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Abstract

In quasi-gauge spaces (X, P) (in the sense of Dugundji and Reilly), we introduce the
concept of the left (right) J-family of generalized quasi-pseudodistances, and we use
this J-family to define the new kind of left (right) J-sequential completeness, which
extends (among others) the usual P-sequential completeness. We use this J-family
to construct more general contractions than those of Banach and Rus, and for such
contractions (which are not necessarily continuous), we establish the conditions guar-
anteeing the existence of periodic points (when (X, P) is not Hausdorff), fixed points
(when (X,P) is Hausdorff), and iterative approximation of these points. The results are
new in quasi-gauge, topological and quasi-uniform spaces and, in particular, gener-
alize the well-known theorems of Banach and Rus types in the matter of fixed points.
Various examples illustrating ideas, methods of investigations, definitions and results,
and fundamental differences between our results and the well-known ones are given.
MSC: 54H25; 54A05;47J25; 47H09; 54E15

Keywords: quasi-gauge space; generalized quasi-pseudodistance; new
completeness; asymmetric structure; contraction; periodic point; fixed point; iterative
approximation

1 Introduction

Let X be a nonempty set. If T: X — X, then, for each w € X, we define a sequence (W™ :
m € {0} UN) starting with w° as follows V,,coun{w” = T"(w°)}, where T = T o T o
.- o T (m-times), and T' = Iy is an identity map on X.

By Fix(T) and Per(T), we denote the sets of all fixed points and periodic points of
T : X — X, respectively, ie, Fix(T) ={we X:w=T(w)} and Per(T) = {we X : w =
T5l(w) for some s € N}.

The famous theorem of Banach-Caccioppoli [1, 2] states the following.

Theorem 1.1 If (X,d) is a complete metric space with metric d, then the map T : X — X
satisfying the condition

Jrefo)Vayex{d(T(x), T(y)) < rd(x,y)} 1.1)

has a unique fixed point w in X (i.e., Fix(T) = {w}) and ¥ o cx {lim,;, .o W" = w}.

©2013 Wiodarczyk and Plebaniak; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http:/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and re-
production in any medium, provided the original work is properly cited.


http://www.fixedpointtheoryandapplications.com/content/2013/1/289
mailto:wlkzxa@math.uni.lodz.pl
http://creativecommons.org/licenses/by/2.0

Wtodarczyk and Plebaniak Fixed Point Theory and Applications 2013, 2013:289 Page 2 of 27
http://www.fixedpointtheoryandapplications.com/content/2013/1/289

Another is a theorem of Rus [3] (see also [4, 5] and [6]), which states the following.

Theorem 1.2 If (X,d) is a complete metric space with metric d, then a continuous map
T : X — X satisfying the condition

Jicton Vaex{d(T(x), T (x)) < 1d(x, T(x))} (12)
has the properties xFix(T) # @ and ¥ ,0 ¢ x Jwerix(r){lim,— oo w" = w}.

It is clear that the map T satisfying (1.1) is continuous and satisfies (1.2), and in the
assertion of Theorem 1.2, the uniqueness such as in the assertion of Theorem 1.1 does not
necessarily hold.

These results are basic facts in the metric fixed point theory and their applications, and
in the last four decades, the question concerning important generalizations of [1, 2] and
[3] has received considerable attention from various researchers, and some very interest-
ing results have been obtained in several hundred papers and several books. It is not our
purpose to give a complete list of related papers and books here.

In important and various directions, there are elegant results discovered by [7-13], in
which more general and natural settings, by using asymmetric structures in considerable
spaces, are studied; in [7-9] a complete metric space (X, d) in results of [1-3] is replaced
by a left (right) P-sequentially complete quasi-gauge space (X, P), and in construction
of contractive conditions of (1.1) and (1.2) types, the quasi-gauge P is used, whereas [10]
and [11-13] provide substantial and inspiring tools for investigations in complete metric
spaces (X, d) the existence of fixed points of maps which are the contractions of [1-3] types
with respect to w-distances and 7-distances, respectively.

Note that quasi-gauge P, w-distances and t-distances generate asymmetric structures
and generalize metric d, and that the studies of asymmetric structures and their applica-
tions in theoretical computer science are important.

Our main interest of this paper is the following.

Question 1.1 For which not necessarily Hausdorft and not necessarily complete spaces or
not necessarily sequentially complete spaces and for which new families of distances on
these spaces, there exist symmetric or asymmetric structures determined by these new
families of distances which are more general than those determined by quasi-gauges P,
w-distances, t-distances or metrics d, and for which not necessarily continuous contrac-
tions of the Banach or Rus types with respect to these new families of distances the asser-
tions such as in the results of [1, 2] or [3], respectively, hold (and not only for fixed points
but also for periodic points)?

In this paper, in the quasi-gauge spaces (X, P) (see Definition 2.1), to answer this ques-
tion affirmatively, we introduce the concepts of the left (right) J -families of generalized
quasi-pseudodistances (see Definition 3.1), and we show how these left (right) 7 -families
can be used, in a natural way, to define the left (right) J-sequential completeness (see
Definition 3.2) which generalize (among others) the usual left (right) P-sequential com-
pleteness, to construct the not necessarily continuous contractions T : X — X of Banach
and Rus types (see conditions (H1) and (H2)), and assuming additionally that 71! is a left
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(right) P-quasi-closed map in X for some s € N (see Definition 3.3), to obtain the new pe-
riodic and fixed point theorems (see Theorems 4.1 and 4.2) which, in particular, generalize
Banach and Rus results in the matter of fixed points. The results are new in quasi-gauge,
topological and quasi-uniform spaces (see Remarks 2.1, 3.1, 3.2 and 6.1). Various exam-
ples illustrating ideas, methods of investigations, definitions and results, and fundamental
differences between our results and the well-known ones are given (see Section 6).

This paper is a continuation of [14—23].

2 Quasi-gauge spaces
The following terminologies will be much used.

Definition 2.1 Let X be a nonempty set.
(i) A quasi-pseudometric on X isa map p: X x X — [0, 00) such that

(P1) Vaex{p(x,x) = 0}; and

(P2) Vayzex{p(x,2) < p(x,y) + p(y,2)}.
For given quasi-pseudometric p on X, a pair (X, p) is called quasi-pseudometric
space. A quasi-pseudometric space (X, p) is called Hausdorff if Vyyex{x #y =
px,y) >0V p(y,x) > 0}.

(i) Each family P = {p, : & € A} of quasi-pseudometrics p, : X X X — [0,00), @ € A,
is called a quasi-gauge on X (A-index set).

(iii) Let the family P = {p, : « € A} be a quasi-gauge on X. The topology T (P) having
as a subbase the family

B(P) = {B(x,sa) xe€X,64>0,a € .A}
of all balls
B(x,&,) = {yeX:pa(x,y) <8a}, x€X,6,>0,a€ A,

is called the topology induced by P on X.

(iv) (Dugundji [24], Reilly [7, 25]) A topological space (X, 7') such that there is a
quasi-gauge P on X with 7 = T (P) is called a quasi-gauge space and is denoted by
X, P).

(v) A quasi-gauge space (X, P) is called Hausdorff if a quasi-gauge P has the property

Vayex{® #y = Jaea{pa(®,9) >0V po(y,%) > 0}}.

Remark 2.1 Each quasi-uniform space and each topological space is a quasi-gauge space
(Reilly [7, Theorems 4.2 and 2.6]).

