
Roldán et al. Fixed Point Theory and Applications 2013, 2013:29
http://www.fixedpointtheoryandapplications.com/content/2013/1/29

RESEARCH Open Access

Tripled fixed point theorem in fuzzy metric
spaces and applications
A Roldán1, J Martínez-Moreno2* and C Roldán3

*Correspondence:
jmmoreno@ujaen.es
2Department of Mathematics,
University of Jaén, Jaén, Spain
Full list of author information is
available at the end of the article

Abstract
In this paper we prove an existence and uniqueness theorem for contractive type
mappings in fuzzy metric spaces. In order to do that, we consider a slight
modification of the concept of a tripled fixed point introduced by Berinde et al.
(Nonlinear Anal. TMA 74:4889-4897, 2011) for nonlinear mappings. Additionally, we
obtain some fixed point theorems for metric spaces. These results generalize, extend
and unify several classical and very recent related results in literature. For instance, we
obtain an extension of Theorem 4.1 in (Zhu and Xiao in Nonlinear Anal. TMA
74:5475-5479, 2011) and a version in non-partially ordered sets of Theorem 2.2 in
(Bhaskar and Lakshmikantham in Nonlinear Anal. TMA 65:1379-1393, 2006). As
application, we solve a kind of Lipschitzian systems in three variables and an integral
system. Finally, examples to support our results are also given.

Introduction
In a recent paper, Bhaskar and Lakshmikantham [] introduced the concepts of coupled
fixed point and mixed monotone property for contractive operators of the form F : X ×
X → X, where X is a partially orderedmetric space, and then established some interesting
coupled fixed point theorems. They also illustrated these important results by proving the
existence and uniqueness of the solution for a periodic boundary value problem. Later,
Lakshmikantham and Ćirić [] proved coupled coincidence and coupled common fixed
point results for nonlinear mappings satisfying certain contractive conditions in partially
ordered complete metric spaces. After that many results appeared on coupled fixed point
theory (see, e.g., [–]).
Fixed point theorems have been studied in many contexts, one of which is the fuzzy set-

ting. The concept of fuzzy sets was initially introduced by Zadeh [] in . To use this
concept in topology and analysis, many authors have extensively developed the theory of
fuzzy sets and its applications. One of the most interesting research topics in fuzzy topol-
ogy is to find an appropriate definition of fuzzy metric space for its possible applications
in several areas. It is well known that a fuzzy metric space is an important generalization
of the metric space. Many authors have considered this problem and have introduced it in
different ways. For instance, George and Veeramani [] modified the concept of a fuzzy
metric space introduced by Kramosil and Michalek [] and defined the Hausdorff topol-
ogy of a fuzzy metric space. There exists considerable literature about fixed point prop-
erties for mappings defined on fuzzy metric spaces, which have been studied by many
authors (see [, –]). Zhu and Xiao [] and Hu [] gave a coupled fixed point the-
orem for contractions in fuzzy metric spaces, and Fang [] proved some common fixed

© 2013 Roldán et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
mailto:jmmoreno@ujaen.es
http://creativecommons.org/licenses/by/2.0


Roldán et al. Fixed Point Theory and Applications 2013, 2013:29 Page 2 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/29

point theorems under φ-contractions for compatible and weakly compatible mappings on
Menger probabilistic metric spaces. Moreover, Elagan and Segi Rahmat [] studied the
existence of a fixed point in locally convex topology generated by fuzzy n-normed spaces.
Very recently, the concept of tripled fixed point has been introduced by Berinde and

Borcut []. In their manuscript, some new tripled point theorems are obtained using
the mixed g-monotone mapping. Their results generalize and extend the Bhaskar and
Lakshmikantham’s research for nonlinear mappings. Moreover, these results could be
used to study the existence of solutions of a periodic boundary value problem involving
y′′ = f (t, y, y′). A multidimensional notion of a coincidence point between mappings and
some existence and uniqueness fixed points theorems for nonlinear mappings defined on
partially ordered metric spaces are studied in [].
In this paper, our main aim is to obtain an existence and uniqueness theorem for con-

tractive type mappings in the framework of fuzzy metric spaces. In order to do that, we
consider a slightmodification of the concept of a tripled fixed point introduced by Berinde
and Borcut for nonlinear mappings. The power of this result is two-fold. Firstly, we can
particularize it to complete metric spaces, obtaining a Berinde-Borcut type result (in non-
fuzzy setting).Moreover, our result, in a unifiedmanner, covers also coupled fixed (seeZhu
and Xiao []) and fixed point theorems. Finally, examples to support our results are also
given.

Preliminaries
Henceforth, X will denote a non-empty set and X = X × X × X. Subscripts will be used
to indicate the arguments of a function. For instance, F(x, y, z) will be denoted by Fxyz and
M(x, y, t) will be denoted byMxy(t). Furthermore, for brevity, g(x) will be denoted by gx.
Ametric on X is a mapping d : X ×X →R satisfying, for all x, y, z ∈ X,

(i) dxy =  if and only if x = y; (ii) dxy ≤ dzx + dzy.

