αm+ for
allm ≥ .
According to Remark ., we deduce that F ∈ F . We will prove that there is τ >  such

that ω satisfies condition (), that is,

|ω(x) –ω(y)|δ
|x – y|δ eβ|ω(x)–ω(y)|–β|x–y| ≤ e–τ , ∀x, y ∈ X,ω(x) 	= ω(y). ()

Choose x, y ∈ X such that ω(x) 	= ω(y) and suppose, for instance, that x < y. Three cases
can occur.
Case I: x, y ∈ [, ]. Then

|ω(x) –ω(y)|δ
|x – y|δ eβ|ω(x)–ω(y)|–β|x–y| =

ηδ(y – x)δ

(y – x)δ
eβη(y–x)–β(y–x) = ηδeβ(y–x)(η–) < ηδ ≤ e–τ

for every τ ∈ (,–δ lnη).
Case II: x = αm, y = αm+p,m ≥ , p≥ . Then

|ω(x) –ω(y)|δ
|x – y|δ eβ|ω(x)–ω(y)|–β|x–y| =

(αm+p– – αm–)δ

(αm+p – αm)δ
eβ(αm+p––αm––αm+p+αm)

=
((m – )p + p – ln( + p

m– ))
δ

(mp + p – ln( + p
m ))δ

eβ(–p–ln(+ p
m– )+ln(+

p
m ))

< e–βp ≤ e–β ≤ e–τ

for every τ ∈ (, β].
Case III: x ∈ [, ], y = αm,m ≥ . Since

∣∣ω(x) –ωm(αm)
∣∣ – |x – αm| = αm– – ηx – λ – αm + x

= –m +  + ln

(
 +


m – 

)
+ ( – η)x – λ

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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< –m +  + ln +  – η – λ

≤ – + ln – η < ,

we get

|ω(x) –ω(y)|δ
|x – y|δ eβ|ω(x)–ω(y)|–β|x–y| < e–β(–ln+η) ≤ e–τ

for every τ ∈ (,β( – ln + η)].
In conclusion, in any case, inequality () is fulfilled for every τ > , τ ≤ min{–δ lnη, β ,

β( – ln + η)}. More simple, since  – ln > , we can take τ ≤min{–δ lnη,β(η + )}.
The mapping ω is not a Banach contraction because

lim
m

|ω(αm+) –ω(αm)|
|αm+ – αm| = lim

m

m +  – ln( + 
m )

m –  – ln( + 
m– )

= . �

Theorem. Let F ∈F be continuous and suppose that (X, d) is complete. For every n ≥ ,
let ωn : X → X be an F-contraction and en be its fixed point. Assume that:
(a) the sequence (ωn)n converges pointwise to a map ω : X → X ,
(a) infn τn > , where τn is a constant associated with ωn from ().
Then ω is an F-contraction. If we further have
(a) (en)n is convergent and e = limn en,

then ω(e) = e.

Proof Set τ = infn τn. Then

τ + F
(
d
(
ωn(x),ωn(y)

)) ≤ F
(
d(x, y)

)
, ∀n≥ ,∀x, y ∈ X,ωn(x) 	= ωn(y). ()

Let x, y ∈ X be such that ω(x) 	= ω(y). Since limn d(ωn(x),ωn(y)) = d(ω(x),ω(y)) >  for
every δ > , δ < d(ω(x),ω(y)), one can find N ∈N such that

d
(
ω(x),ω(y)

)
– δ < d

(
ωn(x),ωn(y)

)
< d

(
ω(x),ω(y)

)
+ δ, ∀n≥N. ()

Choose ε > . By the pointwise convergence of (ωn)n, there exists N ∈N such that

d
(
ωn(x),ω(x)

)
<

ε


and d

(
ωn(y),ω(y)

)
<

ε


, ∀n≥N.

Let N =max{N,N}. We have

d
(
ω(x),ω(y)

) ≤ d
(
ω(x),ωn(x)

)
+ d

(
ωn(x),ωn(y)

)
+ d

(
ωn(y),ω(y)

)
< ε + d

(
ωn(x),ωn(y)

)

for any n≥N . Hence, for each n≥N , we get by ()

τ + F
(
d
(
ω(x),ω(y)

)) ≤ τ + F
(
ε + d

(
ωn(x),ωn(y)

))
≤ F

(
d(x, y)

)
+ F

(
ε + d

(
ωn(x),ωn(y)

))
– F

(
d
(
ωn(x),ωn(y)

))
≤ F

(
d(x, y)

)
+ F

(
ε + δ + d

(
ω(x),ω(y)

))
– F

(
d
(
ω(x),ω(y)

)
– δ

)
,

where at the last inequality we used ().

