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1 Introduction
The Banach contraction principle asserts that a contraction on a complete metric space
has a unique fixed point and its proof hinges on ‘Picard iterations’. This principle is appli-
cable to a variety of subjects such as integral equations, partial differential equations and
engineering of image processing.
Many important nonlinear problems of mathematics reduce to nonlinear functional

equations such as nonlinear integral equations and boundary value problems for non-
linear ordinary or partial differential equations which can be translated in terms of a fixed
point equation Tx = x for a given nonlinear mapping T on a Banach space or a metric
space.
Browder and Petryshyn [] solved the equation

x – Tx = f (.)

for a given element f of X (Banach space) and described its relation with the properties of
Picard iterates, i.e., the sequence {xn} where

xn+ = Txn + f

for an initial value x.
We know that Picard iterates of nonexpansive mappings fail to converge even on a Ba-

nach space. Therefore, Mann [] iterates were introduced to approximate fixed points of
nonexpansive mappings. Mann iterates were not adequate for the approximation of fixed
points of pseudocontractivemappings and this led to the introduction of Ishikawa iterates
[].
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Let C be a nonempty subset of a metric space (X,d). A mapping T of C into itself
is (i) asymptotically nonexpansive if there is a sequence {kn} ⊂ [,∞) with kn →  as
n → ∞ and d(Tnx,Tny) ≤ knd(x, y) for all x, y ∈ C (when kn =  for each n ≥ , it be-
comes nonexpansive); (ii) semi-continuous if for any bounded sequence {xn} in C sat-
isfying d(xn,Txn) → , there exists a subsequence {xni} of {xn} such that xni → x ∈ C;
(iii) completely continuous if every bounded sequence {xn} in C implies that {Txn} has a
convergent subsequence.
Nonexpansive mappings (the class of nonlinear mappings containing contractions as a

subclass) remain a popular area of research in various fields. The iterative construction of
fixed points of these mappings is a fascinating field of research. The fixed point problem
for some nonlinear mappings has been studied on linear as well as nonlinear domains
[–].
Numerous papers have appeared on the iterative construction of fixed points of asymp-

totically nonexpansive and asymptotically quasi-nonexpansive mappings in uniformly
convex Banach spaces [, , , –].
The Ishikawa iterative scheme for two asymptotically nonexpansive mappings S and T

is defined as

x = x ∈ C,

xn+ = αnTnyn + ( – αn)xn, (.)

yn = βnSnxn + ( – βn)xn, n≥ ,

where αn,βn ∈ I = [, ].
For S = T in (.), we have an Ishikawa type iterative scheme for one mapping []

x = x ∈ C,

xn+ = αnTnyn + ( – αn)xn, (.)

yn = βnTnxn + ( – βn)xn, n≥ .

When βn =  in (.), we have the Mann [] type iterative scheme

x = x ∈ C,

xn+ = αnTnxn + ( – αn)xn, n≥ .
(.)

Rhoades [] established Mann and Ishikawa type convergence results as two separate
results as follows.

Theorem  ([], Theorem ) Let C be a nonempty bounded, closed and convex subset of
a uniformly convex Banach space. Let T be a completely continuous asymptotically non-
expansive mapping on C with kn ≥  satisfying

∑∞
n=(kn – ) < ∞. Define {αn} to satisfy

ε ≤ αn ≤  – ε for all n ≥  and ε > . Then the Mann type iterative scheme {xn} in (.)
converges to a fixed point of T .

Theorem  ([], Theorem ) Let C be a nonempty bounded, closed and convex subset of
a uniformly convex Banach space. Let T be a completely continuous asymptotically nonex-
pansive mapping on C with kn ≥  satisfying

∑∞
n=(kn – ) < ∞. Define {αn}, {βn} to satisfy

http://www.fixedpointtheoryandapplications.com/content/2013/1/290


Khan Fixed Point Theory and Applications 2013, 2013:290 Page 3 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/290

ε ≤  – αn,  – βn ≤  – ε for all n ≥  and ε > . Then the Ishikawa type iterative scheme
{xn} in (.) converges to a fixed point of T .

An extension of a linear version (usually in Banach spaces) of a known result to metric
fixed point theory has its own importance. As Mann and Ishikawa iterative schemes in-
volve general convex combinations, we need some convex structure in a metric space to
investigate their convergence on a nonlinear domain.
Let (X,d) be ametric space. Suppose that there exists a family� ofmetric segments such

that any two points x, y in X are endpoints of a unique metric segment [x, y] ∈ � ([x, y] is
an isometric image of the real line interval [,d(x, y)]). We shall denote by αx ⊕ ( – α)y
the unique point z of [x, y] which satisfies

d(x, z) = ( – α)d(x, y) and d(z, y) = αd(x, y) for α ∈ I.

