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Abstract
In this paper, we suggest and analyze an iterative scheme for finding an approximate
element of the common set of solutions of a split equilibrium problem, a variational
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1 Introduction
Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and
‖ · ‖. Let C be a nonempty closed convex subset of H and D be a mapping from C into H .
A classical variational inequality problem, denoted by VI(D,C), is to find a vector u ∈ C
such that

〈v – u,Du〉 ≥ , ∀v ∈ C. ()

The solution of VI(D,C) is denoted by �∗. It is easy to observe that

u∗ ∈ �∗ ⇐⇒ u∗ = PC
[
u∗ – λDu∗], where λ > .

This alternative formulation has played a significant part in developing various projection-
type methods for solving variational inequalities. We now have a variety of techniques to
suggest and analyze various iterative algorithms for solving variational inequalities and
the related optimization problems; see [–].
We introduce the following definitions which are useful in the following analysis.

Definition . The mapping T : C →H is said to be
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(a) monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈ C;

(b) strongly monotone if there exists α >  such that

〈Tx – Ty,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C;

(c) α-inverse strongly monotone if there exists α >  such that

〈Tx – Ty,x – y〉 ≥ α‖Tx – Ty‖, ∀x, y ∈ C;

(d) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(e) k-Lipschitz continuous if there exists a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C;

(f ) contraction on C if there exists a constant  ≤ k <  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C.

It is easy to observe that every α-inverse strongly monotone T is monotone and
Lipschitz continuous. It is well known that every nonexpansive operator T :H →H sat-
isfies, for all (x, y) ∈H ×H, the inequality

〈(
x – T(x)

)
–

(
y – T(y)

)
,T(y) – T(x)

〉 ≤ 

∥∥(
T(x) – x

)
–

(
T(y) – y

)∥∥ ()

and therefore we get, for all (x, y) ∈H × F(T),

〈
x – T(x), y – T(x)

〉 ≤ 

∥∥T(x) – x

∥∥; ()

see, e.g., [], Theorem  and [], Theorem .
A mapping T : C → H is called a k-strict pseudo-contraction if there exists a constant

 ≤ k <  such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. ()

The fixed point problem for the mapping T is to find x ∈ C such that

Tx = x. ()

Wedenote by F(T) the set of solutions of (). It is well known that the class of strict pseudo-
contractions strictly includes the class of nonexpansive mappings, then F(T) is closed and
convex and PF(T) is well defined (see []).

http://www.fixedpointtheoryandapplications.com/content/2013/1/278
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The equilibrium problem denoted by EP is to find x ∈ C such that

F(x, y)≥ , ∀y ∈ C. ()

The solution set of () is denoted by EP(F). Numerous problems in physics, optimization
and economics reduce to finding a solution of (); see [, , , ]. In , Combettes
and Hirstoaga [] introduced an iterative scheme of finding the best approximation to the
initial data when EP(F) is nonempty. Recently Plubtieng and Punpaeng [] introduced
an iterative method for finding the common element of the set F(T)∩ �∗ ∩ EP(F).
Recently, Censor et al. [] introduced a new variational inequality problemwhichwe call

the split variational inequality problem (SVIP). Let H and H be two real Hilbert spaces.
Given operators f : H → H and g : H → H, a bounded linear operator A : H → H,
and nonempty, closed and convex subsets C ⊆ H and Q ⊆ H, the SVIP is formulated as
follows: Find a point x∗ ∈ C such that

〈
f
(
x∗),x – x∗〉 ≥  for all x ∈ C ()

and such that

y∗ = Ax∗ ∈Q solves
〈
g
(
y∗), y – y∗〉 ≥  for all y ∈ Q. ()

In [], Moudafi introduced an iterative method which can be regarded as an extension of
the method given by Censor et al. [] for the following split monotone variational inclu-
sions:

Find x∗ ∈H such that  ∈ f
(
x∗) + B

(
x∗)

and such that

y∗ = Ax∗ ∈H solves  ∈ g
(
y∗) + B

(
y∗),

where Bi : Hi → Hi is a set-valued mapping for i = , . Later Byrne et al. [] generalized
and extended the work of Censor et al. [] and Moudafi [].
Very recently, Kazmi and Rivzi [] studied the following pair of equilibrium problems

called a split equilibrium problem: Let F : C × C → R and F : Q × Q → R be nonlin-
ear bifunctions and A :H → H be a bounded linear operator, then the split equilibrium
problem (SEP) is to find x∗ ∈ C such that

F
(
x∗,x

) ≥ , ∀x ∈ C ()

and such that

y∗ = Ax∗ ∈Q solves F
(
y∗, y

) ≥ , ∀y ∈ Q. ()

The solution set of SEP ()-() is denoted by � = {p ∈ EP(F) : Ap ∈ EP(F)}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/278
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Let S : C → H be a nonexpansive mapping. The following problem is called a hierarchi-
cal fixed point problem: Find x ∈ F(T) such that

〈x – Sx, y – x〉 ≥ , ∀y ∈ F(T). ()

It is known that the hierarchical fixed point problem () links with somemonotone varia-
tional inequalities and convex programming problems; see [, ]. Various methods have
been proposed to solve the hierarchical fixed point problem; seeMoudafi [],Mainge and
Moudafi in [], Marino and Xu in [] and Cianciaruso et al. []. In , Yao et al. []
introduced the following strong convergence iterative algorithm to solve problem ():

yn = βnSxn + ( – βn)xn,

xn+ = PC
[
αnf (xn) + ( – αn)Tyn

]
, ∀n≥ ,

()

where f : C → H is a contraction mapping and {αn} and {βn} are two sequences in (, ).
Under some certain restrictions on parameters, Yao et al. proved that the sequence {xn}
generated by () converges strongly to z ∈ F(T), which is the unique solution of the fol-
lowing variational inequality:

〈
(I – f )z, y – z

〉 ≥ , ∀y ∈ F(T). ()

By changing the restrictions on parameters, the authors obtained another result on the
iterative scheme (), the sequence {xn} generated by () converges strongly to a point
z ∈ F(T), which is the unique solution of the following variational inequality:

〈

τ
(I – f )z + (I – S)z, y – z

〉
≥ , ∀y ∈ F(T). ()

Let S : C → H be a nonexpansive mapping and {Ti}∞i= : C → C be a countable family
of nonexpansive mappings. In , Gu et al. [] introduced the following iterative algo-
rithm:

yn = PC
[
βnSxn + ( – βn)xn

]
,

xn+ = PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Tiyn

]
, ∀n≥ ,

()

where α = , {αn} is a strictly decreasing sequence in (, ) and {βn} is a sequence in (, ).
Under some certain conditions on parameters, Gu et al. proved that the sequence {xn}
generated by () converges strongly to z ∈ ⋂∞

i= F(Ti), which is the unique solution of one
of variational inequalities () and ().
In this paper, motivated by the work of Censor et al. [], Moudafi [], Byrne et al. []

Kazmi and Rivzi [], Yao et al. [] and Gu et al. [] and by the recent work going on in
this direction, we give an iterative method for finding an approximate element of the com-
mon set of solutions of (), ()-() and () for a strictly pseudo-contraction mapping in a
real Hilbert space. We establish a strong convergence theorem based on this method. The
presented method improves and generalizes many known results for solving equilibrium
problems, variational inequality problems and hierarchical fixed point problems; see, e.g.,
[, , , ] and relevant references cited therein.
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2 Preliminaries
In this section, we list some fundamental lemmas that are useful in the consequent anal-
ysis. The first lemma provides some basic properties of the projection of H onto C.

Lemma . Let PC denote the projection of H onto C. Then we have the following inequal-
ities,

〈
z – PC[z],PC[z] – v

〉 ≥ , ∀z ∈H , v ∈ C; ()〈
u – v,PC[u] – PC[v]

〉 ≥ ∥∥PC[u] – PC[v]
∥∥, ∀u, v ∈H ; ()∥∥PC[u] – PC[v]

∥∥ ≤ ‖u – v‖, ∀u, v ∈H ; ()∥∥u – PC[z]
∥∥ ≤ ‖z – u‖ – ∥∥z – PC[z]

∥∥, ∀z ∈H ,u ∈ C. ()

Assumption . [] Let F : C × C → R be a bifunction satisfying the following assump-
tions:

(i) F(x,x) = , ∀x ∈ C;
(ii) F is monotone, i.e., F(x, y) + F(y,x)≤ , ∀x, y ∈ C;
(iii) For each x, y, z ∈ C, limt→ F(tz + ( – t)x, y) ≤ F(x, y);
(iv) For each x ∈ C, y→ F(x, y) is convex and lower semicontinuous;
(v) Fixed r >  and z ∈ C, there exists a bounded subset K of H and x ∈ C ∩K such

that

F(y,x) +

r
〈y – x,x – z〉 ≥ , ∀y ∈ C\K .

