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Abstract
Very recently, Moudafi (Alternating CQ-algorithms for convex feasibility and split
fixed-point problems, J. Nonlinear Convex Anal. ) introduced an alternating
CQ-algorithm with weak convergence for the following split common fixed-point
problem. Let H1, H2, H3 be real Hilbert spaces, let A : H1 → H3, B : H2 → H3 be two
bounded linear operators.

Find x ∈ F(U), y ∈ F(T ) such that Ax = By, ()

where U : H1 → H1 and T : H2 → H2 are two firmly quasi-nonexpansive operators with
nonempty fixed-point sets F(U) = {x ∈ H1 : Ux = x} and F(T ) = {x ∈ H2 : Tx = x}. Note
that by taking H2 = H3 and B = I, we recover the split common fixed-point problem
originally introduced in Censor and Segal (J. Convex Anal. 16:587-600, 2009) and used
to model many significant real-world inverse problems in sensor net-works and
radiation therapy treatment planning. In this paper, we will continue to consider the
split common fixed-point problem (1) governed by the general class of
quasi-nonexpansive operators. We introduce two alternating Mann iterative
algorithms and prove the weak convergence of algorithms. At last, we provide some
applications. Our results improve and extend the corresponding results announced
by many others.
MSC: 47H09; 47H10; 47J05; 54H25
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1 Introduction
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let I denote the identity operator on H . Let C and Q be
nonempty closed convex subset of real Hilbert spaces H and H, respectively. The split
feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q, (.)

where A : H → H is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was first introduced byCensor and Elfving [] formodeling inverse problemswhich
arise fromphase retrievals and inmedical image reconstruction []. The SFP attractsmany
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authors’ attention due to its application in signal processing. Various algorithms have been
invented to solve it (see [–] and references therein).
Note that if the split feasibility problem (.) is consistent (i.e., (.) has a solution), then

(.) can be formulated as a fixed point equation by using the fact

PC
(
I – γA∗(I – PQ)A

)
x∗ = x∗. (.)

That is, x∗ solves the SFP (.) if and only if x∗ solves the fixed point equation (.) (see
[] for the details). This implies that we can use fixed point algorithms (see [, –])
to solve SFP. A popular algorithm that solves the SFP (.) is due to Byrne’s CQ algorithm
[], which is found to be a gradient-projection method (GPM) in convex minimization.
Subsequently, Byrne [] applied KM iteration to the CQ algorithm and Zhao [] applied
KM iteration to the perturbed CQ algorithm to solve the SFP.
Recently, Moudafi [] introduced a new convex feasibility problem (CFP). Let H, H,

H be real Hilbert spaces, let C ⊂H, Q ⊂H be two nonempty closed convex sets, let A :
H → H, B : H → H be two bounded linear operators. The convex feasibility problem
in [] is to find

x ∈ C, y ∈ Q such that Ax = By, (.)

which allows asymmetric and partial relations between the variables x and y. The interest
is to cover many situations, for instance, in decomposition methods for PDEs, applica-
tions in game theory and in intensity-modulated radiation therapy (IMRT). In decision
sciences, this allows to consider agents who interplay only via some components of their
decision variables (see []). In (IMRT), this amounts to envisaging a weak coupling be-
tween the vector of doses absorbed in all voxels and that of the radiation intensity (see []).
IfH =H andB = I , then the convex feasibility problem (.) reduces to the split feasibility
problem (.).
For solving the CFP (.), Moudafi [] studied the fixed point formulation of the solu-

tions of the CFP (.). Assuming that the CFP (.) is consistent (i.e., (.) has a solution),
if (x, y) solves (.), then it solves the following fixed point equation system

⎧⎨
⎩
x = PC(x – γA∗(Ax – By)),

y = PQ(y + βB∗(Ax – By)),
(.)

where γ ,β >  are any positive constants. Moudafi [] introduced the following alternat-
ing CQ algorithm

⎧⎨
⎩
xk+ = PC(xk – γkA∗(Axk – Byk)),

yk+ = PQ(yk + γkB∗(Axk+ – Byk)),
(.)

