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Abstract
A new class of fuzzy general nonlinear set-valued mixed quasi-variational inclusions
frameworks for a perturbed Ishikawa-hybrid quasi-proximal point algorithm using the
notion of (A,η)-accretive is developed. Convergence analysis for the algorithm of
solving a fuzzy nonlinear set-valued inclusions problem and existence analysis of a
solution for the problem is explored along with some results on the resolvent
operator corresponding to an (A,η)-accretive mapping due to Lan et al. The result that
the sequence {xn}∞n=1 generated by the perturbed Ishikawa-hybrid quasi-proximal
point algorithm converges linearly to a solution of the fuzzy general nonlinear
set-valued mixed quasi-variational inclusions with the convergence rate ε is proved.
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1 Introduction
The set-valued inclusions problem, which was introduced and discussed by Bella [],
Huang et al. [] and Jeong [], is a useful extension of the mathematics analysis. And the
variational inclusion (inequality) is an important context in the set-valued inclusions prob-
lem. It provides us with a unified, natural, novel, innovative and general technique to study
awide class of problems arising in different branches ofmathematical and engineering sci-
ences. Various variational inclusions have been intensively studied in recent years. Ding
[], Verma [], Huang [], Fang and Huang [], Lan et al. [], Fang et al. [], Zhang et al.
[] introduced the concepts of η-subdifferential operators, maximal η-monotone opera-
tors, H-monotone operators, A-monotone operators, (H ,η)-monotone operators, (A,η)-
accretive mappings, (G,η)-monotone operators and defined resolvent operators associ-
ated with them, respectively. Moreover, by using the resolvent operator technique, many
authors constructed some approximation algorithms for some nonlinear variational in-
clusions in Hilbert spaces or Banach spaces. In , Li [] studied the existence of so-
lutions and the stability of a perturbed Ishikawa iterative algorithm for nonlinear mixed
quasi-variational inclusions involving (A,η)-accretivemappings in Banach spaces by using
the resolvent operator technique.
On the other hand, inmany scientific and engineering applications, the fuzzy set concept

and the variational inequalities with fuzzymappings play an important role. The fuzziness
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appears when we need to perform, on manifold, calculations with imprecision variables.
The concept of fuzzy sets was introduced initially by Zadeh [] in . Since then, to
use this concept in topology and analysis, many authors have expansively developed the
theory of fuzzy sets and application [, ]. Various concepts of fuzzy metrics on an or-
dinary set were considered in [, ], and many authors studied fixed point theory for
ordinary mappings in such fuzzy metric spaces [–]. A number of metrics are used on
the subspaces of fuzzy sets. The sendograph metric [, ] and the d-metric induced by
theHausdorffmetric [, ] were studiedmost frequently. Some attention was also given
to Lp-type metrics [, ]. These results have a very important application in quantum
particle physics, particularly in connection with both string and e-theory, which were
given and studied by El-Naschie [, ].
From , Chang and Zhu [] introduced and investigated a class of variational in-

equalities for fuzzy mappings. Afterwards, Chang and Huang [], Ding and Jong [], Jin
[], Li [] and others studied several kinds of variational inequalities (inclusions) for
fuzzy mappings.
Recently, Verma has developed a hybrid version of the Eckstein-Bertsekas [] proxi-

mal point algorithm, introduced the algorithm based on the (A,η)-maximal monotonicity
framework [] and studied convergence of the algorithm. The author showed the general
nonlinear set-valued inclusions problem based on an (A,η)-accretive framework and sug-
gested and discussed an Ishikawa-hybrid proximal point algorithm for solving the inclu-
sions problem. On the other hand, from , the generalized nonlinear quasi-variational
inequalities (inclusions) with fuzzy mappings have been studied widely by a number of
authors, who have more and more achievements [–], and we refer to [–] and ref-
erences contained therein.
Inspired and motivated by recent research work in this field, in this paper, a fuzzy gen-

eral nonlinear set-valued mixed quasi-variational inclusions framework for a perturbed
Ishikawa-hybrid quasi-proximal point algorithm using the notion of (A,η)-accretive is de-
veloped. Convergence analysis for the algorithm of solving a fuzzy nonlinear set-valued
inclusions problem and existence analysis of a solution for the problem are explored along
with some results on the resolvent operator corresponding to an (A,η)-accretive map-
ping due to Lan et al. []. The result that the sequence {xn}∞n= generated by the perturbed
Ishikawa-hybrid quasi-proximal point algorithm converges linearly to a solution of the
fuzzy general nonlinear set-valued mixed quasi-variational inclusions with the conver-
gence rate ε is proved.

2 Preliminaries
Let X be a real Banach space with the dual space X∗, 〈·, ·〉 be the dual pair between X and
X∗, X denote the family of all the nonempty subsets of X, and CB(X) denote the family of
all nonempty closed bounded subsets of X. The generalized duality mapping Jq : X → X∗

is defined by

Jq(x) =
{
f ∗ ∈ X∗ :

〈
x, f ∗〉 = ‖x‖q,∥∥f ∗∥∥ = ‖x‖q–}, ∀x ∈ X,

where q >  is a constant.
The modulus of smoothness of X is the function ρX : [,∞)→ [,∞) defined by

ρX(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ t

}
.
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A Banach space X is called uniformly smooth if

lim
t→

ρX(t)
t

= .