3 Left (right) 7 -families, left (right) [7-sequential completeness and left (right)
P-quasi-closed maps in quasi-gauge spaces with generalized
quasi-pseudodistances

We next record the definitions of left (right) J-families, left (right) 7 -sequential com-

pleteness and left (right) P-quasi-closed maps needed in the next sections.
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Definition 3.1 Let (X,P) be a quasi-gauge space. The family J = {J, : « € A} of maps
Jo: X x X — [0,00), @ € A, is said to be a left (right) J-family of generalized quasi-
pseudodistances on X (left (right) [J -family on X, for short) if the following two conditions
hold:

(jl) VaeAVx,y,ZGX{]a(x: Z) S]a(xd/) +]ot(y’ Z)}; and
(J2) for any sequences (#,, : m € N) and (v;, : m € N) in X satisfying

VO[E.AV6>0 eran,meN;k§m<n {]a (umx un) < 8} (31)

(VaeAvs>O eran,meN;kSmGI {]a (um um) < 8}) (32)
and

VCYGAV8>03/(ENVWI€N;/(SWI {]u (Vm: um) < 8} (33)

(VueAv8>03keNvmeN;k5m {]a(um; Vi) < 8}), (3.4)
the following holds

VO[EAV6>03/(ENVWI€N;/(§WI {pa(vmr Mm) < 8} (35)

(VaeAvs>03keNvmeN;k§m {pa (Mmy Vm) < 8}) (36)

Remark 3.1 If (X, P) is a quasi-gauge space, then P € JfX,P), where
v]](LX,’P) ={J : J is aleft J-family on X}
and P e J&p), where
fo"p) ={J :J is aright J-family on X}.
One can prove the following proposition.

Proposition 3.1 Let (X,P) be a Hausdor(f quasi-gauge space, and let J = {J, : X X X —
[0,00),a € A} be a left (right) J -family on X. Then

Vayex{% 7y = Joea{la®,y) > 0V 1(y,x) > 0} }.

Proof Assume that J is a left J-family, and that there are x # y, x,y € X, such that
Voealla(®y) = Joa(y,%) = 0}. Then Vyea{Jy(x,x) = 0}, by using property (J1) in Defini-
tion 3.1, it follows that

VaEA{]a(x’x) S]oc(x»y) +]a(%x) = 0}

Defining the sequences (u,, : m € N) and (v,, : m € N) in X by u,, = x and v,, = y or by
um =y and v, = x for m € N, observing that Ve 4 /o (%,7) = Jo (7, %) = Jo (%, %) = 0}, and us-
ing property (J2) of Definition 3.1 for these sequences, we see that (3.1) and (3.3) hold,
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and, therefore, (3.5) is satisfied, which gives Vo c 4 {p« (%, ¥) = pu (¥, x) = 0}. But this is a con-
tradiction, since (X, P) is Hausdorff, and thus, x # y = J4ca{pa(®,y) > 0 V pu (y,x) > 0}.
When J is a right J -family, then the proof is based on the analogous technique. O

The necessity of defining the various concepts of completeness in quasi-gauge spaces
became apparent with the investigation of asymmetric structures in these spaces. General
results of this sort were progressively shown in a series of papers, and important ideas are
to be found in [7-9, 24—27], which also contain many examples.

Now, using left (right) 7 -families, we define the following new natural concept of com-

pleteness.

Definition 3.2 Let (X, P) be a quasi-gauge space, andlet 7 = {J, : X x X — [0,00),« € A}
be a left (right) J -family on X.
(i) We say that a sequence (uy, : m € N) in X is left (right) J -Cauchy sequence in X if

VaeAVes0TkeNY mneNk<m<n {]a(um) Up) < 5}
(VaeAV5>OerNvm,neN;kgmsn {]oc (Uny ) < & })

(i) Let u € X, and let (u,, : m € N) be a sequence in X. We say (u,, : m € N) is left
(right) J -convergent to u if

L-J
lim u,, =u
m—> 00

R-J
( lim u,, = u),

m— 00
where

-7
lim u,=u < VaeA{ lim J, (1, u,,) =0}
m— 00

m—>00
<~ VaeAV8>O 3kENVmEN;I(Sm {]a(u’ um) < 8}
R-TJ
( lim Uy =U =4 VO[E.A{ lim ]a(umju) = 0}
m—>00 m—>00

< VaeaVes0TkeNVimeNk<m {]oz(um; u)<e }) .

(iii) We say that a sequence (u,, : m € N) in X is left (right) [J -convergent in X if

L-T

S(um:meN) # o
R-T
(S(um:mEN) 7/ @),
where
L-J

L-TJ _ R _

S(um:meN) = {u EX'W}I—{I;OM'” = u}

R-T
(SR_j = {u eX: lim u, = u})
m— 00

(upm:meN) —
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(iv) If every left (right) J-Cauchy sequence (i, : m € N) in X is left (right)
J -convergent in X

(ie, S 0 79

(up:meN)

(Sfi:;?meN) 7! @)),
then (X, P) is called a left (right) J -sequentially complete quasi-gauge space.

Remark 3.2 (a) It is clear that if (w,, : m € N) is left (right) J-convergent in X, then

ST wery €6

Wy:meN) Vi:meN)
R-T R-T
(S(wm:mEN) - S(vm:mEN))

for each subsequence (v, : m € N) of (w,,, : m € N) (see Example 3.1).

(b) There exist examples of quasi-gauge spaces (X, P) and left (right) J-family 7 on X,
J # P such that (X, P) is left (right) J-sequentially complete, but not left (right) P-
sequentially complete (see Section 6).

Example 3.1 Let X = [0,6] C R, and let P = {p}, where

0 ifx>y,
pxy) = xy€X.
1 ifx<y,
Let
0 ifmisodd,
Wy = meN,

3 ifmiseven,

If (v,, =0 : m € N), then

S(L-J

Wy:meN) =

8,6, ;7

Vin:meN) =

(0,61, S Tery =10 ST = (O},

(Wyp:meN
If (v, =3:m € N), then

se7

Wp:meN)

=136,  S;7

Vim:meN)

=[36], S&7 o},  Sg7 =103

(Wp:meN) = Vi:meN) —
Also, using Definition 3.2, we can define the following generalization of continuity.

Definition 3.3 Let (X,P) be a quasi-gauge space, let T: X — X, and let s € N. The map
T is said to be a left (right) P-quasi-closed map if every sequence (w,, : m € N) in T¥!(X),
left (right) P-converging in X

(thus, S(L‘::meN) O

w,

(Stumery #2))

Page 6 of 27
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and having subsequences (v,, : m € N) and (u,, : m € N) satisfying ¥,,,en{v,, = T® (4,,)} has
the property

esr [w=THw)

(wp:meN)

— lsl
(Elwesﬁgyl’:mem {W =T (W)})
4 Main results
Using the above, we can now state the main results of this paper.

Theorem 4.1 Let (X,P) be a quasi-gauge space. Let the family J = {Jy : X x X —
[0,00), a0 € A} be a left (right) J -family on X such that (X, P) is left (right) [J -sequentially
complete. Let a map T : X — X satisfy

(HD) Voe T cfonYapex e (T, T)) < Aaa(5,9)}.

The following statements hold:

(A) Foreach w® € X the sequence (W" : m € {0} UN) is left (right) P-convergent in X;

ie.,

(31) vwoeX{S(L,;f;me{o]UN) 7’@} (VWOEX{S{;’ZD;me[O}UN) 7/ @})

(B) Assume that
(B1) T is left (right) P-quasi-closed on X for some s € N.
Then

(by) Fix(T) # &;
(b2) VyoexTyerixrish{w € S(Lv.}zlpzme{()}uN)} (VwoexTyerixrishy{w € Sg;VZ::'me{O}UN)}); and
(bs) Vae.AVweFix(T[SI){]a(W; T(w)) =Ju(T(w), w) = 0}.