where γk ∈ (ε,min( 
λA
, 

λB
) – ε), λA and λB are the spectral radiuses of A∗A and B∗B, re-

spectively.
The split common fixed-point problem (SCFP) is a generalization of the split feasibil-

ity problem (SFP) and the convex feasibility problem (CFP); see []. SCFP is in itself at
the core of the modeling of many inverse problems in various areas of mathematics and
physical sciences and has been used to model significant real-world inverse problems in
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sensor net-works, in radiation therapy treatment planning, in resolution enhancement,
in wavelet-based denoising, in antenna design, in computerized tomography, in materials
science, in watermarking, in data compression, in magnetic resonance imaging, in holog-
raphy, in color imaging, in optics and neural networks, in graph matching. . . (see []).
Censor and Segal consider the following problem:

find x∗ ∈ C such that Ax∗ ∈Q, (.)

where A : H → H is a bounded linear operator, U : H → H and T : H → H are two
nonexpansive operators with nonempty fixed-point sets F(U) = C and F(T) = Q and de-
note the solution set of the two-operator SCFP by

� = {y ∈ C;Ay ∈Q}.

To solve (.), Censor and Segal [] proposed and proved, in finite-dimensional spaces,
the convergence of the following algorithm:

xk+ =U
(
xk + γAt(T – I)Axk

)
, k ∈N ,

where γ ∈ (, 
λ
), with λ being the largest eigenvalue of the matrix AtA (At stands for ma-

trix transposition). For solving SCFP of quasi-nonexpansive operators, Moudafi [] in-
troduced the following relaxed algorithm:

xk+ = αkuk + ( – αk)U(uk), k ∈N , (.)

where uk = xk + γβA∗(T – I)Axk , β ∈ (, ), αk ∈ (, ) and γ ∈ (, 
λβ
), with λ being the

spectral radius of the operator A∗A. Moudafi proved weak convergence result of the algo-
rithm in Hilbert spaces.
In [], Moudafi introduced the following SCFP

find x ∈ F(U), y ∈ F(T) such that Ax = By, (.)

and considered the following alternating SCFP-algorithm

⎧⎨
⎩
xk+ =U(xk – γkA∗(Axk – Byk)),

yk+ = T(yk + γkB∗(Axk+ – Byk))
(.)

for firmly quasi-nonexpansive operators U and T . Moudafi [] obtained the following
result.

Theorem . Let H, H, H be real Hilbert spaces, let U : H → H, T : H → H be
two firmly quasi-nonexpansive operators such that I – U , I – T are demiclosed at . Let
A : H → H, B : H → H be two bounded linear operators. Assume that the solution set
� is nonempty, (γk) is a positive non-decreasing sequence such that γk ∈ (ε,min ( 

λA
, 

λB
) –

ε), where λA, λB stand for the spectral radiuses of A∗A and B∗B, respectively. Then the
sequence (xk , yk) generated by (.) weakly converges to a solution (x̄, ȳ) of (.). Moreover,
‖Axk – Byk‖ → , ‖xk – xk+‖ → , and ‖yk – yk+‖ →  as k → ∞.
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In this paper, inspired and motivated by the works mentioned above, firstly, we intro-
duce the following alternating Mann iterative algorithm for solving the SCFP (.) for the
general class of quasi-nonexpansive operators.

Algorithm . Let x ∈H, y ∈H be arbitrary.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkuk + ( – αk)U(uk),

vk+ = yk + γkB∗(Axk+ – Byk),

yk+ = βkvk+ + ( – βk)T(vk+).

By taking B = I , we recover (.) clearly the classical SCFP (.). In addition, if γk =  and
βk = β ∈ (, ) in Algorithm ., we have vk+ = Axk+ and yk+ = βkAxk+ + (–βk)T(Axk+).
Thus, Algorithm . reduces to uk = xk+(–β)A∗(T–I)Axk and xk+ = αkuk+(–αk)U(uk),
which is algorithm (.) proposed by Moudafi [].
The CQ algorithm is a special case of the K-M algorithm. Due to the fixed point for-

mulation (.) of the CFP (.), we can apply the K-M algorithm to obtain the following
other alterativeMann iterative sequence for solving the SCFP (.) for quasi-nonexpansive
operators.