Such metric spaces are usually called convex metric spaces []. One can easily deduce
x⊕ y = y, x⊕ y = x and αx⊕ ( – α)x = x from the definition of a convex metric space
[–].
A convex metric space X is hyperbolic if

d
(
αx⊕ ( – α)y,αz⊕ ( – α)w

) ≤ αd(x, z) + ( – α)d(y,w)

for all x, y, z,w ∈ X and α ∈ I (see also []).
For z = w, the hyperbolic inequality reduces to convex structure []

d
(
αx⊕ ( – α)y, z

) ≤ αd(x, z) + ( – α)d(y, z). (.)

A nonempty subset C of a convex metric space X is convex if αx ⊕ ( – α)y ∈ C for all
x, y ∈ C and α ∈ I .
Normed spaces and their subsets are linear hyperbolic spaces while Hadamard mani-

folds [], the Hilbert open unit ball equipped with the hyperbolic metric [] and the
CAT() spaces qualify for the criteria of nonlinear hyperbolic spaces [, , , ].
A convex metric space X is uniformly convex if

δ(r, ε) = inf

{
 –


r
d
(
a,



x⊕ 


y
)
: d(a,x)≤ r,d(a, y) ≤ r,d(x, y)≥ rε

}
> 

for any a ∈ X, r >  and ε > .
From now onwards we assume that X is a uniformly convex hyperbolic space with the

property that for every s ≥ , ε > , there exists η(s, ε) >  depending on s and ε such that
δ(r, ε) > η(s, ε) >  for any r > s.
Xu [] extensively used the concept of p-uniform convexity (see also [, p.]); its

nonlinear version for p =  was introduced by Khamsi and Khan [] as follows:
For a fixed a ∈ X, r > , ε > , define

�(r, ε) = inf

{


d(a,x) +



d(a, y) – d

(
a,



x⊕ 


y
)}

,
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where the infimum is taken over all x, y ∈ X such that d(a,x) ≤ r, d(a, y) ≤ r and
d(x, y)≥ rε.
We say that X is -uniformly convex if

cM = inf

{
�(r, ε)
rε

: r > , ε > 
}
> .

It was shown in [] that any CAT() space is -uniformly convex with cM = 
 .

Using the concept of a unique point αx⊕ ( – α)y in a metric segment [x, y], we express
(.)-(.) in a convex hyperbolic space as follows:
Ishikawa iterative scheme for two mappings

x = x ∈ C,

xn+ = αnTnyn ⊕ ( – αn)xn, (.)

yn = βnSnxn ⊕ ( – βn)xn, n≥ ,

where  ≤ αn,βn ≤ .
Ishikawa iterative scheme for one mapping

x = x ∈ C,

xn+ = αnTnyn ⊕ ( – αn)xn, (.)

yn = βnTnxn ⊕ ( – βn)xn, n≥ .

Mann iterative scheme

x = x ∈ C,

xn+ = αnTnxn ⊕ ( – αn)xn, n≥ .
(.)

In the sequel, the following results are needed.

Lemma  [] Suppose that X is a -uniformly convex hyperbolic space. Then, for any α ∈
(, ), we have that

d
(
u,αx⊕ ( – α)y

) ≤ αd(u,x) + ( – α)d(u, y) – cMmin
{
α, ( – α)

}
d(x, y)

for any u,x, y ∈ X.

Lemma  [] Let {rn}, {sn} and {tn} be nonnegative real sequences and satisfy

rn+ ≤ ( + sn)rn + tn for all n ≥ .

If
∑∞

n= sn < ∞ and
∑∞

n= tn <∞, then limn→∞ rn exists.

Our purpose in this paper is to approximate a common fixed point of two asymptoti-
cally nonexpansive mappings through iterative scheme (.) in -uniformly convex hyper-
bolic spaces. This work provides a unified approach to convergence results for Mann and
Ishikawa iterative schemes.
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2 Convergence in 2-uniformly convex hyperbolic spaces
We set F(T) = {x ∈ X : Tx = x} and F = F(S)∩ F(T) 
= ∅.

Lemma  Let C be a nonempty convex subset of a hyperbolic space X, and let S,T : C → C
be asymptotically nonexpansive mappings with sequence {kn} ⊂ [,∞) such that

∑∞
n=(kn–

) <∞. Then, for the sequence {xn} in (.), limn→∞ d(xn,p) exists for all p ∈ F .