(C) Assume that
(C1) (X,P) is a Hausdorff space; and
(C2) there exists s € N such that Fix(T¥)) + @.
Then

(c1) Fix(T¥) = Fix(T) = {w} for some w € X;
(2) Vaoex{W € St ciopumy} (Vwoex (W € St ciopumy s and
(c3) Vaealu(w,w) =0}

Theorem 4.2 Let (X,P) be a quasi-gauge space. Let the family J = {Jy : X x X —
[0,00),« € A} be a left (right) J -family on X such that (X, P) is left (right) [J -sequentially
complete. Let a map T : X — X satisfy

(H2) VacaBcionVeex Ve (T@), T @) < hafu(®, T().

The following statements hold:

(D) Foreach w® € X the sequence (w" : m € {0} UN) is left (right) P-convergent in X;

ie.,

(dl) VwoeX{S(Lujr?«);mE{o]UN) #Q} (vwoex{sﬁj’fzme{O}UN) 31@})

(E) Assume that
(E1) T is left (right) P-quasi-closed on X for some s € N.
Then

Page 7 of 27
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(e1) Fix(T¥) # &

(€2) VioexTyerixriniw € S(Lv;f:me{()}uN)} (Vwoex Fyerin(ris) (W € Sgd;f:me{()}UN)}); and
(e3) VaE.Avngix(T[S]){]a(W’ T(w)) = Jo(T(w),w) = 0}.

(F) Assume that
(F1) (X,P) is a Hausdor{f space; and
(F2) there exists s € N such that Fix(T¥) # @.
Then

(f) Fix(TH!) = Fix(T);
(f2) VWOEXHWGFiX(T){W € S(Lv;ﬁme{o}UN)} (VWOEXHWEFiX(T){W € va;V’zD:me{O}UN)}); and
(f3) VaeAYuerixr) Ue(w, w) = 0}.

Remark 4.1 (i) It is worth noticing that each map T satisfying (H1) satisfies (H2).

(ii) If condition (B1) or (E1) holds, then condition (C2) or (F2) holds, respectively.

(iii) Since in the results of [1, 2] and [4], the spaces (X, d) are Hausdorff and complete,
and the maps 7' : X — X are continuous, therefore, Theorems 4.1 and 4.2 are new gen-
eralizations of [1, 2] and [3], respectively; more precisely, the assertions are identical, but
assumptions are weaker.

(iv) The statements (C) and (F) say that each periodic point is a fixed point when (X, P)
is Hausdorff; for illustrations, see Examples 6.1-6.7.

(v) The situations when (X, P) is not Hausdorff and the periodic points exist but they
are not fixed points are described in Examples 6.8 and 6.9.

5 Proofs

We prove Theorems 4.1 and 4.2 in the case when J is left J-family and a quasi-gauge
space (X, P) is left J -sequentially complete; we omit the proof when 7 is a right 7 -family
and (X, P) is right J -sequentially complete, which is based on the analogous technique.

Proof of Theorem 4.2 (D) The assertion (d;) holds. The proof will be broken into four steps.
Step D.I. The following holds:

VD,GAVWoex{”}ijloosup{]a(wm,w”) N> m} = 0].

Indeed, if @ € A and w° € X are arbitrary and fixed, #,n € N and # > m, then by (J1)
and (H2), we get that

r}ilnw sup{]a (w’”,w”) ‘> m}

n-1
< lim sup{Z]a(Wi’Wiﬂ) n> m}

m—> 00 "
1=m

m— 00 -
=m

n-1
< lim sup{Zkéla(Wo,WI) n> m}
< lim A0, (w°,w')/(1- 1) = 0.
m— 00

Step D.II. We show that

VaeAY 0 cxVes0TkeNVimeNk<m ¥ neNymen {]a (me Wn) <& } .
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Indeed, by Step D.I, we get
Vae AV woexVesoTkenVimensk<m {sup{Jo (W, w") : 1 > m} < &}.

This implies a required condition.
Step D.IIL. The following holds:

VaeAY w0 ex Ves0TkeN Vi meNk<men {]a (Wm; Wn) <€ } . (5.1)

Indeed, it is a consequence of Step D.II.

Step D.IV. For each w® € X, S(;l" o1 7 2-

Indeed, let w® € X be arbitrary and fixed. By (5.1) and Definition 3.2(i), the sequence
(w" :m € {0} UN) is left J-Cauchy on X. Hence, since (X,P) is a left J-sequentially
complete quasi-gauge space, we get that (W” : m € {0} UN) is left J-convergent in X, i.e.,

there exists, by Definition 3.2(ii)-(iv), a nonempty set S(L_J uryy C X, such that for all

w":me{0}
L-T
we S(szme{o}UN), we have

VaeAVes0TkeNYmeNk<m {]oz (W’ Wm) <& } . (5.2)

However, 7 is left 7 -family. Therefore, from (5.1) and (5.2), fixing w € Sk=J 0JUN)’ defin-

(W"me(

ing (uy, = w" :m € {0} UN) and (v, = w: m € {0} UN) and using Definition 3.1 for these
sequences, we conclude that

VaeAVes0TkeNYmeNk<m {pa (W, Wm) < 8};

i.e., limE” w™ = w. Clearly, this means that S(Ll;'zime{O]uN) 7.

We proved that the assertion (d;) holds.
(E) The assertions of (e1)-(es) hold.
The proof will be broken into three steps.

Step E.I. We show that (e;) holds. Indeed, let w® € X be arbitrary and fixed. By (D),

SL—'P

(wmmefojun) 7 9, and since

w(m+ls _ lsl (WmS) for m € {0} UN,
thus, defining (w,,, = w”*S : m € N), we see that
(W : m e N) C TH(X),
S(ijrzme{O}UN) = S(Ll;'z’pzme{O]UN) 79,
the sequences
(v =W m e N) € TH/(X)
and

(um =w"™ :meN) C TH(X)
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satisfy
VineN { Vm = Tt (um)}

and, as subsequences of (W” : m € {0} U N), are left P-converges to each point of w €

Stmumetojun)- Moreover, by Remark 3.2(a),
L-P L-P L-P L-P
S(wm:meN) C S(vm:meN) and S(wm:meN) C S(um:meN)'

By above, since T is left P-quasi-closed for some s € N, we conclude that

et By Sy 1 = T0)-

-P
(W:me{0}UN) ~~ (wpy:meN)

Consequently, (e;) holds.
Step E.I1. We show that (e;) holds. Assertion (e, ) follows from assertion (d;) and Step E.I.
Step E.IIL. We show that (e3) holds. Assume that w € Fix(T!) is arbitrary and fixed.
First, we see that

Vaea{la(w, T(w)) = 0};

otherwise, 34y .4 {/u, (W, T(w)) > 0} and using this and (J1), we get
w =T (w) = T (w)

and

Jao (W, TW)) = Juo (TP (w), T (T(w)) )
= Juo (T(T[zs—u W), T12) (T[zs—u W)
< haoJag (T(TH(w)), TP (T (w)))
< A% Jao (T2 w), T(TP 2 (w)))

S e E }\is ]oto (W’ T(W)) < ]ao (W’ T(W)))

0

which is impossible.
Next, we show that

VO(EA{]D((T(W)! W) = 0}:

otherwise, 3yyc AUy (T(W), w) > 0} and, since w = T (w) = T (w) and s + 1 < 25, then
by (H2), and since J,,(w, T(w)) = 0, we have that

0 < Juo (TW), w) = Juo (T(TH W), T (W) = Juy (T (w), T ()
2s-1
<Y M Sy (W0 W) = 25ty (W, T)) /(1= h) = O,

i=s+1

which is impossible.
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The above show that

VaealJa (w, TW)) = Ju (T(w), ) = 0}.

This means that (e3) holds.

(F) The assertions of (f1)-(f3) hold.

The proof will be broken into three steps.