From these properties, we can easily deduce that dxy ≥  and dyx = dxy for all x, y ∈ X. The
last requirement is called the triangle inequality. If d is a metric on X, we say that (X,d) is
ametric space (briefly, aMS).
Let (X,d) be a MS. A mapping f : X → X is said to be Lipschitzian if there exists k ≥ 

such that d(fx, fy) ≤ kdxy for all x, y ∈ X. The smallest k (denoted by kf ) for which this
inequality holds is said to be the Lipschitz constant for f . A Lipschitzianmapping f : X → X
is a contraction if kf < .

Theorem  (Banach’s contraction principle) Every contraction from a complete metric
space into itself has a unique fixed point.

IfX =R providedwith the Euclideanmetric, examples of Lipschitzianmappings fi :R →
R are f(x) = K , f(x) = αx, f(x) = sinx, f(x) = cosx, f(x) = arctanx and f(x) = /( + x).

Definition  A triangular norm (also called a t-norm) is a map ∗ : [, ] → [, ] that
is associative, commutative, nondecreasing in both arguments and has  as identity. For
each a ∈ [, ], the sequence {∗na}∞n= is defined inductively by ∗a = a and ∗na = (∗n–a)∗a.
A t-norm ∗ is said to be of H-type (see []) if the sequence {∗na}∞n= is equicontinuous at
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a = , i.e., for all ε ∈ (, ), there exists η ∈ (, ) such that if a ∈ ( – η, ], then ∗ma >  – ε

for allm ∈N.

The most important and well-known continuous t-norm ofH-type is ∗ =min, that veri-
fiesmin(a,b)≥ ab for all a,b ∈ [, ]. The following result presents a wide range of t-norms
of H-type.

Lemma  Let δ ∈ (, ] be a real number and let ∗ be a t-norm. Define ∗δ as x ∗δ y = x ∗ y,
ifmax(x, y)≤ – δ, and x∗δ y =min(x, y), ifmax(x, y) > – δ. Then ∗δ is a t-norm of H-type.

Definition  [] A triple (X,M,∗) is called a fuzzy metric space (in the sense of Kramosil
and Michalek; briefly, a FMS) if X is an arbitrary non-empty set, ∗ is a continuous t-norm
andM : X ×X × [,∞) → [, ] is a fuzzy set satisfying the following conditions, for each
x, y, z ∈ X, and t, s > :

(i) Mxy() = ;
(ii) Mxy(t) =  if and only if x = y;
(iii) Mxy(t) =Myx(t);
(iv) Mxy(·) : [,∞)→ [, ] is left continuous;
(v) Mxy(t) ∗Myz(s)≤ Mxz(t + s).

In this case, we also say that (X,M) is a FMS under ∗. In the sequel, we will only consider
FMS verifying:
(vi) limt→∞ Mxy(t) =  for all x, y ∈ X .

Lemma  Mxy(·) is a non-decreasing function on [,∞).

Definition  Let (X,M) be a FMS under some t-norm. A sequence {xn} ⊂ X is Cauchy
if, for any ε >  and t > , there exists n ∈ N such that Mxnxm (t) >  – ε for all n,m ≥ n.
A sequence {xn} ⊂ X is convergent to x ∈ X, denoted by limn→∞ xn = x if, for any ε >  and
t > , there exists n ∈ N such that Mxnx(t) >  – ε for all n ≥ n. A FMS in which every
Cauchy sequence is convergent is called complete.

Given any t-norm ∗, it is easy to prove that ∗ ≤ min. Therefore, if (X,M) is a FMS under
min, then (X,M) is a FMS under any (continuous or not) t-norm. This is the case in the
following examples (in which, obviously, we only defineMxy(t) for t >  and x 
= y).

Example  From ametric space (X,d), we can consider a FMS in different ways. For t > 
and x 
= y, define:

• Md
xy(t) =

t
t + dxy

. • Me
xy(t) = e–

dxy
t . • Mc

x,y(t) =

⎧⎨
⎩, if t ≤ dxy,

, if t > dxy.

It is well known that (X,Md) is a FMS under the product ∗ = ·, called the standard FMS on
(X,d), since it is the standard way of viewing the metric space (X,d) as a FMS. However, it
is also true (though lesser-known) that (X,Md), (X,Me) and (X,Mc) are FMSs under min.
Furthermore, (X,d) is a complete metric space if and only if (X,Md) (or (X,Mc) or

(X,Me)) is a complete FMS. For instance, this is the case of any non-empty and closed
subset (or subinterval) of R provided with its Euclidean metric.
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Definition  A function g : X → X on a FMS is said to be continuous at a point x ∈ X if,
for any sequence {xn} in X converging to x, the sequence {gxn} converges to gx. If g is
continuous at each x ∈ X, then g is said to be continuous on X. As usual, if x ∈ X, we will
denote g–(x) = {x ∈ X : gx = x}.

Remark  If x ∈ [, ] and a,b ∈ (,∞), then a ≤ b implies that xa ≥ xb. We will use this
fact in the following way:  < a ≤ b ≤  implies thatMxy(t)a ≥ Mxy(t)b ≥ Mxy(t).

