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Abstract
In this article, we introduce the notion of a Chatterjea-type cyclic weakly contraction
and derive the existence of a fixed point for such mappings in the setup of complete
metric spaces. Our result extends and improves some fixed point theorems in the
literature. Example is given to support the usability of the result.
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1 Introduction and preliminaries
It is well known that the fixed point theorem of Banach, for contraction mappings, is one
of the pivotal results in analysis. It has been used in many different fields of mathematics
but suffers from one major drawback. More accurately, in order to use the contractive
condition, a self-mapping T must be Lipschitz continuous, with the Lipschitz constant
L < . In particular, T must be continuous at all points of its domain.
A natural question arises:
Could we find contractive conditions which will imply the existence of a fixed point in a

complete metric space but will not imply continuity?
Kannan [, ] proved the following result giving an affirmative answer to the above ques-

tion.

Theorem . If (X,d) is a complete metric space and the mapping T : X → X satisfies

d(Tx,Ty) ≤ k
[
d(x,Tx) + d(y,Ty)

]
, (.)

where  < k < 
 and x, y ∈ X, then T has a unique fixed point.

The mappings satisfying (.) are called Kannan-type mappings.
A similar type of contractive condition has been studied by Chatterjea []. He proved

the following result.

Theorem . If (X,d) is a complete metric space and T : X → X satisfies

d(Tx,Ty) ≤ k
[
d(x,Ty) + d(y,Tx)

]
, (.)

where  < k < 
 and x, y ∈ X, then T has a unique fixed point.
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In Theorems . and ., there is no the requirement for the continuity of T .
Alber andGuerre-Delabriere [] introduced the concept ofweakly contractivemappings

and proved the existence of fixed points for single-valued weakly contractive mappings in
Hilbert spaces. Thereafter, in , Rhoades [] proved the fixed point theorem which is
one of the generalizations of Banach’s contraction mapping principle because the weakly
contractions contain contractions as a special case, and he also showed that some results of
[] are true for any Banach space. In fact, weakly contractive mappings are closely related
to the mappings of Boyd and Wong [] and of Reich types [].
Fixed point problems involving different types of contractive type inequalities have been

studied by many authors (see [–] and the references cited therein).
In [], Kirk et al. introduced the following notion of a cyclic representation and char-

acterized the Banach contraction principle in the context of a cyclic mapping.

Definition . [] LetX be a non-empty set andT : X → X be an operator. By definition,
X =

⋃m
i=Xi is a cyclic representation of X with respect to T if

(a) Xi; i = , . . . ,m are non-empty sets;
(b) T(X)⊂ X, . . . ,T(Xm–) ⊂ Xm, T(Xm) ⊂ X.

It is the aim of this paper to introduce the notion of a cyclic weakly Chatterjea-type con-
traction and then derive a fixed point theorem for such cyclic contractions in the frame-
work of complete metric spaces.

2 Main results
To state and prove our main results, we will introduce our notion of a Chatterjea-type
cyclic weakly contraction in a metric space. In this respect, let � denote the set of all
monotone increasing continuous functions μ : [,∞)→ [,∞), with μ(t) = , if and only
if t = , and let � denote the set of all lower semi-continuous functions ψ : [,∞)  →
[,∞), with ψ(t, t) > , for t, t ∈ (,∞) and ψ(, ) = .

Definition . Let (X,d) be a metric space,m be a natural number, A,A, . . . ,Am be non-
empty subsets of X and Y =

⋃m
i=Ai. An operator T : Y → Y is called a Chatterjea-type

cyclic weakly contraction if
()

⋃m
i=Ai is a cyclic representation of Y with respect to T ;

() μ(d(Tx,Ty))≤ μ(  [d(x,Ty) + d(y,Tx)]) –ψ(d(x,Ty),d(y,Tx))
for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A, μ ∈ � and ψ ∈ � .

Theorem . Let (X,d) be a complete metric space, m ∈ N, A,A, . . . ,Am be non-empty
closed subsets of X and Y =

⋃m
i=Ai. Suppose that T is a Chatterjea-type cyclic weakly con-

traction. Then T has a fixed point z ∈ ⋂n
i=Ai.