Step E.I. We show that (f;) holds. By (F1) and Proposition 3.1, condition (e3) implies that
if w € Fix(T"), then w = T(w), i.e., w € Fix(T). Thus, (f;) holds.

Step EIL. We show that (f,) holds. We see that (e;) and (f;) gives (f).

Step EIII. We show that (f5) holds. By (J1), using (e3) and (f;), we get

ereAVweFix(T[S])=Fix(T) {]ot (W7 W) =< ]a (W: T(W)) + ]a (T(W), W) = 0}:

i.e., (f3) holds.
The proof of Theorem 4.2 is complete. g

Proof of Theorem 4.1 By Remark 4.1(i) and Theorem 4.2, it is enough to prove (c;). With
this aim, first notice that if u, v € Fix(T) and u # v, then (H1) gives

VWGAHAO,G[O,I){[]&(“: V) < AoJo(u, V)] A []oz(Vr u) < AoJo (v, I/l)]}

However, since u # v, by Proposition 3.1,

Juped ] [Juo () > 0] V [Joy (v, ) > 0]}
This gives

Juped ] [Jao (V) > O A Jug (1, v) < Mg Jurg (t4: V) < Jaro (V)]

V [Jao (v 4) > 0 A Jug (v, 18) < Ao Jug (v, 1) < Joi (v, ) ]},

which is absurd. Therefore, Fix(T) is a singleton. Consequently, (c;) holds.
By (c1), we see that (f;) and (f5) gives (c3) and (c3), respectively.
The proof of Theorem 4.1 is complete. d

6 Examples and comparisons of our results with [1, 3, 7-9, 11-13] results
Definitions and results are illustrated with simple examples making clear their general
nature.

First, in Examples 6.1-6.7, we consider the situation when (X, P) is Hausdorff.

Example 6.1 Let X =[0,1], A ={1/2":n € N} and

lx—yl+1 ifx¢AandyeA,
px,y) = ] xyeX. (6.1)
[z — | ifxeAoryé¢A,

The map p: X x X — [0,00) is quasi-pseudometric on X and (X, {p}) is the quasi-gauge
space.
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Example 6.2 Let X =[0,1] CR, P ={p} and p: X x X — [0,00), where p is defined in
Example 6.1.
(I1.1) We show that (X, P) is not a left P-sequentially complete quasi-gauge space.
Indeed, let (u,, = 1/2" : m € N). By (6.1),

V£>03koeNVn,meN;k0§m§n {p(um: Mn) = ’1/2”1 - 1/2n| < 8}'

Thus, this sequence is left P-Cauchy. However, this sequence in not left P-convergent

P

in X. Otherwise, supposing that lim; " __ u,, = u for some u# € X we may assume, not losing

generality, that

Vo<e<1TkgeNVmeNko <m {P(uy Up) <€ < 1}' (6.2)

Then, the following two cases hold:
Case 1. If u ¢ A, then, by (6.1), since V,en{ut, € A}, we have

Y mebiko <m {1y ) = |t — thn| + 1 < & <1},

which is impossible;
Case 2. If u € A, then u = 1/2" for some k; € N and, using (6.1), we see that

b

and taking the limit interior as m — 0o, we find lim,,,_, o p(1, u,,) = 1/2%1, which, by (6.2),

Y meNiko <m {p(u, Up) = |t — Uy, | = \1/2"1 -1/2"

is impossible.
We conclude that (X, P) is not a left P-sequentially complete.

Example 6.3 Let (X,P) be a quasi-pseudometric space, where P = {p} and p is a quasi-
pseudometric on X. Let the set E C X, containing at least two different points, be arbitrary
and fixed, and let ¢ > 0 satisfy §(E) < ¢, where

8(E) = sup{p(x,y) (XY € E}.

Define J: X x X — [0, 00) by

J0) = plx,y) HEN{xy}={xy}, nyeX. 63)

¢ ifEN {xy} 7 {x5),
(IIL1) The family J = {J} is left J -family on X.
Indeed, it is worth noticing that condition (1) does not hold only if there exist some

%0,90,20 € X satisfying

J(%0,20) > J(%0,50) +J(¥0, 20)-

This inequality is equivalent to

¢ > p(x0,50) + p(¥0; 20),
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where J(xo,20) = ¢, J(x0,%0) = p(x0,%0) and J(¥o,20) = p(¥0,20). However, by (6.3), we get
the following.

Case 1. J(xg,20) = ¢ gives that there exists v € {x9,z¢} such that v ¢ E;

Case 2. J(xo,0) = p(x0,0) gives {xo0,y0} C E;

Case 3. J(¥0,20) = p(¥0,20) gives {yo,20} C E.

This is impossible. Therefore, ¥y, .ex {/(x, ) < J(%,2) +](z, )}, i.e., condition (J1) holds.

To prove that (J2) holds, we assume that the sequences (u,, : m € N) and (v, : m € N)
in X satisfy (3.1) and (3.3). Then, in particular, (3.3) yields

Yo<e<cImo=mo(e)eN Vmzmo J (Vims tm) < €} (6.4)
By (6.4) and (6.3), since ¢ < ¢, we conclude that

Y iz mo {Eﬂ Vo thin} = {Vm,um}}. (6.5)
From (6.5), (6.3) and (6.4), we get

V0<E<Cam0€Nvam0 {p(Vm: Mm) = ](Vm: Mm) < 8}'

Therefore, the sequences (u,, : m € N) and (v, : m € N) satisfy (3.5). Consequently, prop-
erty (72) holds. Thus, J is left J-family.

(IIL.2) The family J = {J} is right J -family on X.

We omit the proof since it is based on the analogous technique as in (IIL.1).

Example 6.4 Let X =[0,1] CR, P ={p} and p: X x X — [0,00), where p is such as in
Example 6.1. Let E = [1/8,1], and let / : X x X — [0, 00) be given by the formula

J0x) = plx,y) if {x,y} NE = {x,y}, 6.6)

4 if {x,y} NE # {x,y}.

(IV.1) J =} is aleft J-family on X.

This follows from (II1.1).

(IV.2) (X, P) is not a left P-sequentially complete quasi-gauge space.

This follows from (II.1).

(IV.3) (X, P) is a left J -sequentially complete quasi-gauge space.

Indeed, let (u,, : m € N) be a left 7-Cauchy sequence; not losing generality, we may
assume that

Vo<e<1/8 Tk eNVnmeNko <m=n {](umr Uy) < €< 1/8}~ (6.7)
Then, by (6.7), (6.6) and (6.1), we get

V0<5<l/83k0ean,meN;ko§m<n {](Mm, Mn) IP(Mm: un) = |um - un| <€ 1/8}: (68)

VmeN;kogm {Mm €E= [1/8, 1]} (69)
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and
VmeN;kogm{um €Aor U ¢ A} (610)

We consider the following two cases.

Case 1. Let Vjen{ugy.s € A}. This together with (6.8)-(6.10) shows that Vjen{u, s = 1/2}
or Vien{ttry+i = 1/4} or Vien{ug,+s = 1/8} and, therefore, the sequence (i, : m € N) is left
J -convergent to the point 1/2 or 1/4 or 1/8, respectively;

Case 2. Let Jyyen{utry+1, € A}. We note that then

Vn>lo {ukm—n é14} (611)

Otherwise, S = {n >l : ugy.n € A} # 9, and let sy = min S. By definition of S, uy,+5,-1 ¢ A
and w5, € A, which, by (6.6) and (6.1), gives

](Mk0+so—1: uk0+so) =19(”k0+s0—17 uk0+so) = |Mk0+so—1 - Mk0+sol +1,
and this, by (6.7), is impossible. Thus, (6.11) holds. Now, since (R, | - |) is complete, E =

[1/8,1] is closed in R, V=4, {4, € E} by (6.9), and (u,, : m € N) is Cauchy with respect to
| - | (indeed, by (6.8), we get that

Vo<e<1/8TkoeNVnmeNikg <m=<n { [t — tn < 8}

holds), thus, there exists u € E such that

V0<8<1/83k1€Nvm€N;k1§m{|u — U] < 8}' (6.12)

Next, by (6.11) and (6.12),

V0<8<1/83m0EN,mO:max{lq,ko+lo}vm€N;m0§m{um ¢AN |u - Mm| < 8}:

which, by (6.6) and (6.1), implies that
V0<5<1/83m06NvmeN;m0§m {](M; um) =p(u: um) = |M - um| < 8}7

and we conclude that (u,, : m € N) is left 7 -convergent to u.
This means that (X, P) is left 7 -sequentially complete.