Themain result
Definition  Let F : X → X and g : X → X be two mappings.
• We say that F and g are commuting if gFxyz = Fgxgygz for all x, y, z ∈ X .
• A point (x, y, z) ∈ X is called a tripled coincidence point of the mappings F and g if
Fxyz = gx, Fyzx = gy and Fzxy = gz.

Theorem  Let ∗ be a t-norm of H-type such that s ∗ t ≥ st for all s, t ∈ [, ]. Let k ∈
(, ) and a,b, c ∈ [, ] be real numbers such that a + b + c ≤ , let (X,M,∗) be a complete
FMS and let F : X → X and g : X → X be two mappings such that F(X) ⊆ g(X) and g is
continuous and commuting with F . Suppose that for all x, y, z,u, v,w ∈ X and all t > ,

MFxyzFuvw (kt)≥ Mgxgu(t)a ∗Mgygv(t)b ∗Mgzgw(t)c. ()

Then there exists a unique x ∈ X such that x = gx = Fxxx. In particular, F and g have, at
least, one tripled coincidence point. Furthermore, (x,x,x) is the unique tripled coincidence
point of F and g if we assume that g–(x) = {x} only in the case that F ≡ x is constant
on X.

In this result, in order to avoid the indetermination , we assume thatMgxgu(t) =  for
all t >  and all x, y ∈ X.

Proof Suppose that F is constant in X, i.e., there exists x ∈ X such that Fxyz = x for all
x, y, z ∈ X. As F and g are commuting, we deduce that gx = gFxyz = Fgxgygz = x. Therefore,
x = gx = Fxxx and (x,x,x) is a tripled coincidence point of F and g . Now, suppose
that g–(x) = {x} and (x, y, z) ∈ X is another tripled coincidence point of F and g . Then
gx = Fxyz = x, so x ∈ g–(x) = {x}. Similarly, x = y = z = x and (x,x,x) is the unique
tripled coincidence point of F and g .
Next, suppose that F is not constant in X. In this case, (a,b, c) 
= (, , ) and the proof is

divided into five steps. Throughout this proof, n and p will denote non-negative integers
and t ∈ [,∞).
Step . Definition of the sequences {xn}, {yn} and {zn}. Let x, y, z ∈ X be three arbi-

trary points of X. Since F(X) ⊆ g(X), we can choose x, y, z ∈ X such that gx = Fxyz ,
gy = Fyzx and gz = Fzxy . Again, from F(X) ⊆ g(X), we can choose x, y, z ∈ X
such that gx = Fxyz , gy = Fyzx and gz = Fzxy . Continuing this process, we can con-
struct sequences {xn}, {yn} and {zn} such that, for n≥ , gxn+ = Fxnynzn , gyn+ = Fynznxn and
gzn+ = Fznxnyn .
Step . {gxn}, {gyn} and {gzn} are Cauchy sequences. Define, for n≥  and all t ≥ , δn(t) =

Mgxngxn+ (t) ∗Mgyngyn+ (t) ∗Mgzngzn+ (t). Since δn is a non-decreasing function and t – kt ≤

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
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t ≤ t/k, we have that

δn(t – kt) ≤ δn(t)≤ δn(t/k) for all t >  and n≥ . ()

From inequality () we deduce, for all n ∈N and all t ≥ ,

Mgxngxn+ (t) =MFxn–yn–zn–Fxnynzn (t)

≥Mgxn–gxn

(
t
k

)a

∗Mgyn–gyn

(
t
k

)b

∗Mgzn–gzn

(
t
k

)c

; ()

Mgyngyn+ (t) =MFyn–zn–xn–Fynznxn (t)

≥ Mgyn–gyn

(
t
k

)a

∗Mgzn–gzn

(
t
k

)b

∗Mgxn–gxn

(
t
k

)c

; ()

Mgzngzn+ (t) =MFzn–xn–yn–Fznxnyn (t)

≥ Mgzn–gzn

(
t
k

)a

∗Mgxn–gxn

(
t
k

)b

∗Mgyn–gyn

(
t
k

)c

. ()

According to (), (), () and Remark , we have that

Mgxngxn+ (t) ≥Mgxn–gxn (t/k)
a ∗Mgyn–gyn (t/k)

b ∗Mgzn–gzn (t/k)
c

≥Mgxn–gxn (t/k) ∗Mgyn–gyn (t/k) ∗Mgzn–gzn (t/k) = δn–(t/k);

Mgyngyn+ (t)≥ Mgyn–gyn (t/k)
a ∗Mgzn–gzn (t/k)

b ∗Mgxn–gxn (t/k)
c

≥ Mgyn–gyn (t/k) ∗Mgzn–gzn (t/k) ∗Mgxn–gxn (t/k) = δn–(t/k);

Mgzngzn+ (t) ≥ Mgzn–gzn (t/k)
a ∗Mgxn–gxn (t/k)

b ∗Mgyn–gyn (t/k)
c

≥ Mgzn–gzn (t/k) ∗Mgxn–gxn (t/k) ∗Mgyn–gyn (t/k) = δn–(t/k).