Proof Let x ∈ X. We can construct a sequence xn+ = Txn, n = , , , . . . .
If there exists n ∈ N such that xn+ = xn , hence the result. Indeed, we can see that

Txn = xn+ = xn .
Now, we assume that xn+ �= xn for any n = , , , . . . . As X =

⋃m
i=Ai, for any n > , there

exists in ∈ {, , . . . ,m} such that xn– ∈ Ain and xn ∈ Ain+ . Since T is a Chatterjea-type
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cyclic weakly contraction, we have

μ
(
d(xn+,xn)

)
= μ

(
d(Txn,Txn–)

)

≤ μ

(


[
d(xn,Txn–) + d(xn–,Txn)

])

–ψ
(
d(xn,Txn–),d(xn–,Txn)

)

= μ

(


d(xn–,xn+)

)
–ψ

(
,d(xn–,xn+)

)

≤ μ

(


d(xn–,xn+)

)
. (.)

Since μ is a non-decreasing function, for all n = , , . . . , we have

d(xn+,xn) ≤ 

d(xn–,xn+) ≤ 


[
d(xn–,xn) + d(xn,xn+)

]
. (.)

This implies that d(xn+,xn) ≤ d(xn,xn–). Thus {d(xn+,xn)} is a monotone decreasing se-
quence of non-negative real numbers and hence is convergent. Therefore, there exists
r ≥  such that d(xn+,xn)→ r. Letting n→ ∞ in (.), we obtain that limd(xn–,xn+) = r.
Letting n → ∞ in (.) and using the continuity of μ and lower semi-continuity of ψ ,

we obtain that μ(r) ≤ μ(r) –ψ(, r). This implies that ψ(r, ) = , hence r = . Thus we
have proved that

d(xn+,xn) → .

Now, we show that {xn} is a Cauchy sequence. For this purpose, we prove the following
result first.

Lemma . For every positive ε, there exists a natural number n such that if r,q ≥ n with
r – q ≡ (modm), then d(xr ,xq) < ε.

Proof Assume the contrary. Thus there exists ε >  such that for any n ∈ N, we can find
rn > qn ≥ n with rn – qn ≡ (modm) satisfying d(xrn ,xqn ) ≥ ε.
Now, we take n > m. Then, corresponding to qn ≥ n, we can choose rn such that it is the

smallest integer with rn > qn satisfying rn – qn ≡ (modm) and d(xrn ,xqn ) ≥ ε. Therefore,
d(xrn–m ,xqn ) < ε. By using the triangular inequality, we have

ε ≤ d(xqn ,xrn )

≤ d(xqn ,xrn–m ) +
m∑
i=

d(xrn–i ,xrn–i+ )

< ε +
m∑
i=

d(xrn–i ,xrn–i+ ).

Letting n→ ∞ and using d(xn+,xn) → , we obtain

limd(xqn ,xrn ) = ε. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/28
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Again, by the triangular inequality,

ε ≤ d(xqn ,xrn)

≤ d(xqn ,xqn+ ) + d(xqn+ ,xrn+ ) + d(xrn+ ,xrn )

≤ d(xqn ,xqn+ ) + d(xqn+ ,xqn ) + d(xqn ,xrn ) + d(xrn ,xrn+ ) + d(xrn+ ,xrn ).

Letting n → ∞ and using d(xn+,xn)→ , we get

limd(xqn+ ,xrn+ ) = ε. (.)

Consider

d(xqn ,Txrn ) = d(xqn ,xrn+ )

≤ d(xqn ,xrn ) + d(xrn ,xrn+ ), (.)

and

d(xrn ,Txqn ) = d(xrn ,xqn+ )

≤ d(xrn ,xqn ) + d(xqn ,xqn+ ). (.)

On taking n→ ∞ in inequalities (.) and (.), we have

lim
n→∞d(xqn ,Txrn ) = ε, (.)

and

lim
n→∞d(xrn ,Txqn ) = ε. (.)

As xqn and xrn lie in different adjacently labeled sets Ai and Ai+ for certain  ≤ i ≤ m,
using the fact that T is a Chatterjea-type cyclic weakly contraction, we obtain

μ(ε) ≤ μ
(
d(xqn+ ,xrn+ )

)
= μ

(
d(Txqn ,Txrn )

)

≤ μ

(


[
d(xqn ,Txrn ) + d(xrn ,Txqn )

])

–ψ
(
d(xqn ,Txrn ),d(xrn ,Txqn )

)

= μ

(


[
d(xqn ,xrn+ ) + d(xrn ,xqn+ )

])

–ψ
(
d(xqn ,xrn+ ),d(xrn ,xqn+ )

)
. (.)

