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Abstract

A new class of fuzzy general nonlinear set-valued mixed quasi-variational inclusions
frameworks for a perturbed Ishikawa-hybrid quasi-proximal point algorithm using the
notion of (A, n)-accretive is developed. Convergence analysis for the algorithm of
solving a fuzzy nonlinear set-valued inclusions problem and existence analysis of a
solution for the problem is explored along with some results on the resolvent
operator corresponding to an (A, n)-accretive mapping due to Lan et al. The result that
the sequence {x,}72, generated by the perturbed Ishikawa-hybrid quasi-proximal
point algorithm converges linearly to a solution of the fuzzy general nonlinear
set-valued mixed quasi-variational inclusions with the convergence rate ¢ is proved.
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1 Introduction
The set-valued inclusions problem, which was introduced and discussed by Bella [1],
Huang et al. [2] and Jeong [3], is a useful extension of the mathematics analysis. And the
variational inclusion (inequality) is an important context in the set-valued inclusions prob-
lem. It provides us with a unified, natural, novel, innovative and general technique to study
a wide class of problems arising in different branches of mathematical and engineering sci-
ences. Various variational inclusions have been intensively studied in recent years. Ding
[4], Verma [5], Huang [6], Fang and Huang [7], Lan et al. [8], Fang et al. [9], Zhang et al.
[10] introduced the concepts of n-subdifferential operators, maximal 7-monotone opera-
tors, H-monotone operators, A-monotone operators, (H, n)-monotone operators, (4, )-
accretive mappings, (G, n)-monotone operators and defined resolvent operators associ-
ated with them, respectively. Moreover, by using the resolvent operator technique, many
authors constructed some approximation algorithms for some nonlinear variational in-
clusions in Hilbert spaces or Banach spaces. In 2008, Li [11] studied the existence of so-
lutions and the stability of a perturbed Ishikawa iterative algorithm for nonlinear mixed
quasi-variational inclusions involving (A4, n)-accretive mappings in Banach spaces by using
the resolvent operator technique.

On the other hand, in many scientific and engineering applications, the fuzzy set concept
and the variational inequalities with fuzzy mappings play an important role. The fuzziness
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appears when we need to perform, on manifold, calculations with imprecision variables.
The concept of fuzzy sets was introduced initially by Zadeh [12] in 1965. Since then, to
use this concept in topology and analysis, many authors have expansively developed the
theory of fuzzy sets and application [13, 14]. Various concepts of fuzzy metrics on an or-
dinary set were considered in [15, 16], and many authors studied fixed point theory for
ordinary mappings in such fuzzy metric spaces [17-21]. A number of metrics are used on
the subspaces of fuzzy sets. The sendograph metric [22, 23] and the d1-metric induced by
the Hausdorft metric [24, 25] were studied most frequently. Some attention was also given
to Lp-type metrics [26, 27]. These results have a very important application in quantum
particle physics, particularly in connection with both string and el-theory, which were
given and studied by El-Naschie [28, 29].

From 1989, Chang and Zhu [30] introduced and investigated a class of variational in-
equalities for fuzzy mappings. Afterwards, Chang and Huang [31], Ding and Jong [32], Jin
[33], Li [34] and others studied several kinds of variational inequalities (inclusions) for
fuzzy mappings.

Recently, Verma has developed a hybrid version of the Eckstein-Bertsekas [35] proxi-
mal point algorithm, introduced the algorithm based on the (4, 7)-maximal monotonicity
framework [36] and studied convergence of the algorithm. The author showed the general
nonlinear set-valued inclusions problem based on an (4, n)-accretive framework and sug-
gested and discussed an Ishikawa-hybrid proximal point algorithm for solving the inclu-
sions problem. On the other hand, from 1989, the generalized nonlinear quasi-variational
inequalities (inclusions) with fuzzy mappings have been studied widely by a number of
authors, who have more and more achievements [17-37], and we refer to [1-56] and ref-
erences contained therein.

Inspired and motivated by recent research work in this field, in this paper, a fuzzy gen-
eral nonlinear set-valued mixed quasi-variational inclusions framework for a perturbed
Ishikawa-hybrid quasi-proximal point algorithm using the notion of (4, n)-accretive is de-
veloped. Convergence analysis for the algorithm of solving a fuzzy nonlinear set-valued
inclusions problem and existence analysis of a solution for the problem are explored along
with some results on the resolvent operator corresponding to an (A, n)-accretive map-
ping due to Lan et al. [8]. The result that the sequence {x,};°, generated by the perturbed
Ishikawa-hybrid quasi-proximal point algorithm converges linearly to a solution of the
fuzzy general nonlinear set-valued mixed quasi-variational inclusions with the conver-
gence rate ¢ is proved.