This proves that, for all t >  and all n≥ ,

Mgxngxn+ (t),Mgyngyn+ (t),Mgzngzn+ (t) ≥ δn–(t/k)≥ δn–(t). ()

Swapping t by t – kt, we deduce, for all t >  and n≥ , that

Mgxngxn+ (t – kt),Mgyngyn+ (t – kt),Mgzngzn+ (t – kt)≥ δn–(t – kt). ()

Taking into account that ∗ is commutative and ∗ ≥ ·, and (), (), (), we observe that

δn(t) = Mgxngxn+ (t) ∗Mgyngyn+ (t) ∗Mgzngzn+ (t)

≥ (
Mgxn–gxn (t/k)

a ∗Mgyn–gyn (t/k)
b ∗Mgzn–gzn (t/k)

c)
∗ (

Mgxn–gxn (t/k)
c ∗Mgyn–gyn (t/k)

a ∗Mgzn–gzn (t/k)
b)

∗ (
Mgxn–gxn (t/k)

b ∗Mgyn–gyn (t/k)
c ∗Mgzn–gzn (t/k)

a)
=

(
Mgxn–gxn (t/k)

a ∗Mgxn–gxn (t/k)
c ∗Mgxn–gxn (t/k)

b)
∗ (

Mgyn–gyn (t/k)
b ∗Mgyn–gyn (t/k)

a ∗Mgxn–gxn (t/k)
c)

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
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∗ (
Mgzn–gzn (t/k)

c ∗Mgzn–gzn (t/k)
b ∗Mgzn–gzn (t/k)

a)
≥ (

Mgxn–gxn (t/k)
a ·Mgxn–gxn (t/k)

c ·Mgxn–gxn (t/k)
b)

∗ (
Mgyn–gyn (t/k)

b ·Mgyn–gyn (t/k)
a ·Mgxn–gxn (t/k)

c)
∗ (

Mgzn–gzn (t/k)
c ·Mgzn–gzn (t/k)

b ·Mgzn–gzn (t/k)
a)

= Mgxn–gxn (t/k)
a+b+c ∗Mgyn–gyn (t/k)

a+b+c ∗Mgzn–gzn (t/k)
a+b+c

≥ Mgxn–gxn (t/k) ∗Mgyn–gyn (t/k) ∗Mgzn–gzn (t/k) = δn–(t/k).

If we join this property to (),

δn(t) ≥ δn–(t/k)≥ δn–(t)≥ δn–(t – kt) for all t >  and n≥ . ()

Repeatedly applying the first inequality, we deduce that δn(t) ≥ δn–(t/k) ≥ δn–(t/k) ≥
· · · ≥ δ(t/kn) for all t >  and n≥ . This means that for all t > ,

lim
n→∞ δn(t)≥ lim

n→∞ δ
(
t/kn

)
=  ⇒ lim

n→∞ δn(t) = . ()

Properties () and () imply that

Mgxngxn+ (t),Mgyngyn+ (t),Mgzngzn+ (t) ≥ δn(t)≥ δn–(t – kt). ()

Next, we claim that

Mgxngxn+p (t),Mgyngyn+p (t),Mgzngzn+p (t)≥ ∗pδn–(t – kt) for all t > , n,p ≥ . ()

We prove it by induction methodology in p ≥ . If p = , () is true for all n ≥  and all
t >  by (). Suppose that () is true for all n≥  and all t >  for some p, and we are going
to prove it for p + . Applying (), the induction hypothesis and that ∗ ≥ ·,

Mgxn+gxn+p+ (kt) = MFxnynznFxn+pyn+pzn+p (kt)

≥ Mgxngxn+p (t)
a ∗Mgyngyn+p (t)

b ∗Mgzngzn+p (t)
c

≥ (∗pδn–(t – kt)
)a ∗ (∗pδn–(t – kt)

)b ∗ (∗pδn–(t – kt)
)c

≥ (∗pδn–(t – kt)
)a · (∗pδn–(t – kt)

)b · (∗pδn–(t – kt)
)c

=
(∗pδn–(t – kt)

)a+b+c ≥ ∗pδn–(t – kt).

Arguing in the same way, we come to Mgxn+gxn++p (kt),Mgyn+gyn++p (kt),Mgzn+gzn++p (kt) ≥
∗pδn–(t – kt). Applying the axiom (v) of a FMS, () and the induction hypothesis,

Mgxngxn+p+ (t) = Mgxngxn+p+ (t – kt + kt)

≥ Mgxngxn+ (t – kt) ∗Mgxn+gxn++p (kt)

≥ δn–(t – kt) ∗ (∗pδn–(t – kt)
)
= ∗p+δn–(t – kt).