On taking n → ∞ in (.), using (.) and (.), the continuity of μ and lower semi-
continuity of ψ , we get that

μ(ε) ≤ μ

(


[ε + ε]

)
–ψ(ε, ε).

http://www.fixedpointtheoryandapplications.com/content/2013/1/28
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Consequently, ψ(ε, ε) ≤ , which is contradiction with ε > . Hence the result is
proved. �

Now, using Lemma ., we will show that {xn} is a Cauchy sequence in Y . Fix ε > . By
Lemma ., we can find n ∈N such that r,q ≥ n with r – q ≡ (modm)

d(xr ,xq) ≤ ε


. (.)

Since limd(xn,xn+) = , we can also find n ∈ N such that

d(xn,xn+) ≤ ε

m
(.)

for any n≥ n.
Assume that r, s ≥ max{n,n} and s > r. Then there exists k ∈ {, , . . . ,m} such that

s – r ≡ k(modm). Hence s – r + t = (modm) for t =m – k + . So, we have

d(xr ,xs) ≤ d(xr ,xs+j) + d(xs+j,xs+j–) + · · · + d(xs+,xs). (.)

Using (.), (.) and (.), we obtain

d(xr ,xs) ≤ ε


+ j× ε

m
≤ ε


+m× ε

m
= ε. (.)

Hence {xn} is a Cauchy sequence in Y . Since Y is closed in X, then Y is also complete and
there exists x ∈ Y such that limxn = x.
Now, we will prove that x is a fixed point of T .
As Y =

⋃m
i=Ai is a cyclic representation of Y with respect to T , the sequence {xn} has

infinite terms in each Ai for i = {, , . . . ,m}. Suppose that x ∈ Ai, Tx ∈ Ai+ and we take a
subsequence {xnk } of {xn} with xnk ∈ Ai. By using the contractive condition, we can obtain

μ
(
d(xnk+,Tx)

)
= μ

(
d(Txnk ,Tx)

)

≤ μ

(


[
d(xnk ,Tx) + d(x,Txnk )

])

–ψ
(
d(xnk ,Tx),d(x,Txnk )

)

= μ

(


[
d(xnk ,Tx) + d(x,xnk+)

])

–ψ
(
d(xnk ,Tx),d(x,xnk+)

)
.

Letting n → ∞ and using the continuity of μ and lower semi-continuity of ψ , we have

μ
(
d(x,Tx)

) ≤ μ

(


d(x,Tx)

)
–ψ

(
d(x,Tx), 

)
,

which is a contradiction unless d(x,Tx) = . Hence x is a fixed point of T .
Now, we will prove the uniqueness of the fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/28
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Suppose that x and x (x �= x) are twofixed points ofT . Using the contractive condition
and the continuity of μ and lower semi continuity of ψ , we have

μ
(
d(x,x)

)
= μ

(
d(Tx,Tx)

)

≤ μ

(


[
d(x,Tx) + d(x,Tx)

])
–ψ

(
d(x,Tx),d(x,Tx)

)

= μ

(


[
d(x,x) + d(x,x)

])
–ψ

(
d(x,x),d(x,x)

)

= μ
(
d(x,x)

)
–ψ

(
d(x,x),d(x,x)

)
≤ μ

(
d(x,x)

)
,

which is a contradiction unless x = x. Hence the main result is proved. �

If μ(a) = a, then we have the following result.

Corrollary . Let (X,d) be a complete metric space, m ∈N, A,A, . . . ,Am be non-empty
closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator such that

()
⋃m

i=Ai is a cyclic representation of Y with respect to T ;
() d(Tx,Ty) ≤ 

 [d(x,Ty) + d(y,Tx)] –ψ(d(x,Ty),d(y,Tx))
for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A and ψ ∈ � . Then T has a fixed
point z ∈ ⋂n

i=Ai.

If ψ(a,b) = (  – k)(a + b), where k ∈ [,  ), we have the following result.