2 Preliminaries

Let X be a real Banach space with the dual space X*, (-, -) be the dual pair between X and
X*, 2% denote the family of all the nonempty subsets of X, and CB(X) denote the family of
all nonempty closed bounded subsets of X. The generalized duality mapping J, : X — 2%
is defined by

Jo@) = {f* € X* o, f*) = Ixll% || = =177}, VxeX,

where g > 1 is a constant.
The modulus of smoothness of X is the function py : [0,00) — [0, 00) defined by

1
px(£) = sup E(llxﬂ’ll +lle=yll) =1l <1 Iyl <t
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A Banach space X is called uniformly smooth if

t
tim 2X© o,
t—0 t

X is called g-uniformly smooth if there exists a constant ¢ > 0 such that
px(t) <ctt (g>1).

Remark 2.1 In particular, J, is the usual normalized duality mapping, and J,(x) =
l%]1972 ]2 (x) (for all x # 0). If X* is strictly convex [41], or X is a uniformly smooth Banach
space, then J, is single-valued. In what follows, we always denote the single-valued gener-
alized duality mapping by J; in a real uniformly smooth Banach space X unless otherwise
stated.

Let us recall the following results and concepts.

Definition 2.2 A single-valued mapping n: X x X — X is said to be t-Lipschitz contin-
uous if there exists a constant 7 > 0 such that

In@.|| <tlx-yl, VxyeX.

Definition 2.3 A single-valued mapping A : X — X is said to be

(i) accretive if
(A1) = A(x2), J(1 = %2)) = 0, Vay, % € X;
(ii) strictly accretive if A is accretive and (A(x1) — A(x2),J;(x1 —x2)) = 0 if and only if

X1 =X Vxl,xz eX;
(ili) r-strongly n-accretive if there exists a constant r > 0 such that

(A1) = A(x2), Jg (31, %)) = 7llxr — 22 1%, Yy, 20 € XG
(iv) a-Lipschitz continuous if there exists a constant « > 0 such that
[AG) - Ax) | < elld —%all,  Var,xp € X.

(v) A single-valued mapping F: X x X — X is said to be (u, v)-Lipschitz continuous if
there exist constants i, v > 0 such that

[F@1,01) = Fx2,32)|| < llxr — a2l + vllys = y2ll - Vi y: € X,i=1,2.

(vi) Let A,g: X — X be single-valued mappings, S : X — 2X be a set-valued mapping.
g is said to be (¢, k)-S-relaxed cocoercive with respect to A mapping, if there exist
two constants ¥,k > 0 such that for any x; € X, the following holds:

{AGn) - A(2), 14 (g(x1) - g(x2)))

> |y — 2|7 — kA1) = A(wa) | T, Vi € S(x),i=1,2.
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Definition 2.4 LetA:X — X and n: X x X — X besingle-valued mappings. A set-valued
mapping G : X — 2% is said to be:
(i) accretive if

(= g, Jy (1 = %2)) = 0, Vay, %0 € X, 11 € Gloy), uz € G(x2);
(ii) n-accretive if
(1 — 2, J(n(%1,%2))) = 0, Vv, 20 € X, 11 € G1), up € G(x2);
(iii) r-strongly accretive if there exists a constant r > 0 such that
1 = y2. T —x2)) = rllwr — X2 ||%, Vi € X, y: € G(xi) (i =1,2);
(iv) m-relaxed n-accretive if there exists a constant » > 0 such that
(1 — 2, Jy (01, %2))) = —mlley =219, Va1, %5 € X, 11 € G(31), 1ty € G(ox).

(v) A-accretive if M is accretive and (A + pG)(X) = X for all p > 0;
(vi) (A, n)-accretive if M is m-relaxed n-accretive and (A + pG)(X) = X for all p > 0.
(vii) h-Lipschitz continuous with constants & if

h(G(xl)i G(xZ)) = g”'xl _x2||’ Vxl’x2 EXr
where h(., -) is the Hausdorft metric in CB(X).
Based on the literature [8], we can define the resolvent operator R’:g as follows.

Definition 2.5 ([8]) Letn: X x X — X beasingle-valued mapping, A : X — X be a strictly
n-accretive single-valued mapping and G : X x X — 2% be an (4, n)-accretive mapping.
The resolvent operator Rﬁg : X — X is defined by

R:)‘:g(x) =(A+pG)Yx) forallxeX,
where p > 0 is a constant.