Lemma . [] Assume that F : C × C → R satisfies Assumption .. For r >  and ∀x ∈
H, define a mapping TF

r :H → C as follows:

TF
r (x) =

{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
(i) TF

r is nonempty and single-valued;
(ii) TF

r is firmly nonexpansive, i.e.,

∥∥TF
r (x) – TF

r (y)
∥∥ ≤ 〈

TF
r (x) – TF

r (y),x – y
〉
, ∀x, y ∈H;

(iii) F(TF
r ) = EP(F);

(iv) EP(F) is closed and convex.

Assume that F : Q × Q → R satisfies Assumption .. For s >  and ∀u ∈ H, define a
mapping TF

s :H →Q as follows:

TF
s (u) =

{
v ∈Q : F(v,w) +


s
〈w – v, v – u〉 ≥ ,∀w ∈ Q

}
.

Then TF
s satisfies conditions (i)-(iv) of Lemma .. F(TF

s ) = EP(F,Q), where EP(F,Q) is
the solution set of the following equilibrium problem:

Find y∗ ∈Q such that F
(
y∗, y

) ≥ , ∀y ∈Q.

http://www.fixedpointtheoryandapplications.com/content/2013/1/278
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Lemma . [] Assume that F : C × C → R satisfies Assumption ., and let TF
r be de-

fined as in Lemma .. Let x, y ∈H and r, r > . Then

∥∥TF
r (y) – TF

r (x)
∥∥ ≤ ‖y – x‖ +

∣∣∣∣ r – r
r

∣∣∣∣∥∥TF
r (y) – y

∥∥.
Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . If
T : C → C is a k-strict pseudo-contraction, then:

(i) The mapping I – T is demiclosed at , i.e., if {xn} is a sequence in C weakly
converging to x and if {(I – T)xn} converges strongly to , then (I – T)x = ;

(ii) The set F(T) of T is closed and convex so that the projection PF(T) is well defined.

Lemma . [] Let H be a real Hilbert space. Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn =∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . [] Let C be a closed convex subset of H . Let {xn} be a bounded sequence in H .
Assume that

(i) the weak w-limit set ww(xn) ⊂ C, where ww(xn) = {x : xni ⇀ x};
(ii) for each z ∈ C, limn→∞ ‖xn – z‖ exists.

Then {xn} is weakly convergent to a point in C.

Lemma . [] Let H be a Hilbert space, C be a closed and convex subset of H , and
T : C → C be a k-strict pseudo-contraction mapping. Define a mapping V : C → H by
Vx = λx + ( – λ)Tx, ∀x ∈ C. Then, as k ≤ λ < , V is a nonexpansive mapping such that
F(V ) = F(T).

Lemma . [] Let H be a Hilbert space, C be a closed and convex subset of H , and T :
C → C be a nonexpansive mapping such that F(T) �= ∅. Then

‖Tx – x‖ ≤ 
〈
x – Tx,x – x′〉, ∀x′ ∈ F(T),∀x ∈ C.

3 The proposedmethod and some properties
In this section, we suggest and analyze our method for finding common solutions of the
variational inequality (), the split equilibrium problem ()-() and the hierarchical fixed
point problem ().
Let H and H be two real Hilbert spaces and C ⊆ H and Q ⊆ H be nonempty closed

convex subsets of Hilbert spaces H and H, respectively. Let A : H → H be a bounded

http://www.fixedpointtheoryandapplications.com/content/2013/1/278
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linear operator. LetD : C →H be an α-inverse stronglymonotonemapping. Assume that
F : C ×C → R and F :Q×Q →R are the bifunctions satisfying Assumption . and F
is upper semicontinuous in the first argument. Let S : C →H be a nonexpansive mapping
and {Ti}∞i= : C → C be a countable family of ki-strict pseudo-contraction mappings such
that F(T)∩ �∗ ∩ � �= ∅, where F(T) =⋂∞

i= F(Ti). Let f be a ρ-contraction mapping.

Algorithm . For a given x ∈ C arbitrarily, let the iterative sequences {un}, {xn}, {yn}
and {zn} be generated by

un = TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
;

zn = PC[un – λnDun];

yn = PC
[
βnSxn + ( – βn)zn

]
;

xn+ = PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
, ∀n≥ ,

()

where Vi = kiI + ( – ki)Ti,  ≤ ki < , {rn} ⊂ (,∞), {λn} ⊂ (, α) and γ ∈ (, /L), L is
the spectral radius of the operator A∗A and A∗ is the adjoint of A and α = , {αn} is a
strictly decreasing sequence in (, ) and {βn} is a sequence in (, ) satisfying the following
conditions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞,

(b) limn→∞(βn/αn) = ,
(c)

∑∞
n= |αn– – αn| < ∞ and

∑∞
n= |βn– – βn| < ∞,

(d) lim infn→∞ rn >  and
∑∞

n= |rn– – rn| < ∞,
(e) lim infn→∞ λn < lim supn→∞ λn < α and

∑∞
n= |λn– – λn| < ∞.

Lemma . Let x∗ ∈ F(T)∩ �∗ ∩ �. Then {xn}, {un}, {zn} and {yn} are bounded.

Proof First, we show that the mapping (I – λnD) is nonexpansive. For any x, y ∈ C,

∥∥(I – λnD)x – (I – λnD)y
∥∥ =

∥∥(x – y) – λn(Dx –Dy)
∥∥

= ‖x – y‖ – λn〈x – y,Dx –Dy〉 + λ
n‖Dx –Dy‖

≤ ‖x – y‖ – λn(α – λn)‖Dx –Dy‖

≤ ‖x – y‖.

Let x∗ ∈ F(T)∩ �∗ ∩ �, we have x∗ = TF
rn (x∗) and Ax∗ = TF

rn (Ax∗). Then

∥∥un – x∗∥∥ =
∥∥TF

rn

(
xn + γA∗(TF

rn – I
)
Axn

)
– x∗∥∥

=
∥∥TF

rn

(
xn + γA∗(TF

rn – I
)
Axn

)
– TF

rn

(
x∗)∥∥

≤ ∥∥xn + γA∗(TF
rn – I

)
Axn – x∗∥∥

=
∥∥xn – x∗∥∥ + γ ∥∥A∗(TF

rn – I
)
Axn

∥∥ + γ
〈
xn – x∗,A∗(TF

rn – I
)
Axn

〉
=

∥∥xn – x∗∥∥ + γ 〈(TF
rn – I

)
Axn,AA∗(TF

rn – I
)
Axn

〉
+ γ

〈
xn – x∗,A∗(TF

rn – I
)
Axn

〉
. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/278


Bnouhachem Fixed Point Theory and Applications 2013, 2013:278 Page 8 of 27
http://www.fixedpointtheoryandapplications.com/content/2013/1/278

From the definition of L, it follows that

γ 〈(TF
rn – I

)
Axn,AA∗(TF

rn – I
)
Axn

〉 ≤ Lγ 〈(TF
rn – I

)
Axn,

(
TF
rn – I

)
Axn

〉
= Lγ ∥∥(

TF
rn – I

)
Axn

∥∥. ()

It follows from () that

γ
〈
xn – x∗,A∗(TF

rn – I
)
Axn

〉
= γ

〈
A

(
xn – x∗), (TF

rn – I
)
Axn

〉
= γ

〈
A

(
xn – x∗) + (

TF
rn – I

)
Axn –

(
TF
rn – I

)
Axn,

(
TF
rn – I

)
Axn

〉
= γ

(〈
TF
rn Axn –Ax∗,

(
TF
rn – I

)
Axn

〉
–

∥∥(
TF
rn – I

)
Axn

∥∥)
≤ γ

(


∥∥(
TF
rn – I

)
Axn

∥∥ –
∥∥(
TF
rn – I

)
Axn

∥∥
)

= –γ
∥∥(
TF
rn – I

)
Axn

∥∥. ()

Applying () and () to () and from the definition of γ , we get

∥∥un – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + γ (Lγ – )
∥∥(
TF
rn – I

)
Axn

∥∥ ≤ ∥∥xn – x∗∥∥. ()