Algorithm . Let x ∈H, y ∈H be arbitrary.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkxk + ( – αk)U(uk),

vk+ = yk + γkB∗(Axk+ – Byk),

yk+ = αkyk + ( – αk)T(vk+).

The organization of this paper is as follows. Some useful definitions and results are listed
for the convergence analysis of the iterative algorithm in Section . In Section , we prove
the weak convergence of the alternating Mann iterative Algorithms . and .. At last, we
provide some applications of Algorithms . and ..

2 Preliminaries
Let T :H →H be amapping. A point x ∈H is said to be a fixed point of T providedTx = x.
In this paper, we use F(T) to denote the fixed point set and use → and ⇀ to denote the
strong convergence and weak convergence, respectively. We use ωw(xk) = {x : ∃xkj ⇀ x}
stand for the weak ω-limit set of {xk} and use � stand for the solution set of the SCFP (.).
- A mapping T :H →H belongs to the general class 
Q of (possibly discontinuous)
quasi-nonexpansive mappings if

‖Tx – q‖ ≤ ‖x – q‖, ∀(x,q) ∈H × F(T).

- A mapping T :H →H belongs to the set 
N of nonexpansive mappings if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀(x, y) ∈H ×H .

http://www.fixedpointtheoryandapplications.com/content/2013/1/288
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- A mapping T :H →H belongs to the set 
FN of firmly nonexpansive mappings if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(x – y) – (Tx – Ty)
∥∥, ∀(x, y) ∈H ×H .

- A mapping T :H →H belongs to the set 
FQ of firmly quasi-nonexpansive mappings
if

‖Tx – q‖ ≤ ‖x – q‖ – ‖x – Tx‖, ∀(x,q) ∈H × F(T).

It is easily observed that 
FN ⊂ 
N ⊂ 
Q and that 
FN ⊂ 
FQ ⊂ 
Q. Furthermore, 
FN

is well known to include resolvents and projection operators, while 
FQ contains subgra-
dient projection operators (see, for instance, [] and the reference therein).
A mapping T :H →H is called demiclosed at the origin if, for any sequence {xn} which

weakly converges to x, and if the sequence {Txn} strongly converges to , then Tx = .
In real Hilbert space, we easily get the following equality:

〈x, y〉 = ‖x‖ + ‖y‖ – ‖x – y‖ = ‖x + y‖ – ‖x‖ – ‖y‖, ∀x, y ∈ H . (.)

In what follows, we give some key properties of the relaxed operator Tα = αI + ( – α)T
which will be needed in the convergence analysis of our algorithms.

Lemma . ([]) Let H be a real Hilbert space, and let T : H → H be a quasi-
nonexpansive mapping. Set Tα = αI + ( – α)T for α ∈ [, ). Then the following properties
are reached for all (x,q) ∈H × F(T):

(i) 〈x – Tx,x – q〉 ≥ 
‖x – Tx‖ and 〈x – Tx,q – Tx〉 ≤ 

‖x – Tx‖;
(ii) ‖Tαx – q‖ ≤ ‖x – q‖ – α( – α)‖Tx – x‖;
(iii) 〈x – Tαx,x – q〉 ≥ –α

 ‖x – Tx‖.

Remark . Let Tα = αI + ( – α)T , where T : H → H is a quasi-nonexpansive mapping
and α ∈ [, ).We have F(Tα) = F(T) and ‖Tαx–x‖ = (–α)‖Tx–x‖. It follows from (ii)
of Lemma . that ‖Tαx – q‖ ≤ ‖x – q‖ – α

–α
‖Tαx – x‖, which implies that Tα is firmly

quasi-nonexpansive when α = 
 . On the other hand, if T̂ is a firmly quasi-nonexpansive

mapping, we can obtain T̂ = 
 I +


T , where T is quasi-nonexpansive. This is proved by

the following inequalities.