X is called q-uniformly smooth if there exists a constant c >  such that

ρX(t) ≤ ctq (q > ).

Remark . In particular, J is the usual normalized duality mapping, and Jq(x) =
‖x‖q–J(x) (for all x �= ). If X∗ is strictly convex [], or X is a uniformly smooth Banach
space, then Jq is single-valued. In what follows, we always denote the single-valued gener-
alized duality mapping by Jq in a real uniformly smooth Banach space X unless otherwise
stated.

Let us recall the following results and concepts.

Definition . A single-valued mapping η : X × X → X is said to be τ -Lipschitz contin-
uous if there exists a constant τ >  such that

∥∥η(x, y)
∥∥ ≤ τ‖x – y‖, ∀x, y ∈ X.

Definition . A single-valued mapping A : X → X is said to be
(i) accretive if

〈
A(x) –A(x), Jq(x – x)

〉 ≥ , ∀x,x ∈ X;

(ii) strictly accretive if A is accretive and 〈A(x) –A(x), Jq(x – x)〉 =  if and only if
x = x ∀x,x ∈ X ;

(iii) r-strongly η-accretive if there exists a constant r >  such that

〈
A(x) –A(x), Jq

(
η(x,x)

)〉 ≥ r‖x – x‖q, ∀x,x ∈ X;

(iv) α-Lipschitz continuous if there exists a constant α >  such that

∥∥A(x) –A(x)
∥∥ ≤ α‖x – x‖, ∀x,x ∈ X.

(v) A single-valued mapping F : X ×X → X is said to be (μ,ν)-Lipschitz continuous if
there exist constants μ,ν >  such that

∥∥F(x, y) – F(x, y)
∥∥ ≤ μ‖x – x‖ + ν‖y – y‖ ∀xi, yi ∈ X, i = , .

(vi) Let A, g : X → X be single-valued mappings, S : X → X be a set-valued mapping.
g is said to be (ψ ,κ)-S-relaxed cocoercive with respect to Amapping, if there exist
two constants ψ ,κ >  such that for any xi ∈ X , the following holds:

〈
A(u) –A(u), Jq

(
g(x) – g(x)

)〉
≥ ψ‖x – x‖q – κ

∥∥A(u) –A(u)
∥∥q, ∀ui ∈ S(xi), i = , .
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Definition . LetA : X → X and η : X×X → X be single-valuedmappings. A set-valued
mapping G : X → X is said to be:

(i) accretive if

〈
u – u, Jq(x – x)

〉 ≥ , ∀x,x ∈ X,u ∈ G(x),u ∈G(x);

(ii) η-accretive if

〈
u – u, Jq

(
η(x,x)

)〉 ≥ , ∀x,x ∈ X,u ∈ G(x),u ∈G(x);

(iii) r-strongly accretive if there exists a constant r >  such that

〈
y – y, Jq(x – x)

〉 ≥ r‖x – x‖q, ∀xi ∈ X, yi ∈G(xi) (i = , );

(iv) m-relaxed η-accretive if there exists a constantm >  such that

〈
u – u, Jq

(
η(x,x)

)〉 ≥ –m‖x – x‖q, ∀x,x ∈ X,u ∈G(x),u ∈G(x).

(v) A-accretive ifM is accretive and (A + ρG)(X) = X for all ρ > ;
(vi) (A,η)-accretive if M is m-relaxed η-accretive and (A + ρG)(X) = X for all ρ > .
(vii) h-Lipschitz continuous with constants ξ if

h
(
G(x),G(x)

) ≤ ξ‖x – x‖, ∀x,x ∈ X,

where h(·, ·) is the Hausdorff metric in CB(X).

Based on the literature [], we can define the resolvent operator RA,η
ρ,G as follows.

Definition . ([]) Let η : X×X → X be a single-valuedmapping,A : X → X be a strictly
η-accretive single-valued mapping and G : X × X → X be an (A,η)-accretive mapping.
The resolvent operator RA,η

ρ,G : X → X is defined by

RA,η
ρ,G(x) = (A + ρG)–(x) for all x ∈ X,

where ρ >  is a constant.

Remark . The (A,η)-accretive mappings are more general than the (H ,η)-monotone
mappings and m-accretive mappings in a Banach space or a Hilbert space, and the resol-
vent operators associated with (A,η)-accretive mappings include as special cases the cor-
responding resolvent operators associated with (H ,η)-monotone operators, m-accretive
mappings, A-monotone operators, η-subdifferential operators [–, –].

Lemma. ([]) Let η : X×X → X be a τ -Lipschitz continuousmapping,A : X → X be an
r-strongly η-accretive mapping, and G : X ×X → X be an (A,η)-accretive mapping. Then
the generalized resolvent operator RA,η

ρ,G : X → X is τ q–/(r –mρ)-Lipschitz continuous, that
is,

∥∥RA,η
ρ,G(x) – RA,η

ρ,G(y)
∥∥ ≤ τ q–

r –mρ
‖x – y‖ for all x, y ∈ X,

where ρ ∈ (, r/m).
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In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu []
proved the following result.

Lemma . ([]) Let X be a real uniformly smooth Banach space. Then X is q-uniformly
smooth if and only if there exists a constant cq >  such that for all x, y ∈ X,

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q.