Since the mapping D is α-inverse strongly monotone, we have

∥∥zn – x∗∥∥ =
∥∥PC[un – λnDun] – PC

[
x∗ – λnDx∗]∥∥

≤ ∥∥un – x∗ – λn
(
Dun –Dx∗)∥∥

≤ ∥∥un – x∗∥∥ – λn(α – λn)
∥∥Dun –Dx∗∥∥

≤ ∥∥un – x∗∥∥

≤ ∥∥xn – x∗∥∥. ()

Next, we prove that the sequence {xn} is bounded, without loss of generality, we can as-
sume that βn ≤ αn for all n ≥ . From Lemma ., we have Vi is a nonexpansive mapping
and Vix∗ = x∗. Since

∑n
i=(αi– – αi) =  – αn, we get

∥∥xn+ – x∗∥∥ =

∥∥∥∥∥PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
– x∗

∥∥∥∥∥
≤

∥∥∥∥∥αnf (xn) +
n∑
i=

(αi– – αi)Viyn – x∗
∥∥∥∥∥

=

∥∥∥∥∥αnf (xn) +
n∑
i=

(αi– – αi)Viyn – αnx∗ –
n∑
i=

(αi– – αi)Vix∗
∥∥∥∥∥

≤ αn
∥∥f (xn) – f

(
x∗)∥∥ + αn

∥∥f (x∗) – x∗∥∥ +
n∑
i=

(αi– – αi)
∥∥Viyn –Vix∗∥∥

≤ αn
∥∥f (xn) – f

(
x∗)∥∥ + αn

∥∥f (x∗) – x∗∥∥ +
n∑
i=

(αi– – αi)
∥∥yn – x∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/278
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= αn
∥∥f (xn) – f

(
x∗)∥∥ + αn

∥∥f (x∗) – x∗∥∥ + ( – αn)
∥∥βnSxn + ( – βn)zn – x∗∥∥

≤ αn
∥∥f (xn) – f

(
x∗)∥∥ + αn

∥∥f (x∗) – x∗∥∥
+ ( – αn)

(
βn

∥∥Sxn – Sx∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥zn – x∗∥∥)
≤ αnρ

∥∥xn – x∗∥∥ + αn
∥∥f (x∗) – x∗∥∥

+ ( – αn)
(
βn

∥∥xn – x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥xn – x∗∥∥)
=

(
 – αn( – ρ)

)∥∥xn – x∗∥∥ + αn
∥∥f (x∗) – x∗∥∥ + ( – αn)βn

∥∥Sx∗ – x∗∥∥
≤ (

 – αn( – ρ)
)∥∥xn – x∗∥∥ + αn

∥∥f (x∗) – x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥

≤ (
 – αn( – ρ)

)∥∥xn – x∗∥∥ + αn
(∥∥f (x∗) – x∗∥∥ +

∥∥Sx∗ – x∗∥∥)
=

(
 – αn( – ρ)

)∥∥xn – x∗∥∥ +
αn( – ρ)
 – ρ

(∥∥f (x∗) – x∗∥∥ +
∥∥Sx∗ – x∗∥∥)

≤ max

{∥∥xn – x∗∥∥, 
 – ρ

(∥∥f (x∗) – x∗∥∥ +
∥∥Sx∗ – x∗∥∥)}

. ()

By induction on n, we obtain ‖xn – x∗‖ ≤ max{‖x – x∗‖, 
–ρ

(‖f (x∗) – x∗‖ + ‖Sx∗ – x∗‖)},
for n ≥  and x ∈ C. Hence {xn} is bounded and consequently, we deduce that {un}, {zn}
and {yn} are bounded. �

Lemma . Let x∗ ∈ F(T)∩ �∗ ∩ � and {xn} be the sequence generated by Algorithm ..
Then we have
(a) limn→∞ ‖xn+ – xn‖ = ;
(b) The weak w-limit set ww(xn) ⊂ F(T) (ww(xn) = {x : xni ⇀ x}).

Proof From the nonexpansivity of the mapping (I – λnD) and PC , we have

‖zn – zn–‖ ≤ ∥∥(un – λnDun) – (un– – λn–Dun–)
∥∥

=
∥∥(un – un–) – λn(Dun –Dun–) – (λn – λn–)Dun–

∥∥
≤ ∥∥(un – un–) – λn(Dun –Dun–)

∥∥ + |λn – λn–|‖Dun–‖
≤ ‖un – un–‖ + |λn – λn–|‖Dun–‖. ()

Next, we estimate

‖yn – yn–‖
≤ ∥∥βnSxn + ( – βn)zn –

(
βn–Sxn– + ( – βn–)zn–

)∥∥
=

∥∥βn(Sxn – Sxn–) + (βn – βn–)Sxn– + ( – βn)(zn – zn–) + (βn– – βn)zn–
∥∥

≤ βn‖xn – xn–‖ + ( – βn)‖zn – zn–‖ + |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
. ()

It follows from () and () that

‖yn – yn–‖ ≤ βn‖xn – xn–‖ + ( – βn)
{‖un – un–‖ + |λn – λn–|‖Dun–‖

}
+ |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)
. ()
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On the other hand, un = TF
rn (xn + γA∗(TF

rn – I)Axn) and un– = TF
rn– (xn– + γA∗(TF

rn– –
I)Axn–). It follows from Lemma . that

‖un – un–‖
≤ ∥∥xn – xn– + γ

(
A∗(TF

rn – I
)
Axn –A∗(TF

rn– – I
)
Axn–

)∥∥
+

∣∣∣∣ – rn–
rn

∣∣∣∣∥∥TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
–

(
xn + γA∗(TF

rn – I
)
Axn

)∥∥
≤ ∥∥xn – xn– – γA∗A(xn – xn–)

∥∥ + γ ‖A‖∥∥TF
rn Axn – TF

rn–Axn–
∥∥

+
∣∣∣∣ – rn–

rn

∣∣∣∣∥∥TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
–

(
xn + γA∗(TF

rn – I
)
Axn

)∥∥
≤ (‖xn – xn–‖ – γ

∥∥A(xn – xn–)
∥∥ + γ ‖A‖‖xn – xn–‖

) 


+ γ ‖A‖
(∥∥A(xn – xn–)

∥∥ +
∣∣∣∣ – rn–

rn

∣∣∣∣∥∥TF
rn Axn –Axn

∥∥)

+
∣∣∣∣ – rn–

rn

∣∣∣∣∥∥TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
–

(
xn + γA∗(TF

rn – I
)
Axn

)∥∥
≤ (

 – γ ‖A‖ + γ ‖A‖) 
 ‖xn – xn–‖ + γ ‖A‖‖xn – xn–‖

+ γ ‖A‖
∣∣∣∣ – rn–

rn

∣∣∣∣∥∥TF
rn Axn –Axn

∥∥
+

∣∣∣∣ – rn–
rn

∣∣∣∣∥∥TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
–

(
xn + γA∗(TF

rn – I
)
Axn

)∥∥
=

(
 – γ ‖A‖)‖xn – xn–‖ + γ ‖A‖‖xn – xn–‖ + γ ‖A‖

∣∣∣∣ – rn–
rn

∣∣∣∣∥∥TF
rn Axn –Axn

∥∥
+

∣∣∣∣ – rn–
rn

∣∣∣∣∥∥TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
–

(
xn + γA∗(TF

rn – I
)
Axn

)∥∥
= ‖xn – xn–‖ + γ ‖A‖

∣∣∣∣ – rn–
rn

∣∣∣∣∥∥TF
rn Axn –Axn

∥∥
+

∣∣∣∣ – rn–
rn

∣∣∣∣∥∥TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
–

(
xn + γA∗(TF

rn – I
)
Axn

)∥∥
= ‖xn – xn–‖ +

∣∣∣∣ rn – rn–
rn

∣∣∣∣(γ ‖A‖σn + χn
)
,

where σn := ‖TF
rn Axn – Axn‖ and χn := ‖TF

rn (xn + γA∗(TF
rn – I)Axn) – (xn + γA∗(TF

rn –
I)Axn)‖. Without loss of generality, let us assume that there exists a real number μ such
that rn > μ >  for all positive integers n. Then we get

‖un– – un‖ ≤ ‖xn– – xn‖ + 
μ

|rn– – rn|
(
γ ‖A‖σn + χn

)
. ()