Remark 2.6 The (A, n)-accretive mappings are more general than the (H, n)-monotone
mappings and m-accretive mappings in a Banach space or a Hilbert space, and the resol-
vent operators associated with (A, n)-accretive mappings include as special cases the cor-
responding resolvent operators associated with (H, n)-monotone operators, m-accretive
mappings, A-monotone operators, n-subdifferential operators [3-11, 30-34].

Lemma 2.7 ([8]) Letn:X x X — X be a t-Lipschitz continuous mapping, A : X — X be an
r-strongly n-accretive mapping, and G : X x X — 2% be an (A, n)-accretive mapping. Then
the generalized resolvent operator R‘;g : X — X is t77Y/(r — mp)-Lipschitz continuous, that
is,

741
lx—yll forallx,yeX,

|R0C) - RO <

r

where p € (0,r/m).
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In the study of characteristic inequalities in g-uniformly smooth Banach spaces, Xu [38]

proved the following result.

Lemma 2.8 ([38]) Let X be a real uniformly smooth Banach space. Then X is q-uniformly
smooth if and only if there exists a constant c, > 0 such that for all x,y € X,

lla + Y17 < 1% + gy, Jg() + cqllyl12.

3 Fuzzy general nonlinear set-valued mixed quasi variational inclusions with
(A, n)-accretive mappings

Let X be a real g-uniformly smooth Banach space with the dual space X*, (-,-) be the dual

pair between X and X*, 2% denote the family of all the nonempty subsets of X, and CB(X)

denote the family of all nonempty closed bounded subsets of X.

Let F(X) be a collection of all fuzzy sets over X. A mapping F:X —> F(X)is called a
fuzzy mapping. For each x € X, F(x) (denote it by F, in the sequel) is a fuzzy set on X and
fx@) is the membership function of y in fx. ForBe F(X), g €[0,1], the set (§)q ={xeX:
ﬁ(x) > g} is called a g-cut set of B.

Let C={1,2,3,4} forany k € C, Se:X — F(X)bea fuzzy mapping satisfying the condi-
tion (*):

there exists a function ay : X — [0,1] such that for all x € X, (§x)ﬂk(x) € CB(X), where
CB(X) denotes the family of all nonempty bounded closed subsets of X.

By using the fuzzy mapping Sk, we can define a set-valued mapping S : X — CB(X) by
Si(x) = (gx)ak(x) for each x € X, and S is called the set-valued mapping induced by the
fuzzy mapping Sy for any k € C in the sequel, respectively.

LetA,f,g:X — X;n,F: X x X — X be single-valued mappings. Let G: X x X — 2% be
a set-valued (A, n)-accretive mapping and range(S3) N dom G(-, £) # ¥ for each t € X. We
consider the fuzzy general nonlinear set-valued mixed quasi-variational inclusions with
(A, n)-accretive mappings (FGNSVMQVI):

Find x € X and b* € X (k € C) such that §kx(hk) > ay(x) and

0 € E(bL,£(b?)) + G(b?,b*) + g(w), (3.1)

where problem (3.1) is called fuzzy general nonlinear set-valued mixed quasi-variational
inclusions with (A4, n)-accretive mappings.

If for any k € C, Sx : X — CB(X) is a set-valued mapping, we can define the fuzzy map-
ping §kx(u) > ar(x) : X — F(X) by x — xs,(x)» where xs, (v is the characteristic function
of @ Taking ax(x) =1 (k € C) for all x € X, problem (3.1) is equivalent to the following
problem:

Find x € X and b* € S¢(x) (k € C) such that

0e F(bl,f(bz)) + G(bg, b4) +g(x), (3.2)

which is called a new class of general nonlinear set-valued mixed quasi-variational inclu-
sions with (A, n)-accretive mappings (GNSVMQVI).
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Remark 3.1
(1) A special case of problem (3.1) is the following:

()

(i)

If X is a Hilbert space, an (4, n)-accretive mapping $=5,8=T,8=4238,=0G,
a1(x) = a(x), ax(x) = b(x), az(x) = c(x), and F(-,-) = N(-,-) and M(.,-) = G(-, ),
then problem (3.1) becomes problem (2.1) in [53], which was studied by Li [53].
For a suitable choice of A, f, g, n, F, G, Sk (k € C) and the space X, a number of
known classes of fuzzy variational inclusions and fuzzy variational inequalities
in [30-32, 37] can be obtained as special cases of the fuzzy general nonlinear
set-valued mixed quasi-variational inclusions (3.1).