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
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The same reasoning is also valid forMgyngyn+p+ (t) andMgzngzn+p+ (t). Therefore, () is true.
This permits us to show that {gxn} is Cauchy. Suppose that t >  and ε ∈ (, ) are given.
By the hypothesis, as ∗ is a t-norm ofH-type, there exists  < η <  such that ∗pa > –ε for
all a ∈ ( – η, ] and for all p ≥ . By (), limn→∞ δn(t) = , so there exists n ∈ N such that
δn(t–kt) > –η for all n≥ n.Hence (), we getMgxngxn+p (t),Mgyngyn+p (t),Mgzngzn+p (t) > –ε

for all n ≥ n and p ≥ . Therefore, {gxn} is a Cauchy sequence. Similarly, {gyn} and {gzn}
are also Cauchy sequences.
Step . We claim that g and F have a tripled coincidence point. Since X is complete,

there exist x, y, z ∈ X such that limn→∞ gxn = x, limn→∞ gyn = y and limn→∞ gzn = z. As g is
continuous, we have that limn→∞ ggxn = gx, limn→∞ ggyn = gy and limn→∞ ggzn = gz. The
commutativity of F with g implies that ggxn+ = gF(xn, yn, zn) = F(gxn, gyn, gzn). By (),

Mggxn+Fxyz (kt) = MFgxngyngzn Fxyz (kt) ≥ Mggxngx(t)
a ∗Mggyngy(t)

b ∗Mggzngz(t)
c

≥ Mggxngx(t) ∗Mggyngy(t) ∗Mggzngz(t).

Letting n → ∞, we deduce that limn→∞ ggxn = Fxyz. Hence, Fxyz = gx. In a similar way,
we can show that Fyzx = gy and Fzxy = gz, so (x, y, z) is a tripled coincidence point of the
mappings F and g .

Fxyz = gx, Fyzx = gy and Fzxy = gz. ()

Step . We claim that x = Fzxy, y = Fxyz and z = Fyzx. We note that by condition (),

Mgxgyn+ (kt) =MFxyzFynznxn (kt) ≥ Mgxgyn (t)
a ∗Mgygzn (t)

b ∗Mgzgxn (t)
c; ()

Mgygzn+ (kt) =MFyzxFznxnyn (kt) ≥ Mgygzn (t)
a ∗Mgzgxn (t)

b ∗Mgxgyn (t)
c; ()

Mgzgxn+ (kt) =MFzxyFxnynzn (kt) ≥ Mgzgxn (t)
a ∗Mgxgyn (t)

b ∗Mgygzn (t)
c. ()

Let βn(t) =Mgxgyn (t) ∗Mgygzn (t) ∗Mgzgxn (t) for all t >  and n≥ . By (), () and (),

βn+(kt) = Mgxgyn+ (kt) ∗Mgygzn+ (kt) ∗Mgzgxn (kt)

≥ (
Mgxgyn (t)

a ∗Mgygzn (t)
b ∗Mgzgxn (t)

c)
∗ (

Mgygzn (t)
a ∗Mgzgxn (t)

b ∗Mgxgyn (t)
c)

∗ (
Mgzgxn (t)

a ∗Mgxgyn (t)
b ∗Mgygzn (t)

c)
=

(
Mgxgyn (t)

a ∗Mgxgyn (t)
c ∗Mgxgyn (t)

b)
∗ (

Mgygzn (t)
b ∗Mgygzn (t)

a ∗Mgygzn (t)
c)

∗ (
Mgzgxn (t)

c ∗Mgzgxn (t)
b ∗Mgzgxn (t)

a)
≥ (

Mgxgyn (t)
a ·Mgxgyn (t)

c ·Mgxgyn (t)
b)

∗ (
Mgygzn (t)

b ·Mgygzn (t)
a ·Mgygzn (t)

c)
∗ (

Mgzgxn (t)
c ·Mgzgxn (t)

b ·Mgzgxn (t)
a)

= Mgxgyn (t)
a+b+c ∗Mgygzn (t)

a+b+c ∗Mgzgxn (t)
a+b+c

≥ Mgxgyn (t) ∗Mgygzn (t) ∗Mgzgxn (t) = βn(t).

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
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This proves that βn+(kt)≥ βn(t) for all n≥  and all t > . Repeating this process,

βn(t)≥ βn–(t/k)≥ βn–
(
t/k

) ≥ · · · ≥ β
(
t/kn

)
for all t >  and n≥ . ()

Now, by (), (), () and (),

Mgxgyn+ (kt)≥ Mgxgyn (t)
a ∗Mgygzn (t)

b ∗Mgzgxn (t)
c ≥ βn(t)≥ β

(
t/kn

)
; ()

Mgygzn+ (kt)≥ Mgygzn (t)
a ∗Mgzgxn (t)

b ∗Mgxgyn (t)
c ≥ βn(t) ≥ β

(
t/kn

)
; ()

Mgzgxn+ (kt) ≥ Mgzgxn (t)
a ∗Mgxgyn (t)

b ∗Mgygzn (t)
c ≥ βn(t) ≥ β

(
t/kn

)
. ()

Therefore, Mgxgyn+ (kt),Mgygzn+ (kt),Mgzgxn+ (kt) ≥ β(t/kn) for all t >  and n ≥ . Since
limn→∞ β(t/kn) =  for all t > , we have, taking limit in (), () and (), that
limn→∞ gxn = gz, limn→∞ gyn = gx and limn→∞ gzn = gy. This shows, using (), that

Fxyz = gx = lim
n→∞ gyn = y, Fyzx = gy = lim

n→∞ gzn = z, Fzxy = gz = lim
n→∞ gxn = x.