It follows from () and () that

‖yn – yn–‖

≤ βn‖xn – xn–‖ + ( – βn)
{
‖xn – xn–‖ + 

μ
|rn– – rn|

(
γ ‖A‖σn + χn

)
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+ |λn – λn–|‖Dun–‖
}
+ |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)

= ‖xn – xn–‖ + ( – βn)
{

μ

|rn– – rn|
(
γ ‖A‖σn + χn

)
+ |λn – λn–|‖Dun–‖

}

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
. ()

Next, we estimate

‖xn+ – xn‖

≤
∥∥∥∥∥αnf (xn) +

n∑
i=

(αi– – αi)Viyn –

(
αn–f (xn–) +

n–∑
i=

(αi– – αi)Viyn–

)∥∥∥∥∥
=

∥∥∥∥∥αn
(
f (xn) – f (xn–)

)
+ (αn – αn–)f (xn–) +

n∑
i=

(αi– – αi)(Viyn –Viyn–)

+(αn– – αn)Vnyn–

∥∥∥∥∥
≤ αn

∥∥f (xn) – f (xn–)
∥∥ +

n∑
i=

(αi– – αi)‖Viyn –Viyn–‖

+ |αn – αn–|
(∥∥f (xn–)∥∥ + ‖Vnyn–‖

)
≤ αnρ‖xn – xn–‖ +

n∑
i=

(αi– – αi)‖yn – yn–‖

+ |αn – αn–|
(∥∥f (xn–)∥∥ + ‖Vnyn–‖

)
= αnρ‖xn – xn–‖ + ( – αn)‖yn – yn–‖

+ |αn – αn–|
(∥∥f (xn–)∥∥ + ‖Vnyn–‖

)
. ()

From () and (), we have

‖xn+ – xn‖

≤ αnρ‖xn – xn–‖ + ( – αn)
{
‖xn – xn–‖

+ ( – βn)
(

μ

|rn– – rn|
(
γ ‖A‖σn + χn

)
+ |λn – λn–|‖Dun–‖

)

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)}
+ |αn – αn–|

(∥∥f (xn–)∥∥ + ‖Vnyn–‖
)

≤ (
 – ( – ρ)αn

)‖xn – xn–‖ + 
μ

|rn– – rn|
(
γ ‖A‖σn + χn

)
+ |λn – λn–|‖Dun–‖ + |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)

+ |αn – αn–|
(∥∥f (xn–)∥∥ + ‖Vnyn–‖

)
≤ (

 – ( – ρ)αn
)‖xn – xn–‖

+M
(

μ

|rn – rn–| + |λn – λn–| + |βn – βn–| + |αn – αn–|
)
, ()
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where

M = max
{
sup
n≥

(
γ ‖A‖σn + χn

)
, sup
n≥

‖Dun–‖, sup
n≥

(‖Sxn–‖ + ‖zn–‖
)
,

sup
n≥

(∥∥f (xn–)∥∥ + ‖Vnyn–‖
)}
.

Since {xn}, {un}, {zn} and {yn} are bounded, we deduce that {Axn}, {Dun–}, {Sxn–},
{f (xn–)} and {Vnyn–} are bounded. We can conclude that supn≥(γ ‖A‖σn + χn) < ∞,
supn≥ ‖Dun–‖ <∞, supn≥(‖Sxn–‖ + ‖zn–‖) <∞, supn≥(‖f (xn–)‖ + ‖Vnyn–‖) < ∞, and
M <∞.
It follows by conditions (a)-(e) of Algorithm . and Lemma . that

lim
n→∞‖xn+ – xn‖ = .

Next, we show that limn→∞ ‖un – xn‖ = . Since x∗ ∈ F(T)∩ �∗ ∩ � and αn +
∑n

i=(αi– –
αi) = , by using () and (), we obtain

∥∥xn+ – x∗∥∥ =

∥∥∥∥∥PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
– x∗

∥∥∥∥∥


≤
∥∥∥∥∥αnf (xn) +

n∑
i=

(αi– – αi)Viyn – x∗
∥∥∥∥∥


=

∥∥∥∥∥αnf (xn) +
n∑
i=

(αi– – αi)Viyn – αnx∗ –
n∑
i=

(αi– – αi)Vix∗
∥∥∥∥∥


≤ αn
∥∥f (xn) – x∗∥∥ +

n∑
i=

(αi– – αi)
∥∥Viyn –Vix∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ +

n∑
i=

(αi– – αi)
∥∥yn – x∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)

(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥)

≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)βn

∥∥Sxn – x∗∥∥

+ ( – αn)( – βn)
{∥∥xn – x∗∥∥ + γ (Lγ – )

∥∥(
TF
rn – I

)
Axn

∥∥

– λn(α – λn)
∥∥Dun –Dx∗∥∥}

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥Sxn – x∗∥∥ +
∥∥xn – x∗∥∥

– ( – αn)( – βn)
{
γ ( – Lγ )

∥∥(
TF
rn – I

)
Axn

∥∥

+ λn(α – λn)
∥∥Dun –Dx∗∥∥}. ()

Then, from the above inequality, we get

( – αn)( – βn)
{
γ ( – Lγ )

∥∥(
TF
rn – I

)
Axn

∥∥ + λn(α – λn)
∥∥Dun –Dx∗∥∥}

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥Sxn – x∗∥∥ +
∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥Sxn – x∗∥∥ +
(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)‖xn+ – xn‖.
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Since γ ( – Lγ ) > , lim infn→∞ λn ≤ lim supn→∞ λn < α, limn→∞ ‖xn+ – xn‖ = , αn → 
and βn → , we obtain

lim
n→∞

∥∥(
TF
rn – I

)
Axn

∥∥ =  ()

and

lim
n→∞

∥∥Dun –Dx∗∥∥ = .

Since TF
rn is firmly nonexpansive, we have

∥∥un – x∗∥∥ =
∥∥TF

rn

(
xn + γA∗(TF

rn – I
)
Axn

)
– TF

rn

(
x∗)∥∥

≤ 〈
un – x∗,xn + γA∗(TF

rn – I
)
Axn – x∗〉

=


{∥∥un – x∗∥∥ +

∥∥xn + γA∗(TF
rn – I

)
Axn – x∗∥∥

–
∥∥un – x∗ –

[
xn + γA∗(TF

rn – I
)
Axn – x∗]∥∥}

=


{∥∥un – x∗∥∥ +

∥∥xn + γA∗(TF
rn – I

)
Axn – x∗∥∥

–
∥∥un – xn – γA∗(TF

rn – I
)
Axn

∥∥}
≤ 


{∥∥un – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥un – xn – γA∗(TF

rn – I
)
Axn

∥∥}
=



{∥∥un – x∗∥∥ +

∥∥xn – x∗∥∥

–
[∥∥un – xn

∥∥ + γ ∥∥A∗(TF
rn – I

)
Axn

∥∥ – γ
〈
un – xn,A∗(TF

rn – I
)
Axn

〉]}
,

where the last inequality follows from () and (). Hence, we get

∥∥un – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – ‖un – xn‖ + γ ‖Aun –Axn‖
∥∥(
TF
rn – I

)
Axn

∥∥.
From (), () and the above inequality, we have

∥∥xn+ – x∗∥∥ ≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)

(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥)

≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)

(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥un – x∗∥∥)

≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)

{
βn

∥∥Sxn – x∗∥∥

+ ( – βn)
(∥∥xn – x∗∥∥ – ‖un – xn‖ + γ ‖Aun –Axn‖

∥∥(
TF
rn – I

)
Axn

∥∥)}
≤ αn

∥∥f (xn) – x∗∥∥ + βn
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥

– ( – αn)( – βn)‖un – xn‖ + γ ‖Aun –Axn‖
∥∥(
TF
rn – I

)
Axn

∥∥.
Hence

( – αn)( – βn)‖un – xn‖

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥Sxn – x∗∥∥ +
∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥
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+ γ ‖Aun –Axn‖
∥∥(
TF
rn – I

)
Axn

∥∥
≤ αn

∥∥f (xn) – x∗∥∥ + βn
∥∥Sxn – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖

+ γ ‖Aun –Axn‖
∥∥(
TF
rn – I

)
Axn

∥∥.
Since limn→∞ ‖xn+ – xn‖ = , αn → , βn →  and limn→∞ ‖(TF

rn – I)Axn‖ = , we obtain

lim
n→∞‖un – xn‖ = . ()

From (), we get

∥∥zn – x∗∥∥ =
∥∥PC[un – λnDun] – PC

[
x∗ – λnDx∗]∥∥

≤ 〈
zn – x∗, (un – λnDun) –

(
x∗ – λnDx∗)〉

=


{∥∥zn – x∗∥∥ +

∥∥un – x∗ – λn
(
Dun –Dx∗)∥∥

–
∥∥un – x∗ – λn

(
Dun –Dx∗) – (

zn – x∗)∥∥}
≤ 


{∥∥zn – x∗∥∥ +

∥∥un – x∗∥∥ –
∥∥un – zn – λn

(
Dun –Dx∗)∥∥}

≤ 

{∥∥zn – x∗∥∥ +

∥∥un – x∗∥∥ – ‖un – zn‖ + λn
〈
un – zn,Dun –Dx∗〉}

≤ 

{∥∥zn – x∗∥∥ +

∥∥un – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖
∥∥Dun –Dx∗∥∥}

.