(2) A special case of problem (3.2) is the following:

(i)

(iif)

Comparing problem (2.2) in [55] and letting g(x) = —u be a constant in X,
S1(x) = S5(x) = Sa(x) = Q(x) be single-valued mappings, Sy(x) = x and f = g and
F =N, G(-) = M(-, ), then we can see that GNSVMQVI (3.2) becomes problem
(2.2) in [55] as follows:

For any u € X, find x € X and y = Q(x) such that

uce N(y,g(x)) + M(y). (3.3)

If X = X* is a Hilbert space, F = 0 is the zero operator in X,

S1(x) = S3(x) = Salx) =f(x) = Q(x) = I are the identity operators in X, g = 0, and
G(-,-) = M(-), then problem (3.2) becomes the parametric usual variational
inclusion 0 € M(x) with an (4, n)-maximal monotone mapping M, which was
studied by Verma [36].

If X is a real Banach space, Q = I is the identity operator in X, and u = 0, then
problem (3.3) becomes the parametric usual variational inclusion

u € N(x,g(x)) + M(x) with an (A, n)-accretive mapping, which was studied by
Li [54].

Furthermore, these types of fuzzy variational inclusions and variational inclusions can

enable us to study many important nonlinear problems arising in mechanics, physics, op-

timization and control, nonlinear programming, economics, finance, regional, structural,

transportation, elasticity and applied sciences in a general and unified framework.

4 The existence of solutions

Now, we study the existence of solutions for problem (3.1).

Lemma 4.1 Let X be a Banach space. Let Sy be the set-valued mapping induced by the

fuzzy mapping @for any k € {1,2,3,4}, let n : X x X — X be a t-Lipschitz continuous

mapping, A : X — X be an r-strongly n-accretive mapping, F : X x X — X be a single-

valued mapping, and G(-,t) : X x X — 2% be an (A, n)-accretive mapping for any t € X.

Then the following statements are mutually equivalent:
(i) (x, bY 6% b3, b*) € X® is a solution of problem (3.1), where .§(x\)(bk) > ay(x), that is,
b e Six) (1 <k < 4).
(ii) For (x,b',b%, b3 b*) € X® and any 1 > A > 0, the following relation holds:

b* = Rﬁfg(bB,bAI)((A(bS) - pF(bl,f(bZ)) - pg(x))), (4.1)

where Sp(x)(b*) > ax(x), that is, b* € Sp(x) (1 < k < 4).
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(iil) For (x,b%, b%, b3, b*) € X° and any 1> A > 0, the following relation holds:

2= (L=Nx+h(x =0+ R)L s 0 (A(BY) - pE(B'.f (B)) - pg())), (4.2)

P
where p > 0 is a constant, and m(bk) > ar(x), that is, b* € Sp(x) A < k < 4).

Proof This directly follows from the definition of R‘; :g(~,b4)' g

Theorem 4.2 Let X be a q-uniformly smooth Banach space. Let A,f,g: X — X; n,N :
X x X — X be single-valued mappings, and let n be a t-Lipschitz continuous mapping,
A be an r-strongly n-accretive and o-Lipschitz continuous mapping, f be a x-Lipschitz
continuous mapping, and g be a ¢-Lipschitz continuous and (V, k )-Ss-relaxed cocoercive
with respect to A mapping, respectively. For k € {1,2,3,4}, let St: X —> F(X) bea fuzzy
mapping satisfying condition (x) and Sy : X — CB(X) be a set-valued mapping induced
by the fuzzy mapping Sk, and suppose that Sy is D-Lipschitz continuous with constants &
and that S; is y -strongly accretive. Let F : X x X — X be (i, v)-Lipschitz continuous. Let
G(-t) : X — 2% be a set-valued (A, n)-accretive mapping for any t € X and range(S3) N
dom G(-,t) # ¥, and for any x,y,z € X,

IR @) = Ry @ < 8llx =1l (43)
If there exists a constant p > 0 such that the following condition holds:
1
(1= +cgx?—qy)e —8&])(r- mp)r?!
1
< p(uér +vx &) + (98] +copl9” — qpyr + pralgll)1, (4.4)

where c; > 0 is the same as in Lemma 2.8, and p € (0, ;-), then problem (3.1) has a solution
(x*, b™, b, b%*, b*) € X5, which b € Si(x*) (1 < k < 4).