Step . We will prove that x = y = z. Let θ (t) =Mxy(t) ∗Myz(t) ∗Mzx(t) for all t > . Then,
by condition (),

Mxy(kt) =MFxyzFyzx (kt) ≥ Mgxgy(t)a ∗Mgygz(t)b ∗Mgzgx(t)c

=Myz(t)a ∗Mzx(t)b ∗Mxy(t)c; ()

Myz(kt) =MFyzxFzxy (kt) ≥ Mgygz(t)a ∗Mgzgx(t)b ∗Mgxgy(t)c

=Mzx(t)a ∗Mxy(t)b ∗Myz(t)c; ()

Mzx(kt) =MFzxyFxyz (kt) ≥ Mgzgx(t)a ∗Mgxgy(t)b ∗Mgygz(t)c

=Mxy(t)a ∗Myz(t)b ∗Mzx(t)c. ()

If we use these three inequalities at the same time,

θ (kt) = Mxy(kt) ∗Myz(kt) ∗Mzx(kt)

≥ (
Myz(t)a ∗Mzx(t)b ∗Mxy(t)c

) ∗ (
Mzx(t)a ∗Mxy(t)b ∗Myz(t)c

)
∗ (

Mxy(t)a ∗Myz(t)b ∗Mzx(t)c
)

=
(
Mxy(t)c ∗Mxy(t)b ∗Mxy(t)a

) ∗ (
Myz(t)a ∗Myz(t)c ∗Myz(t)b

)
∗ (

Mzx(t)b ∗Mzx(t)a ∗Mzx(t)c
)

≥ (
Mxy(t)c ·Mxy(t)b ·Mxy(t)a

) ∗ (
Myz(t)a ·Myz(t)c ·Myz(t)b

)
∗ (

Mzx(t)b ·Mzx(t)a ·Mzx(t)c
)

= Mxy(t)a+b+c ∗Myz(t)a+b+c ∗Mzx(t)a+b+c

≥ Mxy(t) ∗Myz(t) ∗Mzx(t) = θ (t).
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We find that θ (kt) ≥ θ (t) implies that θ (t) ≥ θ (t/k) ≥ θ (t/k) ≥ · · · ≥ θ (t/kn) for all t > 
and n≥ . By (), () and (),

Mxy(kt)≥ Myz(t)a ∗Mzx(t)b ∗Mxy(t)c ≥ Myz(t) ∗Mzx(t) ∗Mxy(t) = θ (t) ≥ θ
(
t/kn

)
,

Myz(kt) ≥ Mzx(t)a ∗Mxy(t)b ∗Myz(t)c ≥ Mzx(t) ∗Mxy(t) ∗Myz(t) = θ (t)≥ θ
(
t/kn

)
,

Mzx(kt)≥ Mxy(t)a ∗Myz(t)b ∗Mzx(t)c ≥ Mxy(t) ∗Myz(t) ∗Mzx(t) = θ (t)≥ θ
(
t/kn

)
.

Letting n → ∞, we have limn→∞ θ (t/kn) =  for all t > , and this means that Mxy(kt) =
Myz(kt) =Mzx(kt) =  for all t > , i.e., x = y = z. The unicity of x follows from (). �

Remark  The unicity of the coincidence point of F and g is not always true. For instance,
if F ≡ x is constant and g ≡ x is also constant, then every (x, y, z) ∈ X is a coincidence
point of F and g .

Remark  In the previous theorem, we have only used the continuity of ∗ at (, ), that
is, if {xn}, {yn} ⊂ [, ] are sequences such that {xn} →  and {yn} → , then {xn ∗ yn} → .
And this is true because {xn ∗ yn} ≥ {xn · yn} →  ·  = .

Example  Consider (X =R,Me) as in Example . Let α,β >  and k ∈ (, ) be positive
real numbers such that α ≤ βk (in particular, α/k ≤ β/). Define F :R →R and g :R →
R as F(x, y, z) = α(x – y) and gx = βx for all x, y, z ∈ X. Clearly, g is continuous, F and g are
commuting and F(R) =R = g(R). We also note thatMe verifies

Me
FxyzFuvw (kt) =

(
e|(x–u)+(v–y)|)– α

kt ≥ (
e–

max(|x–u|,|v–y|)
t

) α
k

≥ (
e–

max(|x–u|,|v–y|)
t

) β
 =

(
e–

β
t

)max(|x–u|,|v–y|) =min
(
e–

β|x–u|
t , e–

β|v–y|
t

)
≥ min

(
e–

|βx–βu|
t , e–

|βy–βv|
t , e–

|βz–βw|
t

)
= min

([
Me

gxgu(t)
]/, [Me

gygv(t)
]/, [Me

gzgw(t)
]/).

Therefore, applying Theorem , we deduce that F and g have a tripled coincidence point.