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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Letting ε ↘  and δ ↘  it follows, using the continuity of F ,

τ + F
(
d
(
ω(x),ω(y)

)) ≤ F
(
d(x, y)

)
,

so ω is an F-contraction.
The last assertion of statement comes taking into consideration that each ωn is contrac-

tive as follows:

d
(
e,ω(e)

) ≤ d
(
e,ωn(en)

)
+ d

(
ωn(en),ωn(e)

)
+ d

(
ωn(e),ω(e)

)
≤ d(e, en) + d(en, e) + d

(
ωn(e),ω(e)

) −→
n

. �

A property concerning the compositions of F-contractions which will be used in the
next section is given in the following.

Proposition . If (ωk)Kk= is a collection of F-contractions on X to itself, then the map
ω := ω ◦ · · · ◦ ωK is a F-contraction.

Proof Set τ = min{τ, . . . , τK }, where τk is the constant from () associated to ωk , k =
, . . . ,K . We consider K = . For the general case, one can proceed inductively.

τ + F
(
d
(
(ω ◦ ω)(x), (ω ◦ ω)(y)

)) ≤ τ + τ + F
(
d
(
(ω ◦ ω)(x), (ω ◦ ω)(y)

))
≤ τ + F

(
d
(
ω(x),ω(y)

)) ≤ F
(
d(x, y)

)

for all x, y ∈ X, ω(ω(x)) 	= ω(ω(y)). �

4 Application: iterated function systems
We assume that (X, d) is a complete metric space.
The classical iterated function system (IFS) introduced by Hutchinson [] consists of a

finite family of Banach contractions on X to itself. There is a unique nonempty compact
subset of X invariant with respect to these contractions. In what follows, we extend this
IFS by considering a family of F-contractions.

Definition . For each k = , . . . ,K , let Fk ∈F and ωk : X → X be an Fk-contraction. The
family (ωk)Kk= is called an iterated function system, abbreviated IFS. The set function S :
K(X)→K(X) defined by S(B) =

⋃K
k= ωk(B) is called the associated Hutchinson operator.

A set A ∈K(X) is said to be an attractor of the IFS whenever S(A) = A.

We will prove that in a certain condition relating to the mappings F, . . . ,FK , such an IFS
has a unique attractor. We first need the following lemma.

Lemma. Letω : X → X be an F-contraction,where F ∈F .Then themapping A �→ ω(A)
is an F-contraction too from K(X) into itself.

Proof Choose A,B ∈K(X) such that h(ω(A),ω(B)) > . Assume that

h
(
ω(A),ω(B)

)
= D

(
ω(A),ω(B)

)
= sup

x∈A
inf
y∈Bd

(
ω(x),ω(y)

)
> . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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By hypothesis, there is τ >  such that τ + F(d(ω(x),ω(y)))≤ F(d(x, y)) for every x, y ∈ X,
ω(x) 	= ω(y).
Using (), the compactness of A and the continuity of ω, one can find a ∈ A such that

D(ω(A),ω(B)) = infy∈B d(ω(a),ω(y)) > , so d(ω(a),ω(y)) >  for all y ∈ B. Therefore

τ + F
(
inf
y∈Bd

(
ω(a),ω(y)

)) ≤ τ + F
(
d
(
ω(a),ω(y)

)) ≤ F
(
d(a, y)

)
, ∀y ∈ B,

that is,

τ + F
(
h
(
ω(A),ω(B)

)) ≤ F
(
d(a, y)

)
, ∀y ∈ B. ()

Let b ∈ B be such that d(a,b) = infy∈B d(a, y). Then, by (), we get

τ + F
(
h
(
ω(A),ω(B)

)) ≤ F
(
d(a,b)

)
= F

(
inf
y∈Bd(a, y)

)

≤ F
(
sup
x∈A

inf
y∈Bd(x, y)

)
= F

(
D(A,B)

) ≤ F
(
h(A,B)

)
.

Consequently, τ + F(h(ω(A),ω(B)))≤ F(h(A,B)), as required. �

Theorem . We consider K ∈N, F, . . . ,FK ∈F and define F =max≤k≤K Fk .Assume that
the map gk := F –Fk is nondecreasing for all ≤ k ≤ K . For each k = , . . . ,K , let ωk : X → X
be an Fk-contraction.Then S is an F-contraction and the IFS (ωk)Kk= has a unique attractor
which is successively approximated in the Hausdorff-Pompeiu metric by (Sp(B))p for every
B ∈K(X).