Proof For1> A >0, define a mapping H : X — X as follows:

H(x) = (l—k)x+k(x—b3

F RV o (A(D) = oF (B, (7)) - pg®))  (Vx € X). (4.5)
For elements x; € X, if for k € {1,2,3,4}, letting Sg,, (b¥) > ax(x;) or b* € Si(x;) and
ti=A(b}) - pF (b} f (b7)) - pglx:) (i=1,2),
then by (4.1), (4.2), (4.4), Lemma 2.7 and Lemma 2.8, we have

|H (1) - Hx) |
= (@ = A)ay + 2o - B2 + R;‘:g(b%,b%)(tl)) — (1= M)y = A(wp — b5 + R’:"g(bg,bg)(tz)) I
<@ - Ml =2l + 2 [Jar =20 — (B3 = B3) | + ||R;‘;g(b§yb®(t1> - R’;"g(bg’b%)(fz) I

< (L=l = %2l + 4|21 =2 = (b7 - B3) |
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* (”Rﬁ,’g(b%,b;*)(tl) - Rﬁfgw%,bg)(m [+ ||R2:g(b%,b§>(t1) - R?fgw%,b;*)(m )
741

lti =2, (4.6)
- mp

<@ =W)llwr = x| + 2w — 22 — (67 = B3) || + 8|65 - B3| + p”

r
where

la =il = [A(B?) = A(B3) = p(F(b1.f (81)) ~ F (b (B2))) = p(g(1) — g (x2) |
= [A(B) - A(B2) - p(el) —gxa)) | + o[ F(b1S (81)) — F (82,1 (83))] -

Since g is ¢-Lipschitz continuous and (v, k)-S3-relaxed cocoercive with respect to A and
A is a-Lipschitz continuous, we obtain

|A(B?) - A(B3) - p(ex1) - g2) |
< |A@®B}) - AB3)|* +cop?]gr) — gx2) |~ ap(A(B]) ~ A(B3). ], (g(x1) — g(x2))
< &l — 2|17 + ¢p 0" |31~ 52| = qpr s — 2|7 + i | A(B7) - A(B3) [
< a®&f a1 — x|+ cgp 9 %1 — 22| — gV |31 — 2|7 + PR &S (|21 — %2]|7

< (] + cqpT9? — qpr + praEl) x — x| (4.7)

Since F(:,-) is (i, v)-Lipschitz continuous and f is x -Lipschitz continuous, the following
holds:

|F 811 (51)) - E(b20f (3))]
= pfbr=ba [ + v (1) = ()] = (u&r + V&)l = . (4.8)
By using y -strong accretion of S3, we obtain

1 =2 = (87 = D) | = s = a1+ g | B = 3" = (b = B3, 1 = 2)

< (L+ ¢ —qy)lx —xa 2. (4.9)
Combining(4.5), (4.6), (4.7) and (4.8), we can get
|H@1) = Hxo) | < [(1=2) + 20][161 = 2], (4.10)
where

9:(1+cqxq—qy)% +8&]

791
+

1
r—mp [0ty +vx&a) + (@85 + cgpl9" —qoyr + pra’s)].

It follows from (4.3) and (4.9) that H has a fixed point in X, i.e., there exists a point x* € X
such that

xF = (1=t + A (x" - b7 + R‘:,’g(bs*,b%)(A(bs*) - pF(b™,6%) + pg(x))),

where b** € Si(x*) (1 < k < 4). This completes the proof. a

Page 8 of 16


http://www.fixedpointtheoryandapplications.com/content/2013/1/281

Li et al. Fixed Point Theory and Applications 2013, 2013:281 Page9of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/281

5 Perturbed Ishikawa-hybrid quasi-proximal point algorithm and solvability of
problem (3.1)

Based on Lemma 4.1, we develop a perturbed Ishikawa-hybrid quasi-proximal point algo-

rithm for finding iterative sequence solving problem (3.1) as follows.

Algorithm 5.1 Let X be a q-uniformly smooth Banach space, let Sc:X — F(x)bea fuzzy
mapping satisfying condition () and S : X — CB(X) be the set-valued mapping induced
by the fuzzy mapping S; (1 < k < 4). Let A,f,g: X — X, 1,F: X x X — X be single-valued
mappings, and let G : X x X — 2% be such that for each fixed t € X, G(-,¢) : X — 2¥ is
an (A, n)-accretive mapping and range(S3) N dom G(-,£) # @. Let {1,520, {vi}ico, {Pnlocos
{81)205 {ha)oco, {tn)2o and {p,}52, be five nonnegative sequences such that

lim p, = hm sy = lim [, = lim ¢, =0,

n— 00 n—oQ n— 00
u=limsupu, <1, v=limsupv, <1, ont p <o0.
n— 00 n— 00

Step I: For an arbitrarily initial point xy € X, we choose suitable bk € Si(xg) 1<k <4),
z0 € X, bzo € S3(zp) and bio € S3(wo), lettlng