Theorem 4.2 is quite general, and does not require left P-sequential completeness; in
Example 6.5, T satisfies (H2) for some 7 # P, and A = 3/4, T satisfies (H2) for 7 =P and
A =1/2,and (X, P) is left J-sequentially complete but not left P-sequentially complete.

Example 6.5 Let X, P = {p}, E and ] be as in Example 6.4, and let T : X — X be given by

x/2+1/4 ifx€0,1/2),
T(x) = (6.13)
1/2 ifx e [1/2,1].
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(V1) (X, P) is left J -sequentially complete for J = {J}.

This follows from (IV.3).

(V.2) We claim that T satisfies condition (H2) for . = 3/4, and ] defined in (6.6).
To establish this, we see that

/4 +3/8 ifxe[0,1/2),
TP (x) = MR ifrel ) (6.14)
1/2 if x € [1/2,1],

and consider the following five cases.
Casel.Ifx = 0, then, by (6.13) and (6.14), T'(x) = 1/4 € E and T"?(x) = 3/8 € E. Therefore,
x ¢ E, T(x) € A and T (x) ¢ A. Hence, by (6.6) and (6.1),

J(T(), T?(x)) = p(T(x), T (%)) = | T(x) - T (x)|
= |1/4 - 3/8] =1/8 < (3/4)4 = M (x, T(x));
Case 2. If x € (0,1/8), then, by (6.13) and (6.14), 1/4 < T'(x) < 5/16 <1/2 and 1/4 < 3/8 <

T (x) < 13/32 < 1/2. Therefore, x ¢ E, {T(x), T?(x)} C E and {T(x), T®(x)} N A = @.
Hence, by (6.6) and (6.1),

J(T(), TP ) = p(T(x), T (%)) = |T(x) - T? (x)|
= |x/2 +1/4 — (x/4 + 3/8)| = |x/4 - 1/8]
<1/8<(3/4)4 = M (x, T(x));
Case 3. If x € [1/8,1/2) N A = {1/8,1/4} C E, then, by (6.13) and (6.14), T(1/8) = 5/16,

T121(1/8) =13/32, T(1/4) = 3/8 and T12!(1/4) = 7/16. Therefore, {T(x), T (x)} N A = @ and
{T(x), T®(x)} C E. Hence, by (6.6) and (6.1), we get

J(T (), T®(x)) = | T(x) = TP (x)| = |/2 + 1/4 — (/4 + 3/8)]
= |x/4 —1/8| = (1/2)|—x/2 + 1/4| < (3/4)|—x/2 + 1/4|
=Ax/2+1/4—x| = )J(x, T(x));

Case 4. If x € [1/8,1/2) N (X \ A), then {T(x), T (x)} N A = @ and {x, T(x), T?(x)} C E.
Hence, by (6.6) and (6.1), we obtain

J(T (), T® (%)) = | T(x) — TP ()| = |%/2 + 1/4 — (/4 + 3/8)]
= |x/4 — 1/8] = (1/2)|~x/2 + 1/4] < (3/4)|~x/2 + 1/4|

= Ax/2 +1/4 - x| = M (x, T(x));

Case 5. If x € [1/2,1] then {T(x), T (x)} = {1/2} C A. Moreover, {T(x), T?(x)} C E.
Hence, by (6.6) and (6.1),

J(T(), T®(x)) = | T(x) - T?(x)| = 11/2 - 1/2] = 0 < MJ (%, T(x)).
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Consequently, the map T satisfies (H2) for A = 3/4 and J defined by (6.6).
(V.3) T is left P-quasi-closed on X.
Indeed, let (w,, : m € N) be arbitrary and fixed sequence in T(X) = [1/4,1/2], left P-

convergent to each point of a nonempty set S(L‘P \» and having subsequences (v, : m €

Wyp:meN
N) and (u,, : m € N) satisfying V,,en{vy, = T ()}
Let w e S(L’72 ) be arbitrary and fixed. Then, by (6.1), (6.13) and Definition 3.2, we

wmmeN
conclude that

Vs>0 HkENVWIGN;kfm {P(W: Wm) < 8}'
Consequently,

VO<s<13keNvmeN;k§m{[p(W: W) = [W =Wy < 8] A [p(W: Um) = |W =ty < 8]
A [p(w, Vi) = W= V| < 8] A [vm = T(um)]

/\[weA\/(wmeEA/\vmd:‘A/\umeEA)]}.

This gives S(Lv;fzm vy CA.

We see that S(ijf:meN) = {1/2}. Otherwise, there exists w € S(ijf:meN) N (A \ {1/2}), and
then

V0<E<l/83k€NvaN;k§m{[|W - Wm| < 8] A [|W - Mm' < 8]

A [lw—vm| < 8] A [Vm = T(um)]}.
However, this gives, in particular, the following
V0<5<1/8EI/(€NVmEN;k§m{|w —Upy| = |w=-2v,,+1/2| = |1/2 -w+2(w- vm)| < s},
and hence, we get that
Vocect/sTkenYmenkzm | 11/2 = W < & + 2w = v, |},

which is impossible since [1/2 —w| > 1/4 for we A\ {1/2},0<e<1/8 and |[w—-v,,| = 0

when m — +00.

We proved that
Stummery = (112} and 3, pcqr  {1/2=T(1/2)}.

By Definition 3.3, T is left P-quasi-closed on X.
(V.4) All assumptions and all assertions of Theorem 4.2 hold for J #P.
This follows from (V.1)-(V.3). We get

Fix(T) = {1/2},

L-P
vwoex{n}ggowm =1/2},

J(1/2,1/2) = 0.
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(V.5) T satisfies condition (H2) for J =P = {p} and » =1/2.
Indeed, the following three cases hold.
Casel.Letx=0.Then T?(x)=3/8 ¢ A, x =0 ¢ A, T(x) = 1/4 € A and, by (6.1),

p(T(x), T? (x)) = |1/4 - 3/8] = 1/8 < 5/8 = (1/2)(5/4)
and
Ap(x, T(x)) = A(|x = T(x)| +1) = A5/4;
Case 2. If x € (0,1/2), then T"?!(x) ¢ A, T(x) ¢ A and, by (6.1),
p(T(x), T? (%)) = |[x/2 + 1/4 — (x/4 + 3/8)| = |x/4 — 1/8] = A|x/2 — 1/4]
and
Ap(x, T(x)) = Ax — T(x)| = Alx/2 - 1/4];
Case 3. Let x € [1/2,1]. Then {T(x), T'?(x)} = {1/2} C A and, by (6.1), p(T (), T? (x)) =
[1/2-1/2] = 0.
(V.6) (X, P) is not a left P-sequentially complete.
This follows from (II.1).
(V.7) Assumptions of Theorem 4.2 for J =P do not hold.
This follows from (V.6).
Now, we notice that the existence of J-family such that J # P is essential; in Exam-
ple 6.6, T satisfies (H2) for some J # P and does not satisfy (H2) for 7 = P, and (X, P) is

left 7 -sequentially complete but not left P-sequentially complete.