Consequences
In the proof of the next result, the view of (X,d) as the crisp FMS (X,Mc,min) is used (see
Example ). This approach allows us to deduce results for metric spaces from the corre-
sponding result in the fuzzy setting. Moreover, Theorem  is just a tripled coincidence
point result, similar to Berinde-Borcut one, see [, Theorem ] and [, Theorem ], in
a not necessarily partially ordered set.

Theorem  Let (X,d) be a complete metric space and let F : X → X and g : X → X be
two mappings such that F(X)⊆ g(X) and g is continuous and commuting with F . Suppose
that F and g verify some of the following conditions for all x, y, z,u, v,w ∈ X:
(a) dFxyzFuvw ≤ kmax(dgxgu,dgygv,dgzgw) for some k ∈ (, ).
(b) dFxyzFuvw ≤ k(αdgxgu + βdgygv + γdgzgw) for some k ∈ (, ) and some α,β ,γ ∈ [, /].
(c) dFxyzFuvw ≤ αdgxgu + βdgygv + γdgzgw for some α,β ,γ ∈ [, ) such that α + β + γ < .

Then there exists a unique x ∈ X such that x = gx = Fxxx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
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Proof (a) ConsiderMc defined as in Example . As (X,d) is complete, then (X,Mc,min) is
a complete FMS. Fix x, y, z,u, v,w ∈ X and t > , and we are going to prove () using a = b =
c = / and ∗ =min. IfMc

gxgu(t) =  orMc
gygv(t) =  orMc

gzgw(t) = , then () is obvious. Sup-
pose thatMc

gxgu(t) = ,Mc
gygv(t) =  andMc

gzgw(t) = . This means that dgxgu < t, dgygv < t and
dgzgw < t. Therefore, t >max(dgxgu,dgygv,dgzgw) and kt > kmax(dgxgu,dgygv,dgzgw) ≥ dFxyzFuvw .
Hence,Mc

FxyzFuvw (kt) =  and () is also true.
(b) In this case,

dFxyzFuvw ≤ k(αdgxgu + βdgygv + γdgzgw)≤ k
(


dgxgu +



dgygv +



dgzgw

)

=
k

(dgxgu + dgygv + dgzgw) ≤ k


max(dgxgu,dgygv,dgzgw)

= kmax(dgxgu,dgygv,dgzgw).

(c) If k = α + β + γ < ,

dFxyzFuvw ≤ αdgxgu + βdgygv + γdgzgw ≤ αmax(dgxgu,dgygv,dgzgw)

+ β max(dgxgu,dgygv,dgzgw) + γ max(dgxgu,dgygv,dgzgw)

= (α + β + γ )max(dgxgu,dgygv,dgzgw) = kmax(dgxgu,dgygv,dgzgw). �

Example  If X =R, d(x, y) = |x– y| for all x, y ∈R and a,b, c,d,M ∈R are such thatM >
|a|+ |b|+ |c|, themappings F :R →R and g :R→ R, defined as Fxyz = (ax+by+cz+d)/M
and gx = x for all x, y, z ∈R, verify the hypothesis of Theorem (c). It is easy to check that
(x,x,x), where x = d/(M – a – b – c), is the unique tripled coincidence point of F and
g and verifies F(x,x,x) = x.

Now, we prove the existence of a coupled coincided point for F : X → X and g that
generalizes Theorem . in [], taking a = b = /. That is, the main result of the paper
also covers the main theoretical results of Zhu and Xiao [].

Corollary  Let ∗ be a t-norm of H-type such that s∗ t ≥ st for all s, t ∈ [, ]. Let k ∈ (, )
and a,b ∈ [, ] be real numbers such that a + b ≤ , let (X,M,∗) be a complete FMS and
let F : X → X and g : X → X be two mappings such that F(X) ⊆ g(X) and g is continuous
and commuting with F . Suppose that

MFxyFuv (kt) ≥ Mgxgu(t)a ∗Mgygv(t)b

for all x, y,u, v ∈ X and all t > . Then there exists a unique x ∈ X such that x = gx = Fxx.

Proof Define c =  and F ′ : X → X as F ′
xyz = Fxy for all x, y, z ∈ X. Then F ′(X) = F(X) ⊆

g(X) and F ′ is commuting with g (gF ′
xyz = gFxy = Fgxgy = F ′

gxgygz). Furthermore,

MF ′
xyzF ′

uvw (kt) =MFxyFuv (kt) ≥ Mgxgu(t)a ∗Mgygv(t)b

=Mgxgu(t)a ∗Mgygv(t)b ∗  ≥ Mgxgu(t)a ∗Mgygv(t)b ∗Mgzgw(t)c.

Then there exists a unique x ∈ X such that gx = F ′
xxx. If y ∈ X verifies Fyy = gy, then gy =

Fyy = F ′
yyy, so x = y. �
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Corollary  ([, Theorem .]) Let (X,d) be a complete metric space and let F : X → X
and g : X → X be twomappings such that F(X) ⊆ g(X) and g is continuous and commuting
with F . Suppose that F and g verify some of the following conditions for all x, y,u, v ∈ X:
(a) dFxyFuv ≤ kmax(dgxgu,dgygv) for some k ∈ (, ).
(b) dFxyFuv ≤ k(αdgxgu + βdgygv) for some k ∈ (, ) and some α,β ∈ [, /].
(c) dFxyFuv ≤ αdgxgu + βdgygv for some α,β ,γ ∈ [, ) such that α + β < .