3 Fuzzy general nonlinear set-valuedmixed quasi variational inclusions with
(A,η)-accretivemappings

Let X be a real q-uniformly smooth Banach space with the dual space X∗, 〈·, ·〉 be the dual
pair between X and X∗, X denote the family of all the nonempty subsets of X, and CB(X)
denote the family of all nonempty closed bounded subsets of X.
Let F (X) be a collection of all fuzzy sets over X. A mapping F̂ : X → F (X) is called a

fuzzy mapping. For each x ∈ X, F̂(x) (denote it by F̂x in the sequel) is a fuzzy set on X and
F̂x(y) is the membership function of y in F̂x. For B̂ ∈F (X), q ∈ [, ], the set (̂B)q = {x ∈ X :
B̂(x)≥ q} is called a q-cut set of B̂.
Let C = {, , , } for any k ∈ C, Ŝk : X →F (X) be a fuzzy mapping satisfying the condi-

tion (∗):
there exists a function ak : X → [, ] such that for all x ∈ X, (̂Sx)ak (x) ∈ CB(X), where

CB(X) denotes the family of all nonempty bounded closed subsets of X.
By using the fuzzy mapping Ŝk , we can define a set-valued mapping Sk : X → CB(X) by

Sk(x) = (̂Sx)ak (x) for each x ∈ X, and Sk is called the set-valued mapping induced by the
fuzzy mapping Ŝk for any k ∈ C in the sequel, respectively.
Let A, f , g : X → X; η,F : X ×X → X be single-valued mappings. Let G : X ×X → X be

a set-valued (A,η)-accretive mapping and range(S) ∩ domG(·, t) �= ∅ for each t ∈ X. We
consider the fuzzy general nonlinear set-valued mixed quasi-variational inclusions with
(A,η)-accretive mappings (FGNSVMQVI):
Find x ∈ X and bk ∈ X (k ∈ C) such that Ŝkx(bk) ≥ ak(x) and

 ∈ F
(
b, f

(
b

))
+G

(
b,b

)
+ g(x), (.)

where problem (.) is called fuzzy general nonlinear set-valued mixed quasi-variational
inclusions with (A,η)-accretive mappings.
If for any k ∈ C, Sk : X → CB(X) is a set-valued mapping, we can define the fuzzy map-

ping Ŝkx(u) ≥ ak(x) : X → F (X) by x �→ χSk (x), where χSk (x) is the characteristic function
of Ŝk . Taking ak(x) =  (k ∈ C) for all x ∈ X, problem (.) is equivalent to the following
problem:
Find x ∈ X and bk ∈ Sk(x) (k ∈ C) such that

 ∈ F
(
b, f

(
b

))
+G

(
b,b

)
+ g(x), (.)

which is called a new class of general nonlinear set-valued mixed quasi-variational inclu-
sions with (A,η)-accretive mappings (GNSVMQVI).
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Remark .
() A special case of problem (.) is the following:

(i) If X is a Hilbert space, an (A,η)-accretive mapping Ŝ = Ŝ, Ŝ = T̂ , Ŝ = g , Ŝ = Ĝ,
a(x) = a(x), a(x) = b(x), a(x) = c(x), and F(·, ·) =N(·, ·) andM(·, ·) =G(·, ·),
then problem (.) becomes problem (.) in [], which was studied by Li [].

(ii) For a suitable choice of A, f , g , η, F , G, Ŝk (k ∈ C) and the space X , a number of
known classes of fuzzy variational inclusions and fuzzy variational inequalities
in [–, ] can be obtained as special cases of the fuzzy general nonlinear
set-valued mixed quasi-variational inclusions (.).

() A special case of problem (.) is the following:
(i) Comparing problem (.) in [] and letting g(x) = –u be a constant in X ,

S(x) = S(x) = S(x) =Q(x) be single-valued mappings, S(x) = x and f = g and
F =N , G(·) =M(·, ·), then we can see that GNSVMQVI (.) becomes problem
(.) in [] as follows:
For any u ∈ X , find x ∈ X and y =Q(x) such that

u ∈N
(
y, g(x)

)
+M(y). (.)

(ii) If X = X∗ is a Hilbert space, F =  is the zero operator in X ,
S(x) = S(x) = S(x) = f (x) =Q(x) = I are the identity operators in X , g = , and
G(·, ·) =M(·), then problem (.) becomes the parametric usual variational
inclusion  ∈M(x) with an (A,η)-maximal monotone mappingM, which was
studied by Verma [].

(iii) If X is a real Banach space, Q = I is the identity operator in X , and u = , then
problem (.) becomes the parametric usual variational inclusion
u ∈N(x, g(x)) +M(x) with an (A,η)-accretive mapping, which was studied by
Li [].

Furthermore, these types of fuzzy variational inclusions and variational inclusions can
enable us to study many important nonlinear problems arising in mechanics, physics, op-
timization and control, nonlinear programming, economics, finance, regional, structural,
transportation, elasticity and applied sciences in a general and unified framework.

4 The existence of solutions
Now, we study the existence of solutions for problem (.).

Lemma . Let X be a Banach space. Let Sk be the set-valued mapping induced by the
fuzzy mapping Ŝk for any k ∈ {, , , }, let η : X × X → X be a τ -Lipschitz continuous
mapping, A : X → X be an r-strongly η-accretive mapping, F : X × X → X be a single-
valued mapping, and G(·, t) : X × X → X be an (A,η)-accretive mapping for any t ∈ X.
Then the following statements are mutually equivalent:

(i) (x,b,b,b,b) ∈ X is a solution of problem (.), where ̂Sk(x)(bk) ≥ ak(x), that is,
bk ∈ Sk(x) (≤ k ≤ ).