Example 6.6 Let X, P = {p}, E and J = {J} be as in Example 6.4. Define T': X — X by

1 if x € [0,1/8),
T(x)={x/2+1/4 ifxe[1/8,1/2), (6.15)
1/2 if x € [1/2,1].

(VL1) For J = {J}, (X, P) is J -sequentially complete.
This follows from (IV.3).
(VL2) T satisfies (H2) for & = 3/4 and for J defined in (6.6).

Indeed, we get

1/2 if 0,1/8) U [1/2,1],
T2 () = ifx <10, 1/8)U11/2,1] (6.16)
x/4+3/8 ifxe(1/8,1/2),

and using (6.15) and (6.16), we consider the following four cases.
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Casel.Ifx € [0,1/8), then x ¢ E and, by (6.15) and (6.16), T(x) =1 ¢ A, T(x) € E, TP (x) =
1/2 € AN E. Consequently, by (6.6) and (6.1),

J(T@), T (%)) = p(T(®), TP (%)) = |T(x) - T ()] + 1
=3/2 < (3/4)4 =M (x, T(x));

Case 2. If x € [1/8,1/2) N A = {1/8,1/4}, then, by (6.15) and (6.16), x € E, {T(x), T (x)} N
A =2, {T(x), T?(x)} C E, and max{T(x), T (x)} < 1/2. Thus, by (6.6) and (6.1), we obtain
that

J(T (), T®(x)) = | T(x) = T (x)| = |/2 + 1/4 — (/4 + 3/8)]
= |x/4 —1/8] = (1/2)|-x/2 + 1/4| < (3/4)|-x/2 + 1/4]
= Ax/2 +1/4 - x| = M (x, T(%));

Case 3. If x € [1/8,1/2) N (X \ A), then {x, T(x), T (x)} C E and max{T (x), T (x)} < 1/2.

Hence, since {T'(x), T??!(x)} N A # @, by (6.6) and (6.1), we obtain that
J(T(x), T (%)) = | T(x) = TP (w)| = |x/2 + 1/4 — (/4 + 3/8)|
= |x/4 —1/8] = (1/2)|-%/2 + 1/4| < (3/4)|-x/2 + 1/4|

=Ax/2+1/4—x| = )J(x, T(x));
Case 4. If x € [1/2,1], then T'(x) = T?!(x) = 1/2 € AN E. Hence, by (6.6) and (6.1),
J(T(x), T® (%)) = | T(x) - T (x)| = 0 < M (%, T(x)).

Consequently, for A = 3/4 and J defined in (6.6) and (6.1), the map T satisfies condi-
tion (H2).

(VL3) T is left P-quasi-closed on X.

Indeed, let (w,, : m € N) be arbitrary and fixed sequence in T'(X) = [5/16,1/2] U {1}, left
‘P-convergent to each point of a nonempty set S(Lv;,zm N
(Vi : m € N) and (u,, : m € N) satisfying V,,en{vim = T ()}

Let w € S(Lv;ﬁmeN) be arbitrary and fixed. Then, by (6.1), (6.13) and Definition 3.2, we
conclude that

y C X and having subsequences

Ves0IkeNVimeNk<m {p(W; W) < 8}'

Consequently,

V0<8<13k€NvmeN;k§m{ [P(W: Win) = [W = Wy, | < 8]
A [p(w, Up) = |[W— Uy < 8]
A [P(W, Vm) = |W_ Vm| < 8] A [Vm = T(um)]

ANweAV Wn ¢ ANV ¢ ANu, ¢A)]}

This gives S{,", ) CA.
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We see that S(prmeN = {1/2}. Otherwise, there exists w € SLmeeN N (A \ {1/2}), and
then

V0<s<1/83keNvmeN;k§m{[|W = Wl < 8] A [|W —Um| < 8]

A [|w—vm| < 8] A [Vm = T(um)]},

Of course, since w € A\ {1/2}, we have v,,, = T(u,,) =1 or v,,, = T(u,,) = t,,,/2 + 1/4. Hence,
in particular, we obtain that

Voce<t/s ket Vmenikzm { (W = V| = W ~1| < e}
or
V0<8<1/85Ik€N\7’meN;k5m{|w —Upy| =|W=2v, +1/2| = |1/2 -w+2(w- vm)| < s}.
Consequently,
Vo<e<1/8TkeNYmenk=m{l < & + w}
or
Vocect/sTken Vmetikzm | 11/2 = W < & + 2|w — v, |}
Hence, |w — v,,| — 0 when m — +00 and additionally,

l<e+w<1/8+1/4=3/8

or
1/4 <|1/2—w|<e +2|lw—v,| <1/8 + 2|w —v,,|

forwe A\ {1/2}, 0 < & <1/8 and m > k, which is absurd.
We proved that

Sw :meN) — {1/2}
and

3, 1pest-?{172=T1/2)}.

(wp:meN)

By Definition 3.3, T is left P-quasi-closed on X.
(V1.4) All assumptions and all assertions of Theorem 4.2 for J # P hold.
This follows from (VI.1)-(VI1.3). We obtained that

Fix(T) = {1/2},

Vo0 exTw=1/2€Fix(T { llm 7t ( ) :1/2];

J(1/2,1/2) =
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(VL5) T does not satisfy (H2) for J =P.
Indeed, assuming that

Topeton Vaex {p(T), T (x)) < hop(w, T(x)) }
and putting xy = 1/16 € X in this inequality, we get

3/2=1/2+1=1-1/2+1=p(1,1/2) = p(T(xo), T (x0))
< hop(%0, T(x0)) = Aop(1/16,1) = Ao|1/16 — 1]

< [1/16 -1 =15/16 < 1,

which is absurd.

(VL.6) (X, P) is not a left P-sequentially complete.

This follows from (II.1).

(VL.7) Assumptions of Theorem 4.2 for J =P do not hold.

This follows from (VIL.5) and (VI1.6).

(VL8) Assumptions of Theorem 4.1 for J =P do not hold.

Indeed, it follows from (VI.5) that T does not satisfy (H1) for 7 = P. Additionally, (V1.6)
holds.

Now, we show that the uniqueness in Theorem 4.2 does not necessarily hold; in Exam-
ple 6.7, T satisfies (H2) for some J # P and does not satisfy (H2) for J = P, and Fix(T)
is not a singleton.

Example 6.7 Let X = [0,6] CR, P = {p} and T : X — X, where p is defined in Exam-

ple3.1, ie,
0 ifx>y,
px,y) = xyeX (6.17)
1 ifx<y,
and
3 ifx € [3,5] U {6},
6 ifx e (0,1]U(2,3),
T(x) = (6.18)
x/2+3/2 ifxe(1,2],
0 ifxe {0}U(5,6).

Let E=[0,1) U(2,3] U {6}, and let

J0y) = px,y) i {x,y} NE = {x,y}, (619)

4 if {x,y} NE #{x,y}.

(VIL1) The map p is quasi-pseudometric on X, and (X, P) is a quasi-gauge.
See Reilly et al. [8, Example 1].
(VIL.2) Condition (F1) holds; i.e., (X, P) is Hausdorff.
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Indeed, let x # y, x,y € X. Then, by (6.17), y > x implies that p(x,y) =1 >0, and x > y
implies that p(y,x) =1 > 0. By Definition 2.1(v), (X, P) is Hausdorft.

(VIL3) J ={J} is a left J -family on X.

This follows from (II1.1).

(VIL4) (X, P) is left J -sequentially complete.