For all x ∈H and q ∈ F(T̂) = F(T),

‖Tx – q‖ =
∥∥(T̂ – I)x – q

∥∥ =
∥∥(T̂x – q) + (T̂x – x)

∥∥

= ‖T̂x – q‖ + ‖T̂x – x‖ + 〈T̂x – q, T̂x – x〉
= ‖T̂x – q‖ + ‖T̂x – x‖ + ‖T̂x – q‖ + ‖T̂x – x‖ – ‖x – q‖

= ‖T̂x – q‖ + ‖T̂x – x‖ – ‖x – q‖

≤ ‖x – q‖ – ‖T̂x – x‖ + ‖T̂x – x‖ – ‖x – q‖

= ‖x – q‖,

where T̂ is firmly quasi-nonexpansive.

http://www.fixedpointtheoryandapplications.com/content/2013/1/288
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Lemma . ([]) Let H be a real Hilbert space. Then for all t ∈ [, ] and x, y ∈H ,

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖.

3 Convergence of the alternatingMann iterative Algorithms 1.1 and 1.2
Theorem. Let H,H,H be real Hilbert spaces.Given two bounded linear operators A :
H →H,B :H →H, let U :H →H andT :H →H be quasi-nonexpansivemappings
with nonempty fixed point set F(U) and F(T). Assume that U – I , T – I are demiclosed at
origin, and the solution set � of (.) is nonempty. Let {γk} be a positive non-decreasing
sequence such that γk ∈ (ε,min ( 

λA
, 

λB
) – ε), where λA, λB stand for the spectral radiuses of

A∗A and B∗B, respectively, and ε is small enough.Then, the sequence {(xk , yk)} generated by
Algorithm . weakly converges to a solution (x∗, y∗) of (.), provided that {αk} ⊂ (δ,  – δ)
and {βk} ⊂ (σ , –σ ) for small enough δ,σ > .Moreover, ‖Axk –Byk‖ → , ‖xk –xk+‖ → 
and ‖yk – yk+‖ →  as k → ∞.

Proof Taking (x, y) ∈ �, i.e., x ∈ F(U); y ∈ F(T) and Ax = By. We have

‖uk – x‖ = ∥∥xk – γkA∗(Axk – Byk) – x
∥∥

= ‖xk – x‖ – γk
〈
xk – x,A∗(Axk – Byk)

〉
+ γ 

k
∥∥A∗(Axk – Byk)

∥∥. (.)

From the definition of λA, it follows that

γ 
k
∥∥A∗(Axk – Byk)

∥∥ = γ 
k
〈
A∗(Axk – Byk),A∗(Axk – Byk)

〉

= γ 
k
〈
Axk – Byk ,AA∗(Axk – Byk)

〉

≤ λAγ 
k 〈Axk – Byk ,Axk – Byk〉

= λAγ 
k ‖Axk – Byk‖. (.)

Using equality (.), we have

–
〈
xk – x,A∗(Axk – Byk)

〉
= –〈Axk –Ax,Axk – Byk〉
= –‖Axk –Ax‖ – ‖Axk – Byk‖ + ‖Byk –Ax‖. (.)

By (.)-(.), we obtain

‖uk – x‖ ≤ ‖xk – x‖ – γk( – λAγk)‖Axk – Byk‖

– γk‖Axk –Ax‖ + γk‖Byk –Ax‖. (.)

Similarly, by Algorithm ., we have

‖vk+ – y‖ ≤ ‖yk – y‖ – γk( – λBγk)‖Axk+ – Byk‖

– γk‖Byk – By‖ + γk‖Axk+ – By‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/288
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By adding the two last inequalities, and by taking into account assumptions on {γk} and
the fact that Ax = By, we obtain

‖uk – x‖ + ‖vk+ – y‖

≤ ‖xk – x‖ + ‖yk – y‖ – γk‖Axk –Ax‖ + γk+‖Axk+ –Ax‖

– γk( – λAγk)‖Axk – Byk‖ – γk( – λBγk)‖Axk+ – Byk‖. (.)

Using the fact thatU andT are quasi-nonexpansivemappings, it follows from the property
(ii) of Lemma . that

‖xk+ – x‖ ≤ ‖uk – x‖ – αk( – αk)
∥∥U(uk) – uk

∥∥

and

‖yk+ – y‖ ≤ ‖vk+ – y‖ – βk( – βk)
∥∥T(vk+) – vk+

∥∥.