(ii) For (x,b,b,b,b) ∈ X and any  > λ > , the following relation holds:

b = RA,η
ρ,G(b,b)

((
A

(
b

)
– ρF

(
b, f

(
b

))
– ρg(x)

))
, (.)

where ̂Sk(x)(bk) ≥ ak(x), that is, bk ∈ Sk(x) (≤ k ≤ ).
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(iii) For (x,b,b,b,b) ∈ X and any  > λ > , the following relation holds:

x = ( – λ)x + λ
(
x – b + RA,η

ρ,G(b,b)

(
A

(
b

)
– ρF

(
b, f

(
b

))
– ρg(x)

))
, (.)

where ρ >  is a constant, and ̂Sk(x)(bk) ≥ ak(x), that is, bk ∈ Sk(x) (≤ k ≤ ).

Proof This directly follows from the definition of RA,η
ρ,G(·,b). �

Theorem . Let X be a q-uniformly smooth Banach space. Let A, f , g : X → X; η,N :
X × X → X be single-valued mappings, and let η be a τ -Lipschitz continuous mapping,
A be an r-strongly η-accretive and α-Lipschitz continuous mapping, f be a χ -Lipschitz
continuous mapping, and g be a ϕ-Lipschitz continuous and (ψ ,κ)-S-relaxed cocoercive
with respect to A mapping, respectively. For k ∈ {, , , }, let Ŝk : X → F (X) be a fuzzy
mapping satisfying condition (∗) and Sk : X → CB(X) be a set-valued mapping induced
by the fuzzy mapping Ŝk , and suppose that Sk is D-Lipschitz continuous with constants ξk

and that S is γ -strongly accretive. Let F : X × X → X be (μ,ν)-Lipschitz continuous. Let
G(·, t) : X → X be a set-valued (A,η)-accretive mapping for any t ∈ X and range(S) ∩
domG(·, t) �= ∅, and for any x, y, z ∈ X,

∥∥RA,η
ρ,G(x,·)(z) – RA,η

ρ,G(y,·)(z)
∥∥ ≤ δ‖x – y‖. (.)

If there exists a constant ρ >  such that the following condition holds:

(
 –

(
 + cqχq – qγ

) 
q – δξ

q

)
(r –mρ)τ q–

< ρ(μξ + νχξ) +
(
αqξ

q
 + cqρqϕq – qρψ + ρκαqξ

q

) 
q , (.)

where cq >  is the same as in Lemma ., and ρ ∈ (, r
m ), then problem (.) has a solution

(x∗,b∗,b∗,b∗,b∗) ∈ X, which bk∗ ∈ Sk(x∗) (≤ k ≤ ).

Proof For  > λ > , define a mapping H : X → X as follows:

H(x) = ( – λ)x + λ
(
x – b

+ RA,η
ρ,G(b,b)

(
A

(
b

)
– ρF

(
b, f

(
b

))
– ρg(x)

))
(∀x ∈ X). (.)

For elements xi ∈ X, if for k ∈ {, , , }, letting Ŝkxi (bki ) ≥ ak(xi) or bki ∈ Sk(xi) and

ti = A
(
bi

)
– ρF

(
bi , f

(
bi

))
– ρg(xi) (i = , ),

then by (.), (.), (.), Lemma . and Lemma ., we have

∥∥H(x) –H(x)
∥∥

=
∥∥( – λ)x + λ

(
x – b + RA,η

ρ,G(b ,b

 )
(t)

)
– ( – λ)x – λ

(
x – b + RA,η

ρ,G(b,b

)
(t)

)∥∥
≤ ( – λ)‖x – x‖ + λ

∥∥x – x –
(
b – b

)∥∥ + λ
∥∥RA,η

ρ,G(b ,b

 )
(t) – RA,η

ρ,G(b,b

)
(t)

∥∥
≤ ( – λ)‖x – x‖ + λ

∥∥x – x –
(
b – b

)∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/281
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+
(∥∥RA,η

ρ,G(b ,b

 )
(t) – RA,η

ρ,G(b ,b

)
(t)

∥∥ +
∥∥RA,η

ρ,G(b ,b

)
(t) – RA,η

ρ,G(b,b

)
(t)

∥∥)
≤ ( – λ)‖x – x‖ + λ

∥∥x – x –
(
b – b

)∥∥ + δ
∥∥b – b

∥∥ +
τ q–

r –mρ
‖t – t‖, (.)

where

‖t – t‖ =
∥∥A(

b
)
–A

(
b

)
– ρ

(
F
(
b, f

(
b

))
– F

(
b, f

(
b

)))
– ρ

(
g(x) – g(x)

)∥∥
≤ ∥∥A(

b
)
–A

(
b

)
– ρ

(
g(x) – g(x)

)∥∥ + ρ
∥∥F(

b, f
(
b

))
– F

(
b, f

(
b

))∥∥.
Since g is ϕ-Lipschitz continuous and (ψ ,κ)-S-relaxed cocoercive with respect to A and
A is α-Lipschitz continuous, we obtain

∥∥A(
b

)
–A

(
b

)
– ρ

(
g(x) – g(x)

)∥∥q

≤ ∥∥A(
b

)
–A

(
b

)∥∥q + cqρq∥∥g(x) – g(x)
∥∥q – qρ

〈
A

(
b

)
–A

(
b

)
, Jq

(
g(x) – g(x)

)〉
≤ αqξ

q
 ‖x – x‖q + cqρqϕq‖x – x‖q – qρψ‖x – x‖q + ρκ

∥∥A(
b

)
–A

(
b

)∥∥q

≤ αqξ
q
 ‖x – x‖q + cqρqϕq‖x – x‖q – qρψ‖x – x‖q + ρκαqξ

q
 ‖x – x‖q

≤ (
αqξ

q
 + cqρqϕq – qρψ + ρκαqξ

q

)‖x – x‖q. (.)