¥o = (1 —vo)xo + vozo + loeo,
20 = [0 = b3, + R o, st AB%) = PoF (B, B7) + pog o))

<pollzo —xo — ( S x0)||,
X1 = (1 Lt())xo + UgWo + t()ho,
Iwo = Lo =B, + R o o (AG) = p0F (B}, 57,) + pog@o))|

<Ssollwo —y0 — (bio —bio)”»

where h’y‘o € Sk(yo) (1 < k < 4), and ey, hy € X are errors to take into account a possible
inexact computation of the proximal point.
Step 2: The sequences {x,} and {y,} are generated by an iterative procedure

In = L= V)X + VuZy + luey;

lan = = B3, + R o o (AWBY,) = OF(B,,b7,) + pugen)|
<Pullzn—%a— (b2 - bﬁn)u,

K1 = (L= 1)y + UuWyy + Lyly,

1w = Dn =y, + R (AG,) = PE®),,55) + 0ug )]

Ssn”Wn - n (bfyn yn)Hr

(5.1)

where b’;n € S and b’y‘n €St (1<k<4),and e, h, € X are errors to take into account a
possible inexact computation of the proximal point and

limsup |le,|| = limsup |4, < +o0.
n—00 n—00

By using Nadler [39], we can choose suitable b’; € Si(x,) such that
1
”b];—l - by, | < <1 + n_>h(S/<(xn—l)7$k(xn)): (5.2)
1

where h(-,-) is the Hausdorff metric in CB(X), n=1,2,....
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Remark 5.2 For a suitable choice of the mappings A, n, f, g, F, G, Sk» ax, space X, and
nonnegative sequences {1, },°, (Vi) ooos {Pn}acor Sntaeos lntaco (Ene and {p,}50, Algo-
rithm 5.1 can be degenerated to a number of algorithms involving many known algorithms
which are due to classes of variational inequalities and variational inclusions [10, 11, 30—
34, 45,47, 50, 56].

Theorem 5.3 Let X be a q-uniformly smooth Banach space. Let A,f,g: X — X; n,N :
X x X — X be single-valued mappings, and n be a t-Lipschitz continuous mapping, A
be an r-strongly n-accretive and o-Lipschitz continuous mapping, f be a x -Lipschitz con-
tinuous mapping, and g be a ¢-Lipschitz continuous and (, k )-Ss-relaxed cocoercive with
respect to A mapping, respectively. For k € {1,2,3,4}, let Si:X—>F (X) be a fuzzy mapping
satisfying condition (x) and Sy : X — CB(X) be a set-valued mapping induced by the fuzzy
mapping Sk, and suppose that Sy is h-Lipschitz continuous with constants & and that Ss is
y-strongly accretive. Let F : X x X — X be (i1, v)-Lipschitz continuous. Let G(-,£) : X — 2%
be a set-valued (A, n)-accretive mapping for any t € X and range(S3) Ndom G(-, t) # ¥, and
forany x,y,z € X,

|RS @ = Ry, @) | < 8l =yl (5.3)

If nonnegative sequences {u,}o0 o, (Vilocos (Pnlocos 1Sntacor ntocos {tnkaco and {pu}io, are
1-36

o) where

the same as in Algorithm 5.1 and limsup,,_, . v, =v <

9:(1+cqxq—qy)% + 8&]

791

1
r—mp [p(u&1 + vix6a) + (185 + cgp9” — qpr + prag]) 7],

then the sequence {x,},°, generated by perturbed Ishikawa-hybrid quasi-proximal point
Algorithm 5.1 converges linearly to x* as

1 1
(g - (1 +egxT - qy)q - 85;)(;"— mp)r?t

1
< p(u& +vx&) + (98] + cgpT9" — gy + prca’gl) 1, (5.4)

where c; > 0 isthe same as in Lemma 2.8, p € (0, .-), and the convergence rateis e = 1—u(1-
0 (3 +v0 —v)), and problem (3.1) has a solution (x*, b, b>*, b**, b**) € X°, where b** € Si(x*)
1<k<4).

Proof Suppose that the sequence {x,} is the sequence generated by perturbed Ishikawa-
hybrid quasi-proximal point Algorithm 5.1, and that (x*, b'*, b**, b**, b**) € X® is a solution
of problem (3.1). From Lemma 4.1 and condition «,, € [0,1), we can get

x* = (1 - Mn)x* + Z't}'l(x* - bs* + RI::,]G(bS*‘bLL*)(A(bS*) - pnF(bl*’f(bz*)) - Iong(X*)));

where b € S (x*) 1 < k < 4).
For all # > 0 and b** € Sp(x*) (1 < k < 4), set

Cnrt = (L= )t + th (%0 — b+ RA,WG(b,%ﬂ,b;‘;n)(A(bin) — paF (b}, . f (B2)) = pug(x))).