So, by (.), we have

‖xk+ – x‖ + ‖yk+ – y‖

≤ ‖xk – x‖ + ‖yk – y‖ – γk‖Axk –Ax‖ + γk+‖Axk+ –Ax‖

– γk( – λAγk)‖Axk – Byk‖ – γk( – λBγk)‖Axk+ – Byk‖

– αk( – αk)
∥∥U(uk) – uk

∥∥ – βk( – βk)
∥∥T(vk+) – vk+

∥∥. (.)

Now, by setting ρk(x, y) := ‖xk – x‖ + ‖yk – y‖ – γk‖Axk – Ax‖, we obtain the following
inequality:

ρk+(x, y) ≤ ρk(x, y) – γk( – λAγk)‖Axk – Byk‖ – γk( – λBγk)‖Axk+ – Byk‖

– αk( – αk)
∥∥U(uk) – uk

∥∥ – βk( – βk)
∥∥T(vk+) – vk+

∥∥. (.)

On the other hand, noting that

γk‖Axk –Ax‖ = γk
〈
xk – x,A∗(Axk –Ax)

〉 ≤ γkλA‖xk – x‖,

we have

ρk(x, y)≥ ( – λAγk)‖xk – x‖ + ‖yk – y‖ ≥ . (.)

The sequence {ρk(x, y)} being decreasing and lower bounded by , consequently it con-
verges to some finite limit, says ρ(x, y). Again from (.), we have ρk+(x, y) ≤ ρk(x, y) –
γk( – λAγk)‖Axk – Byk‖, and hence

lim
k→∞

‖Axk – Byk‖ = 

http://www.fixedpointtheoryandapplications.com/content/2013/1/288
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by the assumption on {γk}. Similarly, by the conditions on {γk}, {αk} and {βk}, we obtain

lim
k→∞

‖Axk+ – Byk‖ = lim
k→∞

∥∥U(uk) – uk
∥∥ = lim

k→∞
‖Tvk+ – vk+‖ = .

Since

‖uk – xk‖ = γk
∥∥A∗(Axk – Byk)

∥∥,

and {γk} is bounded, we have limk→∞ ‖uk –xk‖ = . It follows from limk→∞ ‖U(uk)–uk‖ =
 that limk→∞ ‖U(uk) – xk‖ = . So,

‖xk+ – xk‖ ≤ αk‖uk – xk‖ + ( – αk)
∥∥U(uk) – xk

∥∥ → 

as n→ ∞, which infers that {xk} is asymptotically regular, namely limk→∞ ‖xk+ – xk‖ = .
Similarly, limk→∞ ‖vk+ – yk‖ = , and {yk} is asymptotically regular, too. Now, relation
(.) and the assumption on {γk} imply that

ρk(x, y)≥ ελA‖xk – x‖ + ‖yk – y‖,

which ensures that both sequences {xk} and {yk} are bounded thanks to the fact that
{ρk(x, y)} converges to a finite limit.
Taking x∗ ∈ ωw(xk) and y∗ ∈ ωw(yk), from limk→∞ ‖uk –xk‖ =  and limk→∞ ‖vk+ – yk‖ =

, we have x∗ ∈ ωw(uk) and y∗ ∈ ωw(vk+). Combined with the demiclosednesses of U – I
and T – I at ,

lim
k→∞

∥∥U(uk) – uk
∥∥ = lim

k→∞
‖Tvk+ – vk+‖ = 

yields Ux∗ = x∗ and Ty∗ = y∗. So, x ∈ F(U) and y ∈ F(T). On the other hand, Ax∗ – By∗ ∈
ωw(Axk – Byk) and lower semicontinuity of the norm imply that

∥∥Ax∗ – By∗∥∥ ≤ lim inf
k→∞

‖Axk – Byk‖ = ,

hence (x∗, y∗) ∈ �.
Next, we will show the uniqueness of the weak cluster points of {xk} and {yk}. Indeed,

let x̄, ȳ be other weak cluster points of {xk} and {yk}, respectively, then (x̄, ȳ) ∈ �. From the
definition of ρk(x, y), we have