To establish this, let (u,, : m € N) be an arbitrary and fixed left .7 -Cauchy sequence on X.
Then, by Definition 3.2(i),

V£>0 erNvm,neN;kgmgn {](un’n un) < 8}’
which, by (6.19), gives
V0<£<13kOENVm,n€N;k0§m§n {](umr un) =0< 8}'

This means V,,,enk<m{ttm € E}, and using now the facts that also 6 € E and V,,,en{6 > 1},
by (6.19) and (6.17), we obtain

V0<E<13k16NvmeN;k1§m {](6¢ Mm) =P(6, Mm) =0< 8})

ie,limt7 u,-6eS-7 ) 7 9. We claim that (X, P) is left 7 -sequentially complete.

m—o0 “m (wyp:meN

(VIL5) T satisfies condition (H2) for A =1/3 and ] defined by (6.19) and (6.17).
Indeed, first we see that

3 ifxe(0,1]U(2,5]U{6},
T x) =16 ifxe(,2], (6.20)
0 ifxe{0)U(5,6),

and we consider the following seven cases.
Case 1. If x € {0} then, by (6.18) and (6.20), T'(x) = T"?(x) = 0 € E, s0, by (6.19) and (6.17),

J(T(), TP (%)) = 0 < M (x, T(%));

Case 2. If x € [3,5] U {6}, then, by (6.18) and (6.20), T(x) = T (x) = 3 € E, so by (6.19)
and (6.17),

J(T(), T®(x)) = 0 < M (x, T(x));

Case 3. If x € (0,1) U (2,3), then x € E and, by (6.18) and (6.20), T(x) =6 € E, TP (x) =
3 € E, so by (6.19) and (6.17),

J(T (), (%)) = p(6,3) = 0 < MJ (x, T(x));

Case 4. If x € (5, 6), then, by (6.18) and (6.20), {T'(x), T (x)} = {0} C E, so by (6.19) and
(6.17), J(T (x), T (x)) = p(0,0) = 0. Hence,

J(T(), TP (%)) = 0 < M (x, T(%));

Page 21 of 27


http://www.fixedpointtheoryandapplications.com/content/2013/1/289

Wtodarczyk and Plebaniak Fixed Point Theory and Applications 2013, 2013:289 Page 22 of 27
http://www.fixedpointtheoryandapplications.com/content/2013/1/289

Case 5. If x = 1, then, by (6.18) and (6.20), T(x) = 6 C E, T (x) = 3 C E. Since T (x) >
TP (x), by (6.19) and (6.17), J(T (x), T (x)) = J(6,3) = 0. Therefore,

J(T@), T (%)) = 0 < M (x, T(x));

Case 6. If x = 2, then, by (6.18) and (6.20), T'(x) = 5/2 € E and T (x) = 6 € E. Since
T(x) < T?(x), by (6.19) and (6.17), J(T(x), T'?(x)) = 1. But x ¢ E and, by (6.19) and (6.17),
J(x, T(x)) = 4. Therefore,

J(T(x), T® (x)) =1 < 4/3 = (1/3)4 = A (x, T(%));

Case7.Ifx € (1,2), then, by (6.18) and (6.20), T'(x) = x/2+3/2 € (2,5/2) C Eand T?(x) =
6 € E. Since T(x) < T?(x), by (6.19) and (6.17), J(T(x), T (x)) = 1. But x ¢ E and, by (6.19)
and (6.17), J(x, T'(x)) = 4. Therefore,

J(T(x), T? (x)) =1 < 4/3 = (1/3)4 = AJ (x, T(%)).

Consequently, for A =1/3 and J defined in (6.19) and (6.17), the map T satisfies condi-
tion (H2).

(VIL.6) Condition (E1) holds.

Indeed, we prove that T is left P-quasi-closed on X. With this aim, we see that, by
(6.18) and (6.20),

TBl(x) = 3 ifxe(0,5]U {6}, (6.21)
0 ifxe{0}U(5,6),

and let (w,, : m € N) be an arbitrary and fixed sequence in TBI(X) = {0,3}, left P-
convergent to each point of a nonempty set S (7o meN C X, and having subsequences
(vmw:meN) C T[3] (X) and (um m e N) C TB(X) satisfying V,,en (Vin = T (1,,)}. Clearly,
SLmeeN) csg meN and S{,,” meN C S(u -neny- Hence, by (6.21), we obtain (v, : m € N) C
{0,3} and (u,, : m € N) C {0, 3}, which gives the following.

Case 1. If (w,, : m € N) and (v,, : m € N) are such that 3,,;enY>m, {vin = 0}, then also
Y nzmo 1m = 0}. Consequently,

[0,6] = S

(Vm meN) (7% meN)'

Case 2. If (w,, : m € N) and (v, : m € N) are such that 3,,)enVimzmo{Vm = 3} or
Yo eNTimy =mo Img>mo {Vmy = 0 A vy = 3}, then, by (6.21), also Vs {4ty = 3} or {uy, =
0 A u,,, = 3}. Consequently,

[3,6] = S

vm meN) (v meN)

Of course, since (w,, : m € N) ¢ TBI(X) = {0, 3}, therefore, [3,6] C S (v meN Finally, we
seethat3 _, es=P {w = TB)(w)} in Cases 1 and 2. By Definition 3.3, T is left P-quasi-
closed on X.

(VIL.7) Statements (D)-(F) of Theorem 4.2 hold.
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This follows from (VIL.1)-(VIL7). We get

Fix(T%) = Fix(T) = {0,3},
L-P _
VW°€(O,5]U{6} {S(T[m] (w9):me{0}UN) — [3; 6] },

L-P _
VWOE{O}U(S,G) {S(T[m](wo):me[O}UN) = [Or 6] }1

P
VWOE(0,5]U{6}HW=3€Fix(T)[ lim T (w°) = 3},

m— 00

L-P
V140 (01U (5,6) Iw=0Fix(T) VJLIHOO ykd (w°) = 0},

VweFix(T) {](Wr w) = 0}.

(VIL8) T does not satisfy (H2) for J =P.
To establish this, let

BroetonVaex (P(T@), TP @) < hop(x, T())}.

Since xo = 3/2 < T'(xo) = 9/4 < T? (%) = 6, by (6.17), we get
1= p(T(x0), T (x0)) < hop(x0, T(%0)) = Ao»

which is absurd.

Finally, in Examples 6.8 and 6.9, we consider the situation when (X, P) is not Hausdorff.

Example 6.8 Let X =[0,1],letA = {1/2" : n € N},andlet P = {p} wherep : X x X — [0, 00)

is of the form

0 f = ) NA-= INat
plx,y) = ifx=yorixy) b} x,y€X. (6.22)
1 ifx#yand {x,y}NAF#{xy},

(VIIL1) The map p is quasi-pseudometric on X and (X, P) is the quasi-gauge space.

Indeed, from (6.22), we have that p(x,x) = 0 for each x € X, and thus, condition (P1)
holds.

Now, it is worth noticing that condition (P2) does not hold only if there exists x, 9,20 €
X such that p(xo, z0) > p(x0,y0) + P(¥0, 20). This inequality is equivalent to 1 > 0 = p(xo, y0) +
P(o,20), where

p(x0,20) =1, (6.23)

p(x0,50) =0 (6.24)
and

p(o,20) = 0. (6.25)
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Conditions (6.24) and (6.25) imply that x¢ = yo or {xo,Y0} C A and yo = z¢ or {yo,z0} C A,
respectively. We consider the following four cases.

Case 1. If xo = yo and yo = zo, then xy = zo which, by (6.22), implies that p(xo,zo) = 0. By
(6.23), this is absurd;

Case 2. If xp = yo and {y0,z0} C A, then {xg,z0} N A = {x0,20}. Hence, by (6.22),
p(x0,20) = 0. By (6.23), this is absurd;

Case 3. If {x0,90} C A and yy = zp, then {xg,z0} N A = {x9,20}. Hence, by (6.22),
p(xo0,20) = 0. By (6.23), this is absurd;

Case 4. If {xg,70} C A and {y9,20} C A, then {x9,20} N A = {x¢,20}. Hence, by (6.22),
p(x0,20) = 0. By (6.23), this is absurd.