Since F(·, ·) is (μ,ν)-Lipschitz continuous and f is χ -Lipschitz continuous, the following
holds:

∥∥F(
b, f

(
b

))
– F

(
b, f

(
b

))∥∥
≤ μ

∥∥b – b
∥∥ + ν

∥∥f (b) – (
b

)∥∥ ≤ (μξ + νχξ)‖x – x‖. (.)

By using γ -strong accretion of S, we obtain

∥∥x – x –
(
b – b

)∥∥q ≤ ‖x – x‖q + cq
∥∥b – b

∥∥q – q
〈
b – b, Jq(x – x)

〉
≤ (

 + cqξ
q
 – qγ

)‖x – x‖q. (.)

Combining(.), (.), (.) and (.), we can get

∥∥H(x) –H(x)
∥∥ ≤ [

( – λ) + λθ
]‖x – x‖, (.)

where

θ =
(
 + cqχq – qγ

) 
q + δξ

q


+
τ q–

r –mρ

[
ρ(μξ + νχξ) +

(
αqξ

q
 + cqρqϕq – qρψ + ρκαqξ

q

) 
q
]
.

It follows from (.) and (.) that H has a fixed point in X, i.e., there exists a point x∗ ∈ X
such that

x∗ = ( – λ)x∗ + λ
(
x∗ – b∗ + RA,η

ρ,G(b∗ ,b∗)
(
A

(
b∗

)
– ρF

(
b∗,b∗

)
+ ρg

(
x∗))),

where bk∗ ∈ Sk(x∗) (≤ k ≤ ). This completes the proof. �
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5 Perturbed Ishikawa-hybrid quasi-proximal point algorithm and solvability of
problem (3.1)

Based on Lemma ., we develop a perturbed Ishikawa-hybrid quasi-proximal point algo-
rithm for finding iterative sequence solving problem (.) as follows.

Algorithm . Let X be a q-uniformly smooth Banach space, let Ŝk : X →F (x) be a fuzzy
mapping satisfying condition (∗) and Sk : X → CB(X) be the set-valued mapping induced
by the fuzzy mapping Ŝk (≤ k ≤ ). Let A, f , g : X → X, η,F : X×X → X be single-valued
mappings, and let G : X × X → X be such that for each fixed t ∈ X, G(·, t) : X → X is
an (A,η)-accretive mapping and range(S) ∩ domG(·, t) �= ∅. Let {un}∞n=, {vn}∞n=, {pn}∞n=,
{sn}∞n=, {ln}∞n=, {tn}∞n= and {ρn}∞n= be five nonnegative sequences such that

lim
n→∞pn = lim

n→∞ sn = lim
n→∞ ln = lim

n→∞ tn = ,

u = lim sup
n→∞

un < , v = lim sup
n→∞

vn < , ρn ↑ ρ ≤ ∞.

Step : For an arbitrarily initial point x ∈ X, we choose suitable bkx ∈ Sk(x) (≤ k ≤ ),
z ∈ X, bz ∈ S(z) and bw ∈ S(w), letting

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = ( – v)x + vz + le,
‖z – [x – bx + RA,η

ρ,G(bx ,b

x )

(A(bx ) – ρF(bx ,b

x ) + ρg(x))]‖

≤ p‖z – x – (bz – bx )‖,
x = ( – u)x + uw + th,
‖w – [y – by + RA,η

ρ,G(by ,b

y )
(A(by ) – ρF(by ,b


y ) + ρg(x))]‖

≤ s‖w – y – (bw – by )‖,

where bky ∈ Sk(y) ( ≤ k ≤ ), and e,h ∈ X are errors to take into account a possible
inexact computation of the proximal point.
Step : The sequences {xn} and {yn} are generated by an iterative procedure⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = ( – vn)xn + vnzn + lnen;
‖zn – [xn – bxn + RA,η

ρn ,G(bxn ,b

xn )
(A(bxn ) – ρF(bxn ,b


xn ) + ρng(xn))]‖

≤ pn‖zn – xn – (bzn – bxn )‖,
xn+ = ( – un)xn + unwn + tnhn,
‖wn – [yn – byn + RA,η

ρn ,G(byn ,b

yn )
(A(byn ) – ρF(byn ,b


yn ) + ρng(yn))]‖

≤ sn‖wn – yn – (bwn – byn )‖,

(.)

where bkxn ∈ Sk and bkyn ∈ Sk ( ≤ k ≤ ), and en,hn ∈ X are errors to take into account a
possible inexact computation of the proximal point and

lim sup
n→∞

‖en‖ = lim sup
n→∞

‖hn‖ < +∞.