Pns
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By using (4.9), we find the estimation

fevn -]

<(1- u,,)”x,, —x* || + Uy, ||x* — %Xy — (b?’* - bf;n)

+Un ||R£;7G(h2n,bi‘n)(A(b?36n) - p”F(balcn’f(bazcn)) - p”g(x”))
R

e (A7) = puE (B f (67)) = pag (7)) |
= [(1 - un) + unen] ”xn _x* H’

(5.5)
where

Q=

0, = (1+cqxq—qy)% +8&8 + (L+cx7—qy)

741
+

1
p—— [on(uér + vx &) + (€] + cqple? — qoay + puxa€l)7].
- n

Since x,,,1 = (1—1,,)%), + Uy Wy, + .15, (5.1) and (4.8)-(4.9) so that x,,,1 —x, = u, (W, —x,) + .1
and

”xn+l — Cn+l ”
< || (1= uy)xy + uywy, + tyhy,

on,G!

— 0uF (B, (82,)) - pagen))) ]|

= Un H [y” - bsn + R?;,?G(b%,b}*n)(A (bin) - 'O”F(bjl/n’f(bin)) - 'O”g(y"))]

— [ = ) + s (30 = B3+ R (b,%n,bﬁn)(A(bi”)

= [ = w)on + 1 (0 — bin +RM (A(bzn)

PnG(b3,,b%,)
= puF (by,,.f (B,)) = pag(en))) ]|
#ttn | = [ =5, + RO e (A(B,)
= puE (b}, f (B2,) = 0ugm) ]| + tullF1u
< ttSu | W = yn = (B3, = B5,) | + B0 = Yl + tull 1
< tysu(1+ g = @7) W =yl + 1,005 = 3l + tall ]

Next, we calculate
a1 = 7|
< ||Cn+1 - x* || + ||x}’l+1 - Cn+1||

1
= ”le —x" ” + M,,S,,(l "'Cqs?,q_qy)q Wi = Yull + w0l = yull + LallFanl

1
= ||C”+1 - ” + M”S"(l + CqSSq - qy)q (Hwn _xn” + “yn _xn”)

+ UnOyll%n = yull + tullF2,]]

Page 11 of 16
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< Newet =2 + 801+ €082 — @) Tt s =,
sty (5 (1 ¢q&% = q7) T +0,) 1 — all + ol
< [= 1) + 10,8, ] [0 =5 + 01+ g7 = qv) T (1601 — 2 + 1)
st (5u (1 ¢G&7 = q7) T +0,) I — all + ol
< [@ =) + a0 ] |00 = 2" || +50(1 + o5 - q)/)é (19241 — |
b (50 (1+ g = qv) T +0,) Iy —
+ (a1 + T = qy) T + 1)l
< [0 = 0a) + 0080 [ = 2| 5014 7 = )T (oo =" + " =)
(5 (1+ &L = ar) +0,) (v = + 5" - 2]
+ (su(1+ cg8f = qv) T + )l
< (U= thr) + 11 + 50 (L4 €88 — q¥)T + (50 (1 + g% — qy) 7 +6,)] 0w — 7|
+8u(1 + ¢z — q)/)% [omer =" || + 4 (50 (1 + g5 — 61)/)é +64) |y — 27|

1
+ (sn(L+ cgbd —qy) 7 + D)tullhll. (5.6)
This implies that

a1 =]

1 1
walsuL4 el —qV)T+6,) | (sall+cgd = qy)7 + 1)ty
= = A =

l—Sn(1+Cq$§—q)/)5 1—Sn(1+0q53?—61)’

1
Q- + by +5,(1+ cad —qv) T + un(s,(1 + ci&d — qy)1 +6,)]

1
1—s,(1+cebd —qy)e

x [ 7. (5.7)
Let
K= LV v =07 4 R ey (A(6™) = 0uF (£ (67)) = prg (+7))).
Forall n > 0, set
= (L= vty + V(@ =03, 4 R0 0 (A(B,) = puF (8, f (B, ) = pug(@n)).