Thus, condition (P2) holds.

We proved that p is quasi-pseudometric on X, and (X, P) is the quasi-gauge space.

(VIIL.2) The quasi-gauge space (X, P) is not Hausdorfj.

Indeed, for x =1/16 and y = 1/4 we have x # y and {x,y} N A = {x, y}. Hence, by (6.22), we
obtain p(x,y) = p(y,x) = 0. This, by Definition 2.1(v), means that (X, P) is not Hausdorff.

Example 6.9 Let X =[0,1] C R, let P = {p}, where p is defined as in Example 6.8, and let
T : X — X be given by the formula

1/2 ifx €[0,1/4],
T(x) = (6.26)
1/4 ifx € (1/4,1].

(IX.1) The pair (X, P) is a not a Hausdor{f quasi-gauge space.

This is a consequence of (VIIL.1) and (VIIL.2).

(IX.2) The space (X, P) is a left P-sequentially complete.

Indeed, let (u,, : m € N) be a left P-Cauchy sequence in X. By (6.22), not losing gener-

ality, we may assume that
V0<s<13koeNvm,neN;ko<m<n {P(um, u,)=0<e< 1}. (6.27)

Now, we have the following two cases.

Casel.Let YV, eni<mitbm € A}. By (6.22), in particular, we have that V., {p(1/2, u,,,) = 0}.
This gives, 1/2 € S(L,;fme{o]UN), ie., S(Lu_,fme{O)UN) £ @;

Case 2. Let T eNkgemoitbm;, € A}. Then we have the following two subcases:
Subcase 2.1. If ¥ enkg<mmetmoitm = Umy}, then, by (6.22), we get VyueNymyam{P(Umg,
U,) = 0}, and this implies that u,,, € S(L;yfme{O]UN), ie., S(Lu_yfme[O}UN) # &; Subcase 2.2. If
T eNiko <rmy y #mo A\ Wmy 7 Umg }» then, by (6.22), p(t4,,,, tyn,) = 1. However, since ko < m1y and
ko < my, this, by (6.27), implies that p(u,,,, #,) = 0. This is absurd.

We proved that if (6.27) holds, then

S(LJ,Z?me{O]UN) 7 9.
By Definition 3.2(ii), the sequence (u,, : m € N) is left P-convergent in X.

(IX.3) For J =P, assumption (H2) of Theorem 4.2 holds (more precisely, the map T
satisfies condition (H2) for J =P and for each A € [0,1)).

This follows from the fact that, by (6.22), p(T'(x), T(y)) = 0 for each x,y € X.
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(IX.4) The map T is not left P-quasi-closed on X.
Indeed, let a sequence (w,, : m € N) in T(X) = {1/4,1/2} be of the form

1/4 if mis even,

1/2 if mis odd.

Since V,,en{wy, € A}, thus, by (6.22), Vyea{p(w, wy,) = 0} and Vyexya {p(w, w,,) = 1}. Hence,
SL P

(el = A- Moreover, its subsequences (u,, =1/4: m € N) and (v,, = 1/2 : m € N) satisfy

Vmen{Vim = T(u,)}. Clearly,

L-P L-P
S (Win: meN) S(vm:meN) S (upm:meN) — =A.

However, there does not exist w € A such that w = T'(w).
(IX.5) The map T is left P-quasi-closed on X.
Indeed, we have

1/4 ifxe[0,1/4],
172 ifxe(1/4,1],

TP (x) =

and let (w,, : m € N) be an arbitrary and fixed sequence in T%(X) = {1/4,1/2}, left P-
convergent to each point of a nonempty set S(W .meyy C X and having subsequences (v, :
m e N) and (u,, : m € N) satisfying ¥,,en{Vin = T? (11,,)}. Thus, (w,, : m € N) C {1/4,1/2} C
A, (v :meN) C{1/4,1/2} C A and (v, : m € N) C {1/4,1/2} C A. Hence, by (6.22), we
conclude that

0 ifweA,
lim p(w,w,,) = hm p(w, Vi) = l1m p(w, Upy) =
m—00 1 ifweX\A.
This gives
L-P L-P L-P
S(wm:meN) = S(vm:meN) = S(um:meN) =A.
Next, we see that
2
3we{1/4,1/2}CA:S(Ll;Zm€N) {w= T! ](W)}.

By Definition 3.3, T2 is left P-quasi-closed on X.
(IX.6) For J =P, statements (D) and (E) of Theorem 4.2 hold.
This follows from (IX.1)-(IX.5). From the above it follows:
Fix(T™) = {1/4,1/2},

L-P
Vwoe[o,1/4]{5(wm T wOymeojuny = 1% 11},

L-P -
Vioeqra) {S(wm=Tlm1 (w0):me[0}UN) — [1/2,1] }’

P
: 0
Vuoelo,1/41Fw-1/aeFix(r) | im T (W) =1/ 4},
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L-P
Vo0 e(1/4,11Fw=1/2¢Fix(T12]) {W}l_r}éo T (WO) = 1/2},

Ve, {FiX(Tm) 7/S(L_f:me{0}uN) }
Moreover, by (6.22), since Fix(T™?) = {1/4,1/2} C A, thus, by (6.22), we get
P(1/4,1/2) = p(1/2,1/4) = 0,

so (e3) holds.

(IX.7) For J =P, statement (F) of Theorem 4.2 does not hold.

We have: assumption (F1) does not hold; for s = 2, assumption (F2) holds; Fix(T™?) # &;
properties (f;)-(f3) do not hold since Fix(T) = @.

Remark 6.1 (a) If (X,d) is a metric space, then the generalized quasi-pseudodistances J
of J-families J = {J} on X generalize: metrics d, distances of Tataru [28], w-distances of
Kada et al. [10], T-distances of Suzuki [11] and 7-functions of Lin and Du [29]. Moreover,
in uniform spaces, the J-families on these spaces generalize distances of Valyi [30]. For
details, see [14].

(b) In metric spaces, beautiful generalizations of Rus’ and Subrahmanyam’s results [3, 4]
are established by Kada et al. [10, Corollary 2] for w-distances and Suzuki [11, Theorem 1]
for r-distances. Interesting conclusions of Theorem 1.2 are given by Suzuki [12].

(c) Reilly [7] and Subrahmanyam and Reilly [9] proved extensions of Banach’s theorem
for continuous maps in quasi-gauge spaces.

(d) In all results mentioned above, the restrictive assumptions about metric spaces or
quasi-gauge spaces, which must be Hausdorff and complete or sequentially complete, re-
spectively, or maps are continuous, are essential. Further, the mentioned results do not
concern periodic points of the considered maps.

(e) We see that in Examples 6.5-6.7 and 6.9, the assumptions of Theorem 4.2 are satis-
fied, but assumptions of Banach’s [1], Rus’ [3], Subrahmanyam and Reilly’s [9, Section 3],
Reilly’s [25], Reilly-Subrahmanyam-Vamanamurthy’s [8, Theorem 9] and Suzuki’s [11,
Theorem 1] theorems are not.

(f) Let us finally mention that properties of Definitions 3.1-3.3 and Theorems 4.1 and 4.2
concerning ‘right’ were omitted in our presentation; we may provide them by constructing
appropriate examples (without assuming that 7' is continuous, without completeness of
spaces in a usual sense and without separability of spaces) and applying analogous tech-
nique as above.

(g) Finally, it remains to note that the results of this paper are new in quasi-gauge, topo-

logical and quasi-uniform spaces.
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