By using Nadler [], we can choose suitable bkn ∈ Sk(xn) such that

∥∥bkn– – bkn
∥∥ ≤

(
 +


n

)
h
(
Sk(xn–),Sk(xn)

)
, (.)

where h(·, ·) is the Hausdorff metric in CB(X), n = , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2013/1/281


Li et al. Fixed Point Theory and Applications 2013, 2013:281 Page 10 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/281

Remark . For a suitable choice of the mappings A, η, f , g , F , G, Ŝk , ak , space X, and
nonnegative sequences {un}∞n=, {vn}∞n=, {pn}∞n=, {sn}∞n=, {ln}∞n=, {tn}∞n= and {ρn}∞n=, Algo-
rithm . can be degenerated to a number of algorithms involvingmany known algorithms
which are due to classes of variational inequalities and variational inclusions [, , –
, , , , ].

Theorem . Let X be a q-uniformly smooth Banach space. Let A, f , g : X → X; η,N :
X × X → X be single-valued mappings, and η be a τ -Lipschitz continuous mapping, A
be an r-strongly η-accretive and α-Lipschitz continuous mapping, f be a χ -Lipschitz con-
tinuous mapping, and g be a ϕ-Lipschitz continuous and (ψ ,κ)-S-relaxed cocoercive with
respect to A mapping, respectively. For k ∈ {, , , }, let Ŝk : X →F (X) be a fuzzy mapping
satisfying condition (∗) and Sk : X → CB(X) be a set-valued mapping induced by the fuzzy
mapping Ŝk , and suppose that Sk is h-Lipschitz continuous with constants ξk and that S is
γ -strongly accretive. Let F : X ×X → X be (μ,ν)-Lipschitz continuous. Let G(·, t) : X → X

be a set-valued (A,η)-accretive mapping for any t ∈ X and range(S)∩ domG(·, t) �= ∅, and
for any x, y, z ∈ X,

∥∥RA,η
ρ,G(x,·)(z) – RA,η

ρ,G(y,·)(z)
∥∥ ≤ δ‖x – y‖. (.)

If nonnegative sequences {un}∞n=, {vn}∞n=, {pn}∞n=, {sn}∞n=, {ln}∞n=, {tn}∞n= and {ρn}∞n= are
the same as in Algorithm . and lim supn→∞ vn = v < –θ

θ (–θ ) , where

θ =
(
 + cqχq – qγ

) 
q + δξ

q


+
τ q–

r –mρ

[
ρ(μξ + νχξ) +

(
αqξ

q
 + cqρqϕq – qρψ + ρκαqξ

q

) 
q
]
,

then the sequence {xn}∞n= generated by perturbed Ishikawa-hybrid quasi-proximal point
Algorithm . converges linearly to x∗ as

(


–

(
 + cqχq – qγ

) 
q – δξ

q


)
(r –mρ)τ q–

< ρ(μξ + νχξ) +
(
αqξ

q
 + cqρqϕq – qρψ + ρκαqξ

q

) 
q , (.)

where cq >  is the same as in Lemma ., ρ ∈ (, r
m ), and the convergence rate is ε = –u(–

θ (+vθ –v)), and problem (.) has a solution (x∗,b∗,b∗,b∗,b∗) ∈ X,where bk∗ ∈ Sk(x∗)
(≤ k ≤ ).

Proof Suppose that the sequence {xn} is the sequence generated by perturbed Ishikawa-
hybrid quasi-proximal point Algorithm ., and that (x∗,b∗,b∗,b∗,b∗) ∈ X is a solution
of problem (.). From Lemma . and condition αn ∈ [, ), we can get

x∗ = ( – un)x∗ + un
(
x∗ – b∗ + RA,η

ρn ,G(b∗ ,b∗)
(
A

(
b∗

)
– ρnF

(
b∗, f

(
b∗

))
– ρng

(
x∗))),

where bk∗ ∈ Sk(x∗) (≤ k ≤ ).
For all n≥  and bk∗ ∈ Sk(x∗) (≤ k ≤ ), set

cn+ = ( – un)xn + un
(
xn – bxn + RA,η

ρn ,G(bxn ,b

xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

))
.
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By using (.), we find the estimation

∥∥cn+ – x∗∥∥
≤ ( – un)

∥∥xn – x∗∥∥ + un
∥∥x∗ – xn –

(
b∗ – bxn

)∥∥
+ un

∥∥RA,η
ρn ,G(bxn ,b


xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

)
– RA,η

ρn ,G(b∗ ,b∗)
(
A

(
b∗

)
– ρnF

(
b∗, f

(
b∗

))
– ρng

(
x∗))∥∥

≤ [
( – un) + unθn

]∥∥xn – x∗∥∥, (.)

where

θn =
(
 + cqχq – qγ

) 
q + δξ

q
 +

(
 + cqχq – qγ

) 
q

+
τ q–

r –mρn

[
ρn(μξ + νχξ) +

(
αqξ

q
 + cqρq

nϕ
q – qρnψ + ρnκαqξ

q

) 
q
]
.