Hence

∥∥zn – x∗∥∥ ≤ ∥∥un – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖
∥∥Dun –Dx∗∥∥

≤ ∥∥xn – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖
∥∥Dun –Dx∗∥∥.

From () and the above inequality, we have

∥∥xn+ – x∗∥∥ ≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)

(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥)

≤ αn
∥∥f (xn) – x∗∥∥ + ( – αn)

{
βn

∥∥Sxn – x∗∥∥

+ ( – βn)
(∥∥xn – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖

∥∥Dun –Dx∗∥∥)}
≤ αn

∥∥f (xn) – x∗∥∥ + βn
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥

– ( – αn)( – βn)‖un – zn‖ + λn‖un – zn‖
∥∥Dun –Dx∗∥∥.

Hence

( – αn)( – βn)‖un – zn‖

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥Sxn – x∗∥∥ +
∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥

+ λn‖un – zn‖
∥∥Dun –Dx∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥Sxn – x∗∥∥ +
(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)‖xn+ – xn‖
+ λn‖un – zn‖

∥∥Dun –Dx∗∥∥.
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Since limn→∞ ‖xn+ – xn‖ = , αn → , βn →  and limn→∞ ‖Dun –Dx∗‖ = , we obtain

lim
n→∞‖un – zn‖ = . ()

It follows from () and () that

lim
n→∞‖xn – zn‖ = . ()

Now, let z ∈ F(T)∩ �∗ ∩ �, since for each i ≥ , Vixn ∈ C and αn +
∑n

i=(αi– – αi) = , we
have

∑n
i=(αi– – αi)Vixn + αnz ∈ C, and

n∑
i=

(αi– – αi)(xn –Vixn)

= PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
+ ( – αn)xn

–

( n∑
i=

(αi– – αi)Vixn + αnz

)
+ αnz – xn+

= PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
+ αn(z – xn+)

– PC

[ n∑
i=

(αi– – αi)Vixn + αnz

]
+ ( – αn)(xn – xn+).

It follows that

n∑
i=

(αi– – αi)
〈
xn –Vixn,xn – x∗〉

=

〈
PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
– PC

[ n∑
i=

(αi– – αi)Vixn + αnz

]
,xn – x∗

〉

+ αn
〈
z – xn+,xn – x∗〉 + ( – αn)

〈
xn – xn+,xn – x∗〉

≤
∥∥∥∥∥αn

(
f (xn) – z

)
+

n∑
i=

(αi– – αi)(Viyn –Vixn)

∥∥∥∥∥∥∥xn – x∗∥∥
+ αn‖z – xn+‖

∥∥xn – x∗∥∥ + ( – αn)‖xn – xn+‖
∥∥xn – x∗∥∥

≤ αn
∥∥f (xn) – z

∥∥∥∥xn – x∗∥∥ +
n∑
i=

(αi– – αi)‖yn – xn‖
∥∥xn – x∗∥∥

+ αn‖z – xn+‖
∥∥xn – x∗∥∥ + ( – αn)‖xn – xn+‖

∥∥xn – x∗∥∥
= αn

∥∥f (xn) – z
∥∥∥∥xn – x∗∥∥ + ( – αn)‖yn – xn‖

∥∥xn – x∗∥∥
+ αn‖z – xn+‖

∥∥xn – x∗∥∥ + ( – αn)‖xn – xn+‖
∥∥xn – x∗∥∥

≤ αn
∥∥f (xn) – z

∥∥∥∥xn – x∗∥∥
+ ( – αn)

∥∥βnSxn + ( – βn)zn – xn
∥∥∥∥xn – x∗∥∥ + αn‖z – xn+‖

∥∥xn – x∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/278


Bnouhachem Fixed Point Theory and Applications 2013, 2013:278 Page 16 of 27
http://www.fixedpointtheoryandapplications.com/content/2013/1/278

+ ( – αn)‖xn – xn+‖
∥∥xn – x∗∥∥

≤ αn
∥∥f (xn) – z

∥∥∥∥xn – x∗∥∥ + ( – αn)βn‖Sxn – xn‖
∥∥xn – x∗∥∥

+ ( – αn)( – βn)‖zn – xn‖
∥∥xn – x∗∥∥

+ αn‖z – xn+‖
∥∥xn – x∗∥∥ + ( – αn)‖xn – xn+‖

∥∥xn – x∗∥∥.
From Lemma . and the above inequality, we get




n∑
i=

(αi– – αi)‖xn –Vixn‖

≤
n∑
i=

(αi– – αi)
〈
xn –Vixn,xn – x∗〉

≤ αn
∥∥f (xn) – z

∥∥∥∥xn – x∗∥∥ + ( – αn)βn‖Sxn – xn‖
∥∥xn – x∗∥∥

+ ( – αn)( – βn)‖zn – xn‖
∥∥xn – x∗∥∥ + αn‖z – xn+‖

∥∥xn – x∗∥∥
+ ( – αn)‖xn – xn+‖

∥∥xn – x∗∥∥.
Since limn→∞ ‖xn+ – xn‖ = , αn → , βn →  and limn→∞ ‖xn – zn‖ = , we obtain

lim
n→∞

n∑
i=

(αi– – αi)‖xn –Vixn‖ = .

Since (αi– – αi)‖xn –Vixn‖ ≤ ∑n
i=(αi– – αi)‖xn –Vixn‖ and {αn} is strictly decreasing,

we have

lim
n→∞‖xn –Vixn‖ = .

Hence, we obtain

lim
n→∞‖xn – Tixn‖ = lim

n→∞
‖xn –Vixn‖
( – ki)

= , ∀i≥ .

Since {xn} is bounded, without loss of generality, we can assume that xn ⇀ w ∈ C. It follows
from Lemma . that w ∈ F(T). Therefore ww(xn) ⊂ F(T). �

Theorem . The sequence {xn} generated by Algorithm . converges strongly to z =
P�∗∩�∩F(T)f (z), which is the unique solution of the variational inequality

〈
(I – f )z,x – z

〉 ≥ , ∀x ∈ �∗ ∩ � ∩ F(T), ()

which is the optimality condition for a minimization problem

min
x∈ϒ

{


‖x‖ – h(x)

}
,

where h is a potential function for f (i.e., h′(x) = f (x) for x ∈H) and ϒ =�∗ ∩ � ∩ F(T).
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Proof Since {xn} is bounded xn ⇀ w and from Lemma ., we have w ∈ F(T). Next, we
show that w ∈ EP(F). Since un = TF

rn (xn + γA∗(TF
rn – I)Axn), we have

F(un, y) +

rn

〈y – un,un – xn〉 – 
rn

〈
y – un,γA∗(TF

rn – I
)
Axn

〉 ≥ , ∀y ∈ C.

It follows from the monotonicity of F that

–

rn

〈
y – un,γA∗(TF

rn – I
)
Axn

〉
+


rn

〈y – un,un – xn〉 ≥ F(y,un), ∀y ∈ C

and

–

rnk

〈
y – unk ,γA

∗(TF
rnk

– I
)
Axnk

〉
+

〈
y – unk ,

unk – xnk
rnk

〉
≥ F(y,unk ), ∀y ∈ C. ()

Since limn→∞ ‖un – xn‖ = , limn→∞ ‖(TF
rn – I)Axn‖ =  and xn ⇀ w, it is easy to observe

that unk → w. It follows by Assumption .(iv) that F(y,w) ≤ , ∀y ∈ C.
For any  < t ≤  and y ∈ C, let yt = ty + ( – t)w, we have yt ∈ C. Then, from Assump-

tion .(i) and (iv), we have

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt ,w)

≤ tF(yt , y).