For the same reason,

: (5.8)

||d,, —x* || < ((1 ~ V) + V) ”x,, —x*
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and by using y, = (1 — v,,)x, + v,z + l,e, in (5.1), the following holds:

[ = 7]
< | = %] + llyn = dull
< (M= v) +vu0) 200 = ™| + [(X = v + V2 + L
(@ = v + V(s = B2+ R‘;IG(bin,bﬁn)(A(bfcn)
= puE (83, f (83,)) = ag(en)))]
< (M=) +vu00) |20 = %] + Lullenl

*Vn ”Zn - (xn - bin + R?;?G(bin,bén)(A(bin) - p”F(b;n’f(bin)) - ’Ong(x”))) ”

f ((1 - Vn) + Vnen) ||xn _x* || + ln”en” + VnPn ||Zn — Xy — (bgn - bin)

1
= ((1 — V) + Vnen) ”xn - ” + el + Vnpn(l + Cqssq - lI]/) Nz — x4l

= ((1 — V) + Vnen) ”xn —-x" ” +Lalle |l

1
+2u(L+ cg&d = qv) T (Iym = %ull + Lullenll)

1
< (= v) +vu) [0 =2 + DL+ co&5 —ar) 7 (| = | + 2" —a])
1

+ (L4 pa(L+cg&f —qv) ) bulleall. (5.9)

Furthermore,
1
. (L =v) + vy + pa(L+ c & — qy)7 .
lyn =" < = [l =2

1
1-pa(l+ceéd —qy)i

1
1+p,(1 T _gy)al,
GLepr e —qy) by (5.10)

1—pu(l+ ¢ —qy)7

Combining (5.7)-(5.10), we have

>k
Jeaea =]

=
R

< I:Mn(sn(l + Cqsg _qy)q +6,) % (1 -vy) +v,6, +pn(1 + Cqé?? -qy)
= 1 1
1—s,(1+cu65 —qy)e 1-pu(1+cg€d —qy)7

1 1
+ (1 —2ty) + 46y + 5,(1 + ng'g - 61)/)‘1 + Uy (s, (1 + Cqégq - qy)" + en)]:| Hx £ H
1 ne

L—s,(1+c,&f —qp)?

1
(5u(1 + ¢ &8 — qy)T + 1)t
x 453 ~ 4 Ll

1-s,(1+c6d —qy)e

1
A+ pu(1+cptd —qy))l,
g P T B T YT el (5.11)

1-pu(1+céd —qy)e
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By (5.4) and the conditions

lim p, = lim s, = lim [, = lim ¢, =0,
n—>00 n—00 n—00 n—>00

u=limsupu, <1, v=limsupv, < ———, Pn 1 p <00,
n—00 n—00 9(1 - 9)
limsup |le,|| = limsup ||/, || < +00,
n— o0 n—00
we can see

||x,,+1 —x* || < [u9(1 —v(1- 9)) + (1 —u(l - 29))] ||x,, —x* ||

’

- el

where £ =1 - u(1 - 6(3 + v —)) € (0,1) for v < 272;; and

90-0)’
6 = lim 6,
n— 00
1
= (L+cqx?—qy)? +8&]
741 p e
e [o(u& +vx&) + (a®&] + cgp%0T — qpyr + prca?&l) 1],

and the convergence rate is ¢.

Therefore, the sequence {x,}:°, generated by Algorithm 5.1 converges linearly to a so-
lution x* with convergence rate ¢ in a Banach space.

Let x, — x* as n — oo. For any k € {1,2,3,4}, by the h-Lipschitz continuity of Si(x)
(1 < k < 4) with constants &, we obtain

||bln(+1 - bf, ” = (1 + nil)D(Sk(erl); Sk(xn)) =< Ek(l + nil) ||xn+1 _xn”'

It follows that {bX}°, are also Cauchy sequences in X. We can assume that X — b**. Note
that b € Si(x,), we have

d(b",S(x")) < [0 - b | + d(by, S(x7))
< |6~ BE|| + D(S(x,), S(x7))
< 6% ;| + &fwn = 2" = 0 (n— o0).

Hence d(b**, Sk (x*)) = 0 and therefore b** € Si(x*).
By the Lipschitz continuity of Sy and Lemma 2.7, condition (5.4), we have

&= (1= )™ + A (x* - 0™ + RY (b3*,b4*)(A(b3*) — puF (5™, (67%)) - pug(x*)))

on,G!

for any 0 < A < 1. By Lemma 4.1, we know that problem (3.1) has a solution (x*, b'*, b**, b3*,
b*) € X®, where b** € Si(x*) (1 < k < 4). This completes the proof. O

Remark 5.4 For a suitable choice of the mappings A, n, f, g, F, G, St (1 <k <4), we can
obtain several known results [1, 3-11, 30-34, 45, 47, 56] as special cases of Theorem 5.3.
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