Proof First of all, notice that F ∈F according to Proposition ..
By hypothesis, there are τ, . . . , τK ∈R+ such that

τk + Fk
(
d
(
ωk(x),ωk(y)

)) ≤ Fk
(
d(x, y)

)
, ∀x, y ∈ X,ωk(x) 	= ωk(y),k ∈ {, . . . ,K}. ()

Set τ =min{τ, . . . , τK } > .
Let A,B ∈K(X) be such that h(S(A),S(B)) > . By Lemma ., we get

 < h
(
S(A),S(B)

) ≤ sup
≤k≤K

h
(
ωk(A),ωk(B)

)
= h

(
ωk (A),ωk (B)

)

for some k ∈ {, . . . ,K}. Using now Lemma . and the hypotheses, one obtains

τ + F
(
h
(
S(A),S(B)

)) ≤ τ + F
(
h
(
ωk (A),ωk (B)

))
≤ τk + Fk

(
h
(
ωk (A),ωk (B)

))
+ gk

(
h
(
ωk (A),ωk (B)

))
≤ Fk

(
h(A,B)

)
+ gk

(
h(A,B)

)
= F

(
h(A,B)

)
,

which assures that S is an F-contraction.
The rest of assertions from the statement now follow by applying Theorem ., the met-

ric space (K(X),h) being complete. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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Remark . If there exists a map F ∈F such that ωk is an F-contraction for all ≤ k ≤ K ,
then the IFS (ωk)Kk= has a unique attractor which is successively approximated by (Sp(B))p
for every B ∈K(X).

Lemma. Let (ωn)n be a sequence of contractive self-mappings on X pointwise convergent
to ω : X → X. Then ωn(B) −→

n
ω(B) for every B ∈ K(X), the converging process being taken

with respect to the Hausdorff-Pompeiu metric.

Proof Choose B ∈K(X). We have to show that h(ωn(B),ω(B))−→
n

. For this purpose, we
suppose by contradiction that there is ε >  such that h(ωn(B),ω(B)) ≥ ε for infinitely
many integers n≥ . Two cases can occur.
Case I: There exists a sequence of positive integers (np)p such that

D
(
ωnp (B),ω(B)

)
= sup

x∈B
inf
y∈Bd

(
ωnp (x),ω(y)

) ≥ ε, ∀p ∈ N.

So, for every p ∈N, one can find xp ∈ B such that infy∈B d(ωnp (xp),ω(y)) ≥ ε, that is,

d
(
ωnp (xp),ω(y)

) ≥ ε, ∀y ∈ B,p≥ . ()

Since B is compact, the sequence (xp)p admits a convergent subsequence which, for sim-
plicity, will be denoted in the same way. Thus xp → y ∈ B. Now, using the hypotheses and
(), we get

ε ≤ d
(
ωnp (xp),ω(y)

) ≤ d
(
ωnp (xp),ωnp (y)

)
+ d

(
ωnp (y),ω(y)

)
≤ d(xp, y) + d

(
ωnp (y),ω(y)

) −→
p

,

which is a contradiction.
Case II: The case when there is (np)p ⊂N such that D(ω(B),ωnp (B))≥ ε for every p ≥ ,

can be treated analogously.
Accordingly, ω(B) = limn ωn(B). �

Theorem . Let K ∈N be given. For every n≥  and k ∈ {, . . . ,K}, we consider the map-
pings Fk ∈F and ωn

k : X → X. Assume that the following conditions are fulfilled:
(C) for each k = , . . . ,K , Fk is continuous and the map gk :R+ → [,∞), gk = F – Fk ,

where F =max{F, . . . ,FK }, is nondecreasing;
(C) for each n ∈N and ≤ k ≤ K , ωn

k is an Fk-contraction and infn τ n
k > , where τ n

k is a
constant associated with ωn

k from ();
(C) the sequence (ωn

k )n converges pointwise to a map ωk : X → X for every k = , . . . ,K ;
(C) if, for every n≥ , An is the attractor of IFS (ωn

k )
K
k=, then the sequence (An)n

converges in the space (K(X),h) to a set A.
Then (ωk)Kk= is an IFSwhich can be regarded as the limit of the sequence of IFSs ((ωn

k )
K
k=)n.

Moreover, A is the attractor of the respective IFS.

Proof Using (C) and (C), we deduce from Theorem . that (ωk)Kk= is an IFS. Accord-
ing to Theorem ., the Hutchinson operator Sn associated with IFS (ωn

k )
K
k= is an F-

contraction in the complete metric space (K(X),h), so it has a unique set-‘fixed point’ An

for all n = , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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In order to apply again Theorem ., we notice that Sn(B) −→
n

S(B) with respect to the
Hausdorff-Pompeiu metric for every B ∈K(X). Indeed, by means of Lemmas . and .,
one has

lim
n
h
(
Sn(B),S(B)

) ≤ lim
n

max
≤k≤K

h
(
ωn
k (B),ω(B)

)
= .