Therefore F(yt , y) ≥ . From Assumption .(iii), we have F(w, y) ≥ , which implies that
w ∈ EP(F).
Next, we show that Aw ∈ EP(F). Since {xn} is bounded and xn ⇀ w, there exists a sub-

sequence {xnk } of {xn} such that xnk → w and since A is a bounded linear operator so that
Axnk → Aw. Now set vnk = Axnk – TF

rnk Axnk . It follows from () that limk→∞ vnk =  and
Axnk – vnk = TF

rnk Axnk . Therefore from the definition of TF
rnk , we have

F(Axnk – vnk , y) +

rnk

〈
y – (Axnk – vnk ), (Axnk – vnk ) –Axnk

〉 ≥ , ∀y ∈ C.

Since F is upper semicontinuous in the first argument, taking lim sup to the above in-
equality as k → ∞ and using Assumption .(iv), we obtain

F(Aw, y) ≥ , ∀y ∈ C,

which implies that Aw ∈ EP(F) and hence w ∈ �.
Furthermore, we show that w ∈ �∗. Let

Tv =

⎧⎨
⎩Dv +NCv, ∀v ∈ C,

∅, otherwise,

where NCv := {w ∈ H : 〈w, v – u〉 ≥ ,∀u ∈ C} is the normal cone to C at v ∈ C. Then T is
maximal monotone and  ∈ Tv if and only if v ∈ �∗ (see []). Let G(T) denote the graph
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of T and let (v,u) ∈G(T). Since u –Dv ∈NCv and zn ∈ C, we have

〈v – zn,u –Dv〉 ≥ . ()

On the other hand, it follows from zn = PC[un – λnDun] and v ∈ C that

〈
v – zn, zn – (un – λnDun)

〉 ≥ 

and
〈
v – zn,

zn – un
λn

+Dun
〉
≥ .

Therefore, from () and inverse strong monotonicity of D, we have

〈v – znk ,u〉 ≥ 〈v – znk ,Dv〉

≥ 〈v – znk ,Dv〉 –
〈
v – znk ,

znk – unk
λnk

+Dunk

〉

≥ 〈v – znk ,Dv –Dznk 〉 + 〈v – znk ,Dznk –Dunk 〉 –
〈
v – znk ,

znk – unk
λnk

〉

≥ 〈v – znk ,Dznk –Dunk 〉 –
〈
v – znk ,

znk – unk
λnk

〉
.

Since limn→∞ ‖un – zn‖ =  and unk → w, it is easy to observe that znk → w. Hence, we
obtain 〈v–w,u〉 ≥ . Since T is maximal monotone, we have w ∈ T– and hence w ∈ �∗.
Thus we have

w ∈ �∗ ∩ � ∩ F(T).

Since �∗, � and F(T) are convex, then �∗ ∩ � ∩ F(T) is convex. Next, we claim that
lim supn→∞〈f (z) – z,xn – z〉 ≤ , where z = P�∗∩�∩F(T)f (z).
Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
f (z) – z,xn – z

〉
= lim sup

k→∞

〈
f (z) – z,xnk – z

〉
=

〈
f (z) – z,w – z

〉 ≤ .

Next, we show that xn → z. From (), we get

‖xn+ – z‖ =

〈
xn+ – αnf (xn) –

n∑
i=

(αi– – αi)Viyn,xn+ – z

〉

+

〈
αnf (xn) +

n∑
i=

(αi– – αi)Viyn – z,xn+ – z

〉

≤
〈
αnf (xn) +

n∑
i=

(αi– – αi)Viyn – z,xn+ – z

〉

≤ αn
〈
f (xn) – f (z),xn+ – z

〉
+ αn

〈
f (z) – z,xn+ – z

〉
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+
n∑
i=

(αi– – αi)〈Viyn – z,xn+ – z〉

≤ αn
∥∥f (xn) – f (z)

∥∥‖xn+ – z‖ + αn
〈
f (z) – z,xn+ – z

〉
+

n∑
i=

(αi– – αi)‖Viyn – z‖‖xn+ – z‖

≤ αnρ‖xn – z‖‖xn+ – z‖ + αn
〈
f (z) – z,xn+ – z

〉
+

n∑
i=

(αi– – αi)‖yn – z‖‖xn+ – z‖

≤ αnρ‖xn – z‖‖xn+ – z‖ + αn
〈
f (z) – z,xn+ – z

〉
+ ( – αn)

{
βn‖Sxn – Sz‖ + βn‖Sz – z‖ + ( – βn)‖zn – z‖}‖xn+ – z‖

≤ αnρ‖xn – z‖‖xn+ – z‖ + αn
〈
f (z) – z,xn+ – z

〉
+ ( – αn)

{
βn‖xn – z‖ + βn‖Sz – z‖ + ( – βn)‖xn – z‖}‖xn+ – z‖

≤ (
 – αn( – ρ)

)‖xn – z‖‖xn+ – z‖ + αn
〈
f (z) – z,xn+ – z

〉
+ ( – αn)βn‖Sz – z‖‖xn+ – z‖

≤  – αn( – ρ)


(‖xn – z‖ + ‖xn+ – z‖) + αn
〈
f (z) – z,xn+ – z

〉
+ ( – αn)βn‖Sz – z‖‖xn+ – z‖,

which implies that

‖xn+ – z‖ ≤
(
 –

αn( – ρ)
 + αn( – ρ)

)
‖xn – z‖ + αn

 + αn( – ρ)
〈
f (z) – z,xn+ – z

〉

+
( – αn)βn

 + αn( – ρ)
‖Sz – z‖‖xn+ – z‖

≤
(
 –

αn( – ρ)
 + αn( – ρ)

)
‖xn – z‖ + αn( – ρ)

 + αn( – ρ)

{


 – ρ

〈
f (z) – z,xn+ – z

〉

+
( – αn)βn

αn( – ρ)
‖Sz – z‖‖xn+ – z‖

}
.

Let γn = αn(–ρ)
+αn(–ρ) and δn = αn(–ρ)

+αn(–ρ) { 
–ρ

〈f (z) – z,xn+ – z〉 + (–αn)βn
αn(–ρ) ‖Sz – z‖‖xn+ – z‖}.

Since

∞∑
n=

αn =∞,  + αn( – ρ)≤  and

lim sup
n→∞

{


 – ρ

〈
f (z) – z,xn+ – z

〉
+
( – αn)βn

αn( – ρ)
‖Sz – z‖‖xn+ – z‖

}
≤ ,

it follows that

∞∑
n=

γn =∞ and lim sup
n→∞

δn

γn
≤ .

Thus all the conditions of Lemma . are satisfied. Hence we deduce that xn → z.
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P�∗∩�∩F(T)f is a contraction, there exists a unique z ∈ C such that z = P�∗∩�∩F(T)f (z).
From (), it follows that z is the unique solution of problem (). This completes the
proof. �

Theorem . Let H and H be two real Hilbert spaces and C ⊆ H and Q ⊆ H be
nonempty closed convex subsets of Hilbert spaces H and H, respectively. Let A :H →H

be a bounded linear operator. Let D : C →H be an α-inverse strongly monotone mapping.
Assume that F : C × C → R and F : Q × Q → R are the bifunctions satisfying Assump-
tion . and F is upper semicontinuous in the first argument. Let S : C → H be a nonex-
pansive mapping and {Ti}∞i= : C → C be a countable family of ki-strict pseudo-contraction
mappings such that F(T) ∩ �∗ ∩ � �= ∅, where F(T) = ⋂∞

i= F(Ti). Let f be a ρ-contraction
mapping. For a given x ∈ C arbitrarily, let the iterative sequences {un}, {xn}, {yn} and {zn}
be generated by

un = TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
;

zn = PC[un – λnAun];

yn = βnSxn + ( – βn)zn;

xn+ = PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Viyn

]
, ∀n≥ ,

()

where Vi = kiI + ( – ki)Ti,  ≤ ki < , {rn} ⊂ (,∞), {λn} ⊂ (, α) and γ ∈ (, /L), L is
the spectral radius of the operator A∗A and A∗ is the adjoint of A and α = , {αn} is a
strictly decreasing sequence in (, ) and {βn} is a sequence in (, ) satisfying the following
conditions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞,

(b) limn→∞ βn
αn

= τ ∈ (,∞),
(c)