Corrollary . Let (X,d) be a complete metric space,m ∈N, A,A, . . . ,Am be non-empty
closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator such that

()
⋃m

i=Ai is a cyclic representation of Y with respect to T ;
() there exists k ∈ [,  ) such that d(Tx,Ty) ≤ k[d(x,Ty) + d(y,Tx)]

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,where Am+ = A.Then T has a fixed point z ∈ ⋂n
i=Ai.

3 Applications
Other consequences of our results, for mappings involving contractions of integral type,
are given in the following. In this respect, denote by � the set of functions μ : [,∞) →
[,∞) satisfying the following hypotheses:
(h) μ is a Lebesgue-integrable mapping on each compact of [,∞);
(h) for any ε > , we have

∫ ε

 μ(t) > .

Corrollary . Let (X,d) be a complete metric space,m ∈ N, A,A, . . . ,Am be non-empty
closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator such that

()
⋃m

i=Ai is a cyclic representation of Y with respect to T ;
() there exists k ∈ [,  ) such that

∫ d(Tx,Ty)


α(s)ds≤ k

∫ d(x,Ty)+d(y,Tx)


α(s)ds

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,where Am+ = A and α ∈ �. Then T has a fixed point
z ∈ ⋂n

i=Ai.

http://www.fixedpointtheoryandapplications.com/content/2013/1/28
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If we take Ai = X, i = , , . . . ,m, we obtain the following result.

Corrollary . Let (X,d) be a complete metric space and T : X → X be a mapping such
that

∫ d(Tx,Ty)


α(s)ds≤ k

∫ d(x,Ty)+d(y,Tx)


α(s)ds,

for any xy ∈ X, k ∈ [,  ) and α ∈ �. Then T has a fixed point z ∈ ⋂n
i=Ai.

Example . Let X be a subset in R endowed with the usual metric. Suppose A = [, ],
A = [,  ] and Y =

⋃
i=Ai. Define T : Y → Y such that Tx = x

 for all x ∈ Y . It is clear
that

⋃
i=Ai is a cyclic representation of Y with respect to T . Furthermore, if μ : [,∞) →

[,∞) is given as μ(t) = t and ψ : [,∞)  → [,∞) is given by ψ(x, y) = 
 (x + y), then

ψ ∈ � .
Now, we prove that T satisfies the inequality of Chatterjea-type cyclic weakly contrac-

tion, i.e., μ(d(Tx,Ty)) ≤ μ(  [d(x,Ty) + d(y,Tx)]) –ψ(d(x,Ty),d(y,Tx)). To see this fact, we
examine three cases.
Case . Suppose that x≥ y. Then

μ
(
d(Tx,Ty)

)
= μ

(∣∣∣∣x –
y


∣∣∣∣
)
=
x – y


(.)

and

μ

(


[
d(x,Ty) + d(y,Tx)

])
–ψ

(
d(x,Ty),d(y,Tx)

)

= μ

(



[∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
])

–ψ

(∣∣∣∣x – y


∣∣∣∣,
∣∣∣∣y – x



∣∣∣∣
)

=



[∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
]
–



[∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
]

=



[∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣y – x



∣∣∣∣
]
. (.)

If y < x
 , then

x – y


≤ 


[
x –

y

+
x

– y

]

=


(x – y).

Hence, the given inequality is satisfied.
If y≥ x

 , then

x – y


≤ 


[
x –

y

+ y –

x


]

=


(x + y).

Hence the given inequality is satisfied.

http://www.fixedpointtheoryandapplications.com/content/2013/1/28
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Case . Suppose that y
 ≤ x ≤ y. Then from (.) and (.), we have

x – y


≤ 


[
x –

y

+ y –

x


]

=


(x + y).

Hence the given inequality is satisfied.
Case . Finally, suppose that y

 ≥ x. Then from (.) and (.), we have

μ
(
d(Tx,Ty)

)
= μ

(∣∣∣∣x –
y


∣∣∣∣
)
=
y – x


and

x – y


≤ 


[
x –

y

+ y –

x


]

=


(x + y).

Hence the given inequality is satisfied.
Therefore, all the conditions of Theorem . are satisfied, and so T has a fixed point

(which is z =  ∈ ⋂
i=Ai).
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