ρk
(
x∗, y∗) = ∥∥xk – x∗∥∥ +

∥∥yk – y∗∥∥ – γk
∥∥Axk –Ax∗∥∥

= ‖xk – x̄‖ + ∥∥x̄ – x∗∥∥ + 
〈
xk – x̄, x̄ – x∗〉

+ ‖yk – ȳ‖ + ∥∥ȳ – y∗∥∥ + 
〈
yk – ȳ, ȳ – y∗〉

– γk
(‖Axk –Ax̄‖ + ∥∥Ax̄ –Ax∗∥∥ + 

〈
Axk –Ax̄,Ax̄ –Ax∗〉)

= ρk(x̄, ȳ) +
∥∥x̄ – x∗∥∥ +

∥∥ȳ – y∗∥∥ – γk
∥∥Ax̄ –Ax∗∥∥

+ 
〈
xk – x̄, x̄ – x∗〉 + 

〈
yk – ȳ, ȳ – y∗〉 – γk

〈
Axk –Ax̄,Ax̄ –Ax∗〉. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/288
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Without loss of generality, we may assume that xk ⇀ x̄, yk ⇀ ȳ and γk → γ ∗ because of
the boundedness of the sequence {γk}. By passing to the limit in relation (.), we obtain

ρ
(
x∗, y∗) = ρ(x̄, ȳ) +

∥∥x̄ – x∗∥∥ +
∥∥ȳ – y∗∥∥ – γ ∗∥∥Ax̄ –Ax∗∥∥.

Reversing the role of (x∗, y∗) and (x̄, ȳ), we also have

ρ(x̄, ȳ) = ρ
(
x∗, y∗) + ∥∥x∗ – x̄

∥∥ +
∥∥y∗ – ȳ

∥∥ – γ ∗∥∥Ax∗ –Ax̄
∥∥.

By adding the two last equalities, and having in mind that {γk} is a non-decreasing se-
quence satisfying  – γkλA > ελA, we obtain

ελA
∥∥x∗ – x̄

∥∥ +
∥∥y∗ – ȳ

∥∥ ≤ .

Hence x∗ = x̄ and y∗ = ȳ, this implies that the whole sequence {(xk , yk)} weakly converges
to a solution of problem (.), which completes the proof. �

Remark . Taking αn = βn = 
 in Algorithm ., it follows from Remark . that Theo-

rem . becomes Theorem ., which is proved by Moudafi [].

Theorem. Let H,H,H be realHilbert spaces.Given two bounded linear operators A :
H →H,B :H →H, let U :H →H andT :H →H be quasi-nonexpansivemappings
with nonempty fixed point set F(U) and F(T). Assume that U – I , T – I are demiclosed at
origin, and the solution set � of (.) is nonempty. Let {γk} be a positive non-decreasing
sequence such that γk ∈ (ε,min ( 

λA
, 

λB
) – ε), where λA, λB stand for the spectral radiuses of

A∗A and B∗B, respectively, and ε is small enough. Then the sequence {(xk , yk)} generated by
Algorithm . weakly converges to a solution (x∗, y∗) of (.), provided that {αk} is an non-
increasing sequence such that {αk} ⊂ (δ,  – δ) for small enough δ > . Moreover, ‖Axk –
Byk‖ → , ‖xk – xk+‖ →  and ‖yk – yk+‖ →  as k → ∞.

Proof Taking (x, y) ∈ �, i.e., x ∈ F(U); y ∈ F(T) and Ax = By. By repeating the proof of
Theorem ., we have that (.) is true.
Using the fact that U and T are quasi-nonexpansive mappings, it follows from Lem-

ma . that

‖xk+ – x‖ = αk‖xk – x‖ + ( – αk)
∥∥U(uk) – x

∥∥ – αk( – αk)
∥∥U(uk) – xk

∥∥

≤ αk‖xk – x‖ + ( – αk)‖uk – x‖ – αk( – αk)
∥∥U(uk) – xk

∥∥

and

‖yk+ – y‖ ≤ αk‖yk – y‖ + ( – αk)‖vk+ – y‖ – αk( – αk)
∥∥T(vk+) – yk

∥∥.