∑∞
n=(αn– – αn) < ∞ and

∑∞
n= |βn– – βn| < ∞,

(d) limn→∞

μ |rn–rn–|+|λn–λn–|+|αn––αn|+|βn––βn|

αnβn
= ,

(e) there exists a constant K >  such that 
αn

| 
βn

– 
βn–

| ≤ K ,
(f ) lim infn→∞ rn >  and

∑∞
n= |rn– – rn| < ∞,

(g) lim infn→∞ λn < lim supn→∞ λn < α and
∑∞

n= |λn– – λn| <∞.
Then the sequence {xn} generated by Algorithm () converges strongly to x∗ ∈ �∗ ∩ � ∩
F(T), which is the unique solution of the variational inequality

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥ , ∀x ∈ �∗ ∩ � ∩ F(T). ()

Proof From limn→∞(βn/αn) = τ ∈ (,∞), without loss of generality, we can assume that
βn ≤ ( + τ )αn for all n ≥ . Hence βn → . By a similar argument as that in Lemmas .
and ., we can deduce that {xn} is bounded, limn→∞ ‖xn+ –xn‖ = , limn→∞ ‖xn – zn‖ = 
(see ()) and (I –Vi)xn → . Then we have

‖yn – xn‖ ≤ βn‖xn – Sxn‖ + ( – βn)‖xn – zn‖ →  as n→ ∞. ()
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It follows that for all i ≥ ,

‖yn –Vixn‖ ≤ ‖yn – xn‖ + ‖xn –Vixn‖ →  as n→ ∞. ()

From () and (), we have

‖yn –Viyn‖ ≤ ‖yn –Vixn‖+ ‖Vixn –Viyn‖ ≤ ‖yn –Vixn‖+ ‖yn – xn‖ →  as n→ ∞.

Set wn = αnf (xn) +
∑n

i=(αi– – αi)Viyn. From () and (), we obtain

‖xn+ – xn‖
βn

≤ ‖wn –wn–‖
βn

≤ (
 – ( – ρ)αn

)‖xn – xn–‖
βn

+M
(

μ

|rn – rn–|
βn

+
|λn – λn–|

βn
+

|βn – βn–|
βn

+
|αn – αn–|

βn

)

=
(
 – ( – ρ)αn

)‖xn – xn–‖
βn–

+
(
 – ( – ρ)αn

)‖xn – xn–‖
(


βn

–


βn–

)

+M
(

μ

|rn – rn–|
βn

+
|λn – λn–|

βn
+

|βn – βn–|
βn

+
|αn – αn–|

βn

)

≤ (
 – ( – ρ)αn

)‖xn – xn–‖
βn–

+ ‖xn – xn–‖
∣∣∣∣ 
βn

–


βn–

∣∣∣∣
+M

(

μ

|rn – rn–|
βn

+
|λn – λn–|

βn
+

|βn – βn–|
βn

+
|αn – αn–|

βn

)

≤ (
 – ( – ρ)αn

)‖xn – xn–‖
βn–

+ αnK‖xn – xn–‖

+M
(

μ

|rn – rn–|
βn

+
|λn – λn–|

βn
+

|βn – βn–|
βn

+
|αn – αn–|

βn

)

≤ (
 – ( – ρ)αn

)‖wn– –wn–‖
βn–

+ αnK‖xn – xn–‖

+M
(

μ

|rn – rn–|
βn

+
|λn – λn–|

βn
+

|βn – βn–|
βn

+
|αn – αn–|

βn

)
.

Let γn = ( – ρ)αn and δn = αnK‖xn – xn–‖ +M( 
μ

|rn–rn–|
βn

+ |λn–λn–|
βn

+ |βn–βn–|
βn

+ |αn–αn–|
βn

).
From conditions (a) and (d), we have

∞∑
n=

γn =∞ and lim
n→∞

δn

γn
= .

By Lemma ., we obtain

lim
n→∞

‖xn+ – xn‖
βn

= , lim
n→∞

‖wn+ –wn‖
βn

= lim
n→∞

‖wn+ –wn‖
αn

= .
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From (), we have

xn+ = PC[wn] –wn + αnf (xn) +
n∑
i=

(αi– – αi)(Viyn – yn) + ( – αn)yn.

Hence it follows that

xn – xn+ = ( – αn)xn + αnxn

–

(
PC[wn] –wn + αnf (xn) +

n∑
i=

(αi– – αi)(Viyn – yn) + ( – αn)yn

)

= ( – αn)
[
βn(xn – Sxn) + ( – βn)(xn – zn)

]
+

(
wn – PC[wn]

)
+

n∑
i=

(αi– – αi)(yn –Viyn) + αn
(
xn – f (xn)

)
,

and hence

xn – xn+
( – αn)βn

= xn – Sxn +
( – βn)

βn
(xn – zn) +


( – αn)βn

(
wn – PC[wn]

)

+


( – αn)βn

n∑
i=

(αi– – αi)(yn –Viyn) +
αn

( – αn)βn

(
xn – f (xn)

)
.

Let vn = xn–xn+
(–αn)βn . For any z ∈ �∗ ∩ � ∩ F(T), we have

〈vn,xn – z〉 = 
( – αn)βn

〈
wn – PC[wn],PC[wn–] – z

〉
+

αn

( – αn)βn

〈
(I – f )xn,xn – z

〉

+ 〈xn – Sxn,xn – z〉 + ( – βn)
βn

〈xn – zn,xn – z〉

+


( – αn)βn

n∑
i=

(αi– – αi)〈yn –Viyn,xn – z〉. ()

Since S is a nonexpansive mapping, f is a ρ-contraction mapping and Vi is a ki-strict
pseudo-contraction mapping. Then (I – S) and (I – Vi) are monotone and f is strongly
monotone with a coefficient ( – ρ). We can deduce

〈xn – Sxn,xn – z〉 = 〈
(I – S)xn – (I – S)z,xn – z

〉
+

〈
(I – S)z,xn – z

〉
≥ 〈

(I – S)z,xn – z
〉
, ()〈

(I – f )xn,xn – z
〉
=

〈
(I – f )xn – (I – f )z,xn – z

〉
+

〈
(I – f )z,xn – z

〉
≥ ( – ρ)‖xn – z‖ + 〈

(I – f )z,xn – z
〉
, ()〈

(I –Vi)yn,xn – z
〉
=

〈
(I –Vi)yn – (I –Vi)z,xn – yn

〉
+

〈
(I –Vi)yn – (I –Vi)z, yn – z

〉
≥ 〈

(I –Vi)yn – (I –Vi)z,xn – yn
〉

=
〈
(I –Vi)yn,xn – yn

〉
=

〈
(I –Vi)yn,βn(xn – Sxn) + ( – βn)(xn – zn)

〉
. ()
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From (), we get

〈
wn – PC[wn],PC[wn–] – z

〉
=

〈
wn – PC[wn],PC[wn–] – PC[wn]

〉
+

〈
wn – PC[wn],PC[wn] – z

〉
≥ 〈

wn – PC[wn],PC[wn–] – PC[wn]
〉
.

Then, from ()-(), we have

〈vn,xn – z〉 ≥ 
( – αn)βn

〈
wn – PC[wn],PC[wn–] – PC[wn]

〉
+

αn

( – αn)βn

〈
(I – f )z,xn – z

〉

+
〈
(I – S)z,xn – z

〉
+
( – βn)

βn
〈xn – zn,xn – z〉

+
( – βn)

( – αn)βn

n∑
i=

(αi– – αi)
〈
(I –Vi)yn,xn – zn

〉

+


( – αn)

n∑
i=

(αi– – αi)
〈
(I –Vi)yn,xn – Sxn

〉
+

( – ρ)αn

( – αn)βn
‖xn – z‖.

Then we obtain

‖xn – z‖ ≤ 
( – ρ)αn

∥∥wn – PC[wn]
∥∥‖wn– –wn‖ – 

( – ρ)
〈
(I – f )z,xn – z

〉

+
( – αn)βn

( – ρ)αn

(〈vn,xn – z〉 – 〈
(I – S)z,xn – z

〉)

–
( – βn)( – αn)

( – ρ)αn
〈xn – zn,xn – z〉

–
( – βn)
( – ρ)αn

n∑
i=

(αi– – αi)
〈
(I –Vi)yn,xn – zn

〉

–
βn

( – ρ)αn

n∑
i=

(αi– – αi)
〈
(I –Vi)yn,xn – Sxn

〉

≤ ‖wn– –wn‖
( – ρ)αn

∥∥wn – PC[wn]
∥∥ –


( – ρ)

〈
(I – f )z,xn – z

〉

+
( – αn)βn

( – ρ)αn

(〈vn,xn – z〉 – 〈
(I – S)z,xn – z

〉)

+


( – ρ)
( – βn)

βn

βn

αn
‖xn – zn‖‖xn – z‖

+


( – ρ)
( – βn)

βn

βn

αn

n∑
i=

(αi– – αi)
∥∥(I –Vi)yn

∥∥‖xn – zn‖

–
βn

( – ρ)αn

n∑
i=

(αi– – αi)
〈
(I –Vi)yn,xn – Sxn

〉
.