Since xn+ = (–un)xn+unwn+tnhn, (.) and (.)-(.) so that xn+–xn = un(wn–xn)+tnhn
and

‖xn+ – cn+‖
≤ ∥∥( – un)xn + unwn + tnhn

–
[
( – un)xn + un

(
xn – bxn + RA,η

ρn ,G(bxn ,b

xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

))]∥∥
≤ un

∥∥[
yn – byn + RA,η

ρn ,G(byn ,b

yn )

(
A

(
byn

)
– ρnF

(
byn , f

(
byn

))
– ρng(yn)

)]
–

[
( – un)xn + un

(
xn – bxn + RA,η

ρn ,G(bxn ,b

xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

))]∥∥
+ un

∥∥wn –
[
yn – byn + RA,η

ρn ,G(byn ,b

yn )

(
A

(
byn

)
– ρnF

(
byn , f

(
byn

))
– ρng(yn)

)]∥∥ + tn‖hn‖
≤ unsn

∥∥wn – yn –
(
bwn – byn

)∥∥ + unθn‖xn – yn‖ + tn‖hn‖

≤ unsn
(
 + cqξ

q
 – qγ

) 
q ‖wn – yn‖ + unθn‖xn – yn‖ + tn‖hn‖.

Next, we calculate

∥∥xn+ – x∗∥∥
≤ ∥∥cn+ – x∗∥∥ + ‖xn+ – cn+‖

≤ ∥∥cn+ – x∗∥∥ + unsn
(
 + cqξ

q
 – qγ

) 
q ‖wn – yn‖ + unθn‖xn – yn‖ + tn‖hn‖

≤ ∥∥cn+ – x∗∥∥ + unsn
(
 + cqξ

q
 – qγ

) 
q
(‖wn – xn‖ + ‖yn – xn‖

)
+ unθn‖xn – yn‖ + tn‖hn‖
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≤ ∥∥cn+ – x∗∥∥ + sn
(
 + cqξ

q
 – qγ

) 
q un‖wn – xn‖

+ un
(
sn

(
 + cqξ

q
 – qγ

) 
q + θn

)‖yn – xn‖ + tn‖hn‖

≤ [
( – un) + unθn

]∥∥xn – x∗∥∥ + sn
(
 + cqξ

q
 – qγ

) 
q
(‖xn+ – xn‖ + tn‖hn‖

)
+ un

(
sn

(
 + cqξ

q
 – qγ

) 
q + θn

)‖yn – xn‖ + tn‖hn‖

≤ [
( – un) + unθn

]∥∥xn – x∗∥∥ + sn
(
 + cqξ

q
 – qγ

) 
q ‖xn+ – xn‖

+ un
(
sn

(
 + cqξ

q
 – qγ

) 
q + θn

)‖yn – xn‖

+
(
sn

(
 + cqξ

q
 – qγ

) 
q + 

)
tn‖hn‖

≤ [
( – un) + unθn

]∥∥xn – x∗∥∥ + sn
(
 + cqξ

q
 – qγ

) 
q
(∥∥xn+ – x∗∥∥ +

∥∥x∗ – xn
∥∥)

+ un
(
sn

(
 + cqξ

q
 – qγ

) 
q + θn

)(∥∥yn – x∗∥∥ +
∥∥x∗ – xn

∥∥)
+

(
sn

(
 + cqξ

q
 – qγ

) 
q + 

)
tn‖hn‖

≤ [
( – un) + unθn + sn

(
 + cqξ

q
 – qγ

) 
q + un

(
sn

(
 + cqξ

q
 – qγ

) 
q + θn

)]∥∥xn – x∗∥∥
+ sn

(
 + cqξ

q
 – qγ

) 
q
∥∥xn+ – x∗∥∥ + un

(
sn

(
 + cqξ

q
 – qγ

) 
q + θn

)∥∥yn – x∗∥∥
+

(
sn

(
 + cqξ

q
 – qγ

) 
q + 

)
tn‖hn‖. (.)

This implies that

∥∥xn+ – x∗∥∥
≤ un(sn( + cqξ

q
 – qγ )


q + θn)

 – sn( + cqξ
q
 – qγ )


q

∥∥yn – x∗∥∥ +
(sn( + cqξ

q
 – qγ )


q + )tn

 – sn( + cqξ
q
 – qγ )


q

‖hn‖

+
[( – un) + unθn + sn( + cqξ

q
 – qγ )


q + un(sn( + cqξ

q
 – qγ )


q + θn)]

 – sn( + cqξ
q
 – qγ )


q

× ∥∥xn – x∗∥∥. (.)

Let

x∗ = ( – vn)x∗ + vn
(
x∗ – b∗ + RA,η

ρn ,G(b∗ ,b∗)
(
A

(
b∗

)
– ρnF

(
b∗, f

(
b∗

))
– ρng

(
x∗))).

For all n≥ , set

dn = ( – vn)xn + vn
(
xn – bxn + RA,η

ρn ,G(bxn ,b

xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

))
.

For the same reason,

∥∥dn – x∗∥∥ ≤ (
( – vn) + vnθn

)∥∥xn – x∗∥∥, (.)
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and by using yn = ( – vn)xn + vnzn + lnen in (.), the following holds:

∥∥yn – x∗∥∥
≤ ∥∥dn – x∗∥∥ + ‖yn – dn‖
≤ (

( – vn) + vnθn
)∥∥xn – x∗∥∥ +

[
( – vn)xn + vnzn + lnen

–
(
( – vn)xn + vn

(
xn – bxn + RA,η

ρn ,G(bxn ,b

xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

)))]
≤ (

( – vn) + vnθn
)∥∥xn – x∗∥∥ + ln‖en‖

+ vn
∥∥zn – (

xn – bxn + RA,η
ρn ,G(bxn ,b


xn )