Then there exists a unique x ∈ X such that x = gx = Fxx.

Proof Similar to the proof of Theorem . �

Remark  In fact, the previous result is proved for X, a partially ordered set in [].

Moreover, from a similar procedure, we can deduce the celebrated Banach contraction
principle (Theorem ).

Applications
Lipschitzian systems
Let f, f, f :R→ R beLipschitzianmappings and let β,β,β ∈ R be real numbers.Define
h :R → R as h(x) = βf(x) + βf(x) + βf(x) for all x ∈ R. Then h is another Lipschitzian
mapping and kh ≤ |β|kf + |β|kf + |β|kf . Obviously, if K = |β|kf + |β|kf + |β|kf < ,
then h is a contraction, so there exists a unique x ∈R such that hx = x.
Next, define F : R → R as Fxyz = βf(x) + βf(y) + βf(z) for all x, y, z ∈ R. It is clear

that Fxxx = hx for all x ∈R. Furthermore,

d(Fxxx ,Fyyy ) ≤
∑
i=

|βi|
∣∣fi(xi) – fi(yi)

∣∣ ≤
∑
i=

|βi|kfi |xi – yi| ≤ K max
≤j≤

d(xj, yj).

If K < , then F verifies () with gx = x for all x ∈R.

Corollary  Let f, f, f : R → R be Lipschitzian mappings on R (provided with the Eu-
clidean metric) and let β,β,β ∈ R such that |β|kf + |β|kf + |β|kf < . Then the sys-
tem

(S)

⎧⎪⎪⎨
⎪⎪⎩

βf(x) + βf(y) + βf(z) = x,

βf(y) + βf(z) + βf(x) = y,

βf(z) + βf(x) + βf(y) = z

has a unique solution, which is (x,x,x), where x is the only real solution of βf(x) +
βf(x) + βf(x) = x.

Example  Consider the system

(S)

⎧⎪⎪⎨
⎪⎪⎩
 sinx – 

+y +  = x –  arctan z,

 sin y – 
+z +  = y –  arctanx,

 sin z – 
+x +  = z –  arctan y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/29
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If we choose f(x) =  + sinx, f(x) = /( + x) and f(x) = arctanx, then f, f and f are
Lipschitzian mappings, and kf = kf =  and kf = 

√
/. Let β = /, β = –/ and

β = /. Then |β|kf + |β|kf + |β|kf = ( + 
√
)/ < . As system (S) is equal to

(S), then (S) has a unique solution, which is of the form (x,x,x), where x is the only
solution of

 sinx –


 + x
+  = x –  arctanx.

Finding, for example, the root by the bisection method, we get, approximately, x =
..

An integral system
Let a,b ∈ R with a < b and let I = [a,b]. Consider X = L(I) with the distance d(f , g) =∫
I |f (t) – g(t)|dt, where ∫

represents the Lebesgue integral. It is well known that (L(I),d)
is a complete MS. Let k,β,β,β ∈ R be real numbers and let G : R → R be a mapping
verifying G(, , ) =  and

|Gxxx –Gyyy | ≤ k
∑
i=

βi|xi – yi| for all (x,x,x), (y, y, y) ∈R
.

If A ∈R, we want to find functions f, f, f ∈L(I) such that

fi(x) = A +
∫
[a,x]

G
(
fi(t), fi+(t), fi+(t)

)
dt ()

holds for all x ∈ I , i = , , .
For all f, f, f ∈L(I) and all x ∈ I , define

Ffff (x) = A +
∫
[a,x]

G
(
f(t), f(t), f(t)

)
dt.

On the one hand, it is not difficult to prove that Ffff ∈ L(I), hence F : L(I) → L(I) is
well defined. On the other hand,

d(Ffff ,Fggg ) =
∫
I

∣∣Ffff (x) – Fggg (x)
∣∣dx

≤
∫
I

(∫
[a,x]

∣∣G(
f(t), f(t), f(t)

)
–G

(
g(t), g(t), g(t)

)∣∣dt)dx

≤
∫
I

(∫
[a,x]

k
∑
i=

βi
∣∣fi(t) – gi(t)

∣∣dt
)
dx

≤ k
∑
i=

βi

∫
I

(∫
I

∣∣fi(t) – gi(t)
∣∣dt)dx

= k
∑
i=

βi

∫
I
d(fi, gi)dx = k(b – a)

∑
i=

βid(fi, gi).

If we suppose that K = k(b – a)(β + β + β) < , then F verifies () with g(f ) = f for all
f ∈L(I). Then the system () has a unique solution, which is of the form (f, f, f), where
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f ∈L(I) is the only solution of the equation

f(x) = A +
∫
[a,x]

G
(
f(t), f(t), f(t)

)
dt for all x ∈ I

(this exists as a simple application of the Banach contraction principle).
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