By condition (e) of Theorem ., there exists a constant N >  such that –βn
βn

≤ N . Since
limn→∞ ‖xn – zn‖ = , vn → , (I – Vi)yn →  and ‖wn––wn‖

αn
→  as n → ∞, then ev-

ery weak cluster point of {xn} is also a strong cluster point. Since {xn} is bounded, by
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Lemma . there exists a subsequence {xnk } of {xn} converging to a point x∗ ∈ F(T), and
by some similar arguments in Theorem ., we can show that x∗ ∈ �∗ ∩ � ∩ F(T).
From ()-(), it follows that for any z ∈ �∗ ∩ � ∩ F(T),

〈
(I – f )xnk ,xnk – z

〉
=
( – αnk )βnk

αnk
〈vnk ,xnk – z〉 – 

αnk

〈
wnk – PC[wnk ],PC[wnk–] – z

〉

–
( – αnk )βnk

αnk
〈xnk – Sxnk ,xnk – z〉 – ( – αnk )( – βnk )

αnk
〈xnk – znk ,xnk – z〉

–


αnk

n∑
i=

(αi– – αi)〈ynk –Viynk ,xnk – z〉

≤ ( – αnk )βnk
αnk

〈vnk ,xnk – z〉 + 
αnk

∥∥wnk – PC[wnk ]
∥∥‖wnk– –wnk‖

–
( – αnk )βnk

αnk
〈xnk – Sxnk ,xnk – z〉 + ( – βnk )

βnk

βnk
αnk

‖xnk – znk‖‖xnk – z‖

+
( – βnk )

βnk

βnk
αnk

nk∑
i=

(αi– – αi)
∥∥(I –Vi)ynk

∥∥‖xnk – znk‖

–
βnk
αnk

nk∑
i=

(αi– – αi)
〈
(I –Vi)ynk ,xnk – Sxnk

〉
. ()

Since limn→∞ ‖xn – zn‖ = , vn → , (I – Vi)yn →  and ‖wn––wn‖
αn

→ , letting k → ∞ in
(), we obtain

〈
(I – f )x∗,x∗ – z

〉 ≤ –τ
〈
x∗ – Sx∗,x∗ – z

〉
,

i.e.,

〈

τ
(I – f )x∗ + (I – S)x∗, z – x∗

〉
≥ .

In the following, we show that () has a unique solution. Assume that x′ is another solu-
tion. Then we have

〈
(I – f )x′,x′ – x∗〉 ≤ –τ

〈
x′ – Sx′,x′ – x∗〉, ()〈

(I – f )x∗,x∗ – x′〉 ≤ –τ
〈
x∗ – Sx∗,x∗ – x′〉. ()

Adding () and (), we get

( – ρ)
∥∥x′ – x∗∥∥ ≤ 〈

(I – f )x′ – (I – f )x∗,x′ – x∗〉
≤ –τ

〈
(I – S)x′ – (I – S)x∗,x′ – x∗〉

≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/278


Bnouhachem Fixed Point Theory and Applications 2013, 2013:278 Page 25 of 27
http://www.fixedpointtheoryandapplications.com/content/2013/1/278

Then x′ = x∗. Since () has a unique solution, it follows that ww(xn) = {x∗}. Since every
weak cluster point of {xn} is also a strong cluster point, we conclude that {xn} → x∗. This
completes the proof. �

4 Applications
In this section, we obtain the following results by using a special case of the proposed
method. The first result can be viewed as an extension and improvement of the method
of Gu et al. [] for finding an approximate element of the common set of solutions of a
split equilibrium problem and a hierarchical fixed point problem in a real Hilbert space.

Corollary . Let H and H be two real Hilbert spaces and C ⊆ H and Q ⊆ H be
nonempty closed convex subsets of Hilbert spaces H and H, respectively. Let A :H →H

be a bounded linear operator. Let D : C →H be an α-inverse strongly monotone mapping.
Assume that F : C × C → R and F : Q × Q → R are the bifunctions satisfying Assump-
tion . and F is upper semicontinuous in the first argument. Let S : C → H be a nonex-
pansive mapping and {Ti}∞i= : C → C be a countable family of ki-strict pseudo-contraction
mappings such that F(T) ∩ �∗ ∩ � �= ∅, where F(T) = ⋂∞

i= F(Ti). Let f be a ρ-contraction
mapping. For a given x ∈ C arbitrarily, let the iterative sequences {un}, {xn}, {yn} and {zn}
be generated by

un = TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
;

yn = βnSxn + ( – βn)un; ()

xn+ = PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Tiyn

]
, ∀n≥ ,

where {rn} ⊂ (,∞) and γ ∈ (, /L), L is the spectral radius of the operator A∗A and A∗

is the adjoint of A and α = , {αn} is a strictly decreasing sequence in (, ) and {βn} is a
sequence in (, ) satisfying the following conditions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞,

(b) limn→∞ βn
αn

= τ ∈ (,∞),
(c)

∑∞
n=(αn– – αn) < ∞ and

∑∞
n= |βn– – βn| < ∞,

(d) limn→∞

μ |rn–rn–|+|αn––αn|+|βn––βn|

αnβn
= ,

(e) there exists a constant K >  such that 
αn

| 
βn

– 
βn–

| ≤ K ,
(f ) lim infn→∞ rn >  and

∑∞
n= |rn– – rn| < ∞.

Then the sequence {xn} generated by Algorithm () converges strongly to x∗ ∈ � ∩ F(T),
which is the unique solution of the variational inequality

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥ , ∀x ∈ � ∩ F(T).

Proof Put λn =  and ki = , ∀i ≥  in Theorem .. Then conclusion of Corollary . is
obtained. �

The following result can be viewed as an extension and improvement of the method of
Yao et al. [] for finding an approximate element of the common set of solutions of a split
equilibrium problem and a hierarchical fixed point problem in a real Hilbert space.
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Corollary . Let H and H be two real Hilbert spaces and C ⊆ H and Q ⊆ H be
nonempty closed convex subsets of Hilbert spaces H and H, respectively. Let A :H →H

be a bounded linear operator. Let D : C →H be an α-inverse strongly monotone mapping.
Assume that F : C × C → R and F : Q × Q → R are the bifunctions satisfying Assump-
tion . and F is upper semicontinuous in the first argument. Let S : C → H be a non-
expansive mapping and T : C → C be a k-strict pseudo-contraction mapping such that
F(T) ∩ � �= ∅. Let f be a ρ-contraction mapping. For a given x ∈ C arbitrarily, let the
iterative sequences {un}, {xn}, {yn} and {zn} be generated by

un = TF
rn

(
xn + γA∗(TF

rn – I
)
Axn

)
;

yn = βnSxn + ( – βn)un; ()

xn+ = PC
[
αnf (xn) + ( – αn)Tyn

]
, ∀n≥ ,

where {rn} ⊂ (,∞) and γ ∈ (, /L), L is the spectral radius of the operator A∗A and A∗

is the adjoint of A and α = , {αn} is a strictly decreasing sequence in (, ) and {βn} is a
sequence in (, ) satisfying the following conditions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞,

(b) limn→∞ βn
αn

= τ ∈ (,∞),
(c)

∑∞
n=(αn– – αn) < ∞ and

∑∞
n= |βn– – βn| < ∞,

(d) limn→∞

μ |rn–rn–|+|αn––αn|+|βn––βn|

αnβn
= ,

(e) there exists a constant K >  such that 
αn

| 
βn

– 
βn–

| ≤ K ,
(f ) lim infn→∞ rn >  and

∑∞
n= |rn– – rn| < ∞.

Then the sequence {xn} generated by Algorithm () converges strongly to x∗ ∈ � ∩ F(T),
which is the unique solution of the variational inequality

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥ , ∀x ∈ � ∩ F(T).

Proof Put λn = , ki =  and Ti = T , ∀i ≥  in Theorem .. Then conclusion of Corol-
lary . is obtained. �
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