(
A

(
bxn

)
– ρnF

(
bxn , f

(
bxn

))
– ρng(xn)

))∥∥
≤ (

( – vn) + vnθn
)∥∥xn – x∗∥∥ + ln‖en‖ + vnpn

∥∥zn – xn –
(
bzn – bxn

)∥∥
≤ (

( – vn) + vnθn
)∥∥xn – x∗∥∥ + ln‖en‖ + vnpn

(
 + cqξ

q
 – qγ

) 
q ‖zn – xn‖

≤ (
( – vn) + vnθn

)∥∥xn – x∗∥∥ + ln‖en‖

+ pn
(
 + cqξ

q
 – qγ

) 
q
(‖yn – xn‖ + ln‖en‖

)
≤ (

( – vn) + vnθn
)∥∥xn – x∗∥∥ + pn

(
 + cqξ

q
 – qγ

) 
q
(∥∥yn – x∗∥∥ +

∥∥x∗ – xn
∥∥)

+
(
 + pn

(
 + cqξ

q
 – qγ

) 
q
)
ln‖en‖. (.)

Furthermore,

∥∥yn – x∗∥∥ ≤ ( – vn) + vnθn + pn( + cqξ
q
 – qγ )


q

 – pn( + cqξ
q
 – qγ )


q

∥∥xn – x∗∥∥

+
( + pn( + cqξ

q
 – qγ )


q )ln

 – pn( + cqξ
q
 – qγ )


q

ln‖en‖. (.)

Combining (.)-(.), we have

∥∥xn+ – x∗∥∥
≤

[
un(sn( + cqξ

q
 – qγ )


q + θn)

 – sn( + cqξ
q
 – qγ )


q

× ( – vn) + vnθn + pn( + cqξ
q
 – qγ )


q

 – pn( + cqξ
q
 – qγ )


q

+
[( – un) + unθn + sn( + cqξ

q
 – qγ )


q + un(sn( + cqξ

q
 – qγ )


q + θn)]

 – sn( + cqξ
q
 – qγ )


q

]∥∥xn – x∗∥∥

× (sn( + cqξ
q
 – qγ )


q + )tn

 – sn( + cqξ
q
 – qγ )


q

‖hn‖

+
( + pn( + cqξ

q
 – qγ )


q )ln

 – pn( + cqξ
q
 – qγ )


q

ln‖en‖. (.)
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By (.) and the conditions

lim
n→∞pn = lim

n→∞ sn = lim
n→∞ ln = lim

n→∞ tn = ,

u = lim sup
n→∞

un < , v = lim sup
n→∞

vn <
 – θ

θ ( – θ )
, ρn ↑ ρ ≤ ∞,

lim sup
n→∞

‖en‖ = lim sup
n→∞

‖hn‖ < +∞,

we can see

∥∥xn+ – x∗∥∥ ≤ [
uθ

(
 – v( – θ )

)
+

(
 – u( – θ )

)]∥∥xn – x∗∥∥
= ε

∥∥xn – x∗∥∥,
where ε =  – u( – θ ( + vθ – v)) ∈ (, ) for v < –θ

θ (–θ ) ; and

θ = lim
n→∞ θn

=
(
 + cqχq – qγ

) 
q + δξ

q


+
τ q–

r –mρ

[
ρ(μξ + νχξ) +

(
αqξ

q
 + cqρqϕq – qρψ + ρκαqξ

q

) 
q
]
,

and the convergence rate is ε.
Therefore, the sequence {xn}∞n= generated by Algorithm . converges linearly to a so-

lution x∗ with convergence rate ε in a Banach space.
Let xn → x∗ as n → ∞. For any k ∈ {, , , }, by the h-Lipschitz continuity of Sk(x)

(≤ k ≤ ) with constants ξk , we obtain

∥∥bkn+ – bkn
∥∥ ≤ (

 + n–
)
D

(
Sk(xn+),Sk(xn)

) ≤ ξk
(
 + n–

)‖xn+ – xn‖.

It follows that {bkn}∞n= are also Cauchy sequences in X. We can assume that bkn → bk∗. Note
that bkn ∈ Sk(xn), we have

d
(
bk∗,S

(
x∗)) ≤ ∥∥bk∗ – bkn

∥∥ + d
(
bkn,S

(
x∗))

≤ ∥∥bk∗ – bkn
∥∥ +D

(
S(xn),S

(
x∗))

≤ ∥∥bk∗ – bkn
∥∥ + ξk

∥∥xn – x∗∥∥ →  (n→ ∞).

Hence d(bk∗,Sk(x∗)) =  and therefore bk∗ ∈ Sk(x∗).
By the Lipschitz continuity of Sk and Lemma ., condition (.), we have

x∗ = ( – λ)x∗ + λ
(
x∗ – b∗ + RA,η

ρn ,G(b∗ ,b∗)
(
A

(
b∗

)
– ρnF

(
b∗, f

(
b∗

))
– ρng

(
x∗)))

for any  < λ < . By Lemma ., we know that problem (.) has a solution (x∗,b∗,b∗,b∗,
b∗) ∈ X, where bk∗ ∈ Sk(x∗) (≤ k ≤ ). This completes the proof. �

Remark . For a suitable choice of the mappings A, η, f , g , F , G, Ŝk ( ≤ k ≤ ), we can
obtain several known results [, –, –, , , ] as special cases of Theorem ..
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