So, by (.) and the assumption on {αk}, we have

‖xk+ – x‖ + ‖yk+ – y‖

≤ ‖xk – x‖ + ‖yk – y‖ – γk( – αk)‖Axk –Ax‖ + γk+( – αk+)‖Axk+ –Ax‖
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– γk( – αk)( – λAγk)‖Axk – Byk‖ – γk( – αk)( – λBγk)‖Axk+ – Byk‖

– αk( – αk)
∥∥U(uk) – xk

∥∥ – αk( – αk)
∥∥T(vk+) – yk

∥∥. (.)

Now, by setting ρk(x, y) := ‖xk – x‖ + ‖yk – y‖ – γk( – αk)‖Axk – Ax‖, we obtain the
following inequality:

ρk+(x, y) ≤ ρk(x, y) – γk( – αk)( – λAγk)‖Axk – Byk‖

– γk( – αk)( – λBγk)‖Axk+ – Byk‖

– αk( – αk)
∥∥U(uk) – xk

∥∥ – αk( – αk)
∥∥T(vk+) – yk

∥∥. (.)

Following the lines of the proof of Theorem ., by the conditions on {γk} and {αk}, we
have that the sequence {ρk(x, y)} converges to some finite limit, say ρ(x, y). Furthermore,
we obtain

lim
k→∞

‖Axk – Byk‖ = lim
k→∞

‖Axk+ – Byk‖ = lim
k→∞

∥∥U(uk) – xk
∥∥ = lim

k→∞
‖Tvk+ – yk‖ = .

Since

‖uk – xk‖ = γk
∥∥A∗(Axk – Byk)

∥∥,

and {γk} is bounded, we have limk→∞ ‖uk – xk‖ = . It follows from

lim
k→∞

‖xk+ – xk‖ = lim
k→∞

( – αk)
∥∥U(uk) – xk

∥∥ = 

that {xk} is asymptotically regular. Similarly, limk→∞ ‖vk+ – yk‖ =  and {yk} is asymptot-
ically regular, too.
The rest of the proof is analogous to that of Theorem .. �

4 Applications
We now turn our attention to providing some applications relying on some convex and
nonlinear analysis notions, see, for example, [].

4.1 Convex feasibility problem (1.3)
Taking U = PC and T = PQ, we have the following alterative Mann iterative algorithms for
CFP (.).

Algorithm . Let x ∈H, y ∈H be arbitrary.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkuk + ( – αk)PC(uk),

vk+ = yk + γkB∗(Axk+ – Byk),

yk+ = βkvk+ + ( – βk)PQ(vk+).
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Algorithm . Let x ∈H, y ∈ H be arbitrary.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkxk + ( – αk)PC(uk),

vk+ = yk + γkB∗(Axk+ – Byk),

yk+ = αkyk + ( – αk)PQ(vk+).

4.2 Variational problems via resolvent mappings
Given a maximal monotone operator M : H → H , it is well known that its associated
resolvent mapping, JMμ (x) := (I +μM)–, is quasi-nonexpansive and  ∈ M(x)⇔ x = JMμ (x).
In other words, zeroes of M are exactly fixed-points of its resolvent mapping. By taking
U = JMμ , T = JSν , where N :H → H is another maximal monotone operator, the problem
under consideration is nothing but

find x∗ ∈M–(), y∗ ∈ N–() such that Ax∗ = By∗, (.)

and the algorithms take the following equivalent form.

Algorithm . Let x ∈H, y ∈H be arbitrary.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkuk + ( – αk)JMμ (uk),

vk+ = yk + γkB∗(Axk+ – Byk),

yk+ = βkvk+ + ( – βk)JSν (vk+).

Algorithm . Let x ∈ H, y ∈H be arbitrary.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkxk + ( – αk)JMμ (uk),

vk+ = yk + γkB∗(Axk+ – Byk),

yk+ = αkyk + ( – αk)JSν (vk+).
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