Next, condition (a) follows from (C), via the proof of Theorem ., which assures that
one of the constants associated with Sn from () ismin{τ n

 , τ n
 , . . . , τ n

K }. Condition (C) im-
plies (a).
The conclusion of Theorem . says that S(A) = A, i.e., A is the attractor of the IFS

(ωk)Kk=. �

Example . We are in the settings from Example .. Let K ∈ N, K ≥ . Consider
δ,β, . . . ,βK ∈ R+ and, for every k = , . . . ,K , n ∈ N, t ∈ R+ and x ∈ X, let define Fk(t) =
ln tδ + βkt, ωn

k (x) = ηnx+ λk , where ηn = n
(n+)(K+) , λk = K (k–)

K– if x ∈ [, ] and ωn
k (αm) = αm–

form ≥ . Then the hypotheses of Theorem . are fulfilled.

Proof From Example ., it follows that Fk ∈ F and ωn
k is an Fk-contraction for each k =

, . . . ,K and n ≥ . Hence (ωn
k )

K
k= is an IFS and, according to Theorem ., the function

F – Fk being nondecreasing, we deduce that it has a unique attractor An for every n ≥ .
Notice that all the mappings ωn

k (n≥ , ≤ k ≤ K ) are F-contractions.
Clearly, Fk , ≤ k ≤ K , are continuous hence (C) is satisfied.
Next, as ηn ∈ [ 

(K+) ,


K+ ), we get

–δ lnηn > δ ln(K + ) and βk(ηn + ) ≥ min
≤k≤K

βk

(


(K + )
+ 

)
, ∀k,n.

So, for every k = , . . . ,K and n≥ , one can find τ n
k ∈ (,min{–δ lnηn,βk(ηn +)}] such that

infn τ n
k > . Therefore (C) holds.

The pointwise convergence of the sequence (ωn
k )n to ωk := 

K+x + λk , for every k =
, . . . ,K , is obvious, hence (C) is verified.
It remains to show that also condition (C) is satisfied. We claim that, for every n ∈ N,

An ⊂ [, ]. Indeed, using Proposition ., it follows that for each p ≥ , the map ωn
ii...ip

is an F-contraction, where we denoted ωn
i...ip := ωn

i ◦ · · · ◦ ωn
ip for i, . . . , ip ∈ {, . . . ,K}. It

is easy to check that An is also an attractor for the IFS (ωn
i...ip )

K
i,...,ip=. Next, since An is

compact, there is M ∈ N such that An ⊂ [, ] ∪ {α, . . . ,αM}. Obviously, if p ≥ M, then
ωn
i...ip (αm) ≤  for every m = , . . . ,M, hence

An ⊂
K⋃

i,...,ip=

ωn
i...ip (An) ⊂ [, ]. ()

Now, we intend to prove that An ⊂ An+ for each n ≥ . Set B = [, ] ∈K(X) and choose
n ∈N. Since ηn < ηn+, it follows

ωn
k (B) = [λk ,ηn + λk] ⊂ [λk ,ηn+ + λk] = ωn+

k (B), ∀≤ k ≤ K .

http://www.fixedpointtheoryandapplications.com/content/2013/1/277
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Then, inductively, we obtain ωn
i...ip (B)⊂ ωn+

i...ip (B) for every p ≥ ,  ≤ i, . . . , ip ≤ K . There-
fore

Sp
n (B) =

K⋃
i,...,ip=

ωn
i...ip (B)⊂

K⋃
i,...,ip=

ωn+
i...ip (B) = Sp

n+(B). ()

By Theorem ., one has Sp
n (B) −→

p
An and Sp

n+(B) −→
p

An+. Then, using Lemma .

and (), we get

D(An,An+) ≤ D
(
An,Sp

n (B)
)
+D

(
Sp
n (B),S

p
n+(B)

)
+D

(
Sp
n+(B),An+

)
= D

(
An,Sp

n (B)
)
+D

(
Sp
n+(B),An+

) −→
p

.

Hence D(An,An+) =  so, applying again Lemma ., An ⊂ An+.
The convergence of (An)n now follows from Lemma . taking into consideration that,

by (), we have

lim
n
An =

⋃
n
An ⊂ [, ].

Thus condition (P) is verified. �

Remark . In the previous example, we can also take:

o Fk(t) = ln tδk + βt, δ, . . . , δK ,β ∈R+

and/or

o ωn
k (x) = ηnx + λk , ηn = n+

n(K+) , λk = K (k–)
K– if x ∈ [, ] for every n ≥ ,  ≤ k ≤ K . In

this event, the sequence of attractors (An)n is descending and, according to Lemma .,
limn An =

⋂
n An.
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