Proof Let p ∈ F . By (.) and (.), we have

d(xn+,p) = d
(
αnTnyn ⊕ ( – αn)xn,p

)
≤ αnd

(
Tnyn,p

)
+ ( – αn)d(xn,p)

≤ αnknd(yn,p) + ( – αn)d(xn,p)

= αnknd
(
βnSnxn ⊕ ( – βn)xn,p

)
+ ( – αn)d(xn,p)

≤ αnkn
[
βnd

(
Snxn,p

)
+ ( – βn)d(xn,p)

]
+ ( – αn)d(xn,p)

≤ αnβnknd(xn,p) + αn( – βn)knd(xn,p) + ( – αn)d(xn,p)

≤ αnβnknd(xn,p) + αn( – βn)knd(xn,p) + ( – αn)knd(xn,p)

= knd(xn,p).

That is,

d(xn+,p) ≤ knd(xn,p). (.)

Since {kn} is bounded, therefore

d(xn+,p) ≤
[
 +M(kn – )

]
d(xn,p),

whereM = supn≥(kn + ). AsM
∑∞

n=(kn – ) <∞, so by Lemma , limn→∞ d(xn,p) exists.
�

Lemma  Let C be a nonempty convex subset of a hyperbolic space X, and let S,T : C → C
be asymptotically nonexpansive mappings with sequence {kn} ⊂ [,∞) such that

∑∞
n=(kn–

) <∞. Then, for the sequence {xn} in (.), we have that

d(xn,p) ≤ sd(xn ,p)

for all n > n ≥ , p ∈ F and some s > .

Proof With the help of inequality x≤ ex– for x≥  and (.), we have

d(xn,p) ≤ kn–d(xn–,p)

≤ e(kn––)d(xn–,p)

≤ · · ·
≤ · · ·
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≤ e
∑n–

j=n
(kj–)d(xn ,p)

≤ e
∑∞

j=(kj–)d(xn ,p)

= sd(xn ,p) where s = e
∑∞

j=(kj–). �

Theorem  Let C be a nonempty closed and convex subset of a complete hyperbolic space
X, and let S,T : C → C be asymptotically nonexpansive mappings with sequence {kn} ⊂
[,∞) such that

∑∞
n=(kn – ) < ∞. Then {xn} in (.) converges to a point in F if and only

if lim infn→∞ d(xn,F) = , where d(x,F) = inf{d(x,p) : p ∈ F}.

Proof We only prove sufficiency. Suppose that lim infn→∞ d(xn,F) = . It has been shown
in the proof of Lemma  that d(xn+,p) ≤ knd(xn,p). By the properties of inf, we have that
d(xn+,F) ≤ knd(xn,F) and hence, by Lemma , limn→∞ d(xn,F) exists. Therefore the hy-
pothesis lim infn→∞ d(xn,F) =  gives that limn→∞ d(xn,F) = . Next we show that {xn}
is a Cauchy sequence. Let ε > . Since limn→∞ d(xn,F) = , there exists n ≥  such that
d(xn ,F) <

ε
s . Hence there must exist q ∈ F such that d(xn ,q) <

ε
s .

Now, for any n >m ≥ n, we have from the estimate in the proof of Lemma 

d(xn+m,xn) ≤ d(xn+m,p) + d(xn,p)

≤ sd(xn ,p) < ε.

This proves that {xn} is a Cauchy sequence. Since X is complete and C is its closed subset,
therefore limn→∞ xn = q ∈ C. Now limn→∞ d(xn,F) =  gives that d(q,F) = .As F is closed,
so q ∈ F . �

Lemma  Let C be a nonempty convex subset of a -uniformly convex hyperbolic space X ,
and let S,T : C → C be asymptotically nonexpansivemappings with sequence {kn} ⊂ [,∞)
such that

∑∞
n=(kn – ) < ∞. Define {αn} and {βn} to satisfy  < ε ≤ αn,βn ≤  – ε for all

n≥ . Then, for the sequence {xn} in (.), limn→∞ d(Sxn,xn) =  = limn→∞ d(Txn,xn).

Proof Let p ∈ F . Then, by Lemma , we have

d(xn+,p) = d
(
αnTnyn ⊕ ( – αn)xn,p

)
≤ αnd

(
Tnyn,p

) + ( – αn)d(xn,p)

– cMmin
{
α
n, ( – αn)

}
d
(
Tnyn,xn

)
≤ αnd

(
Tnyn,p

) + ( – αn)d(xn,p)

– cMα
n( – αn)d

(
Tnyn,xn

)
≤ αnknd(yn,p)

 + ( – αn)d(xn,p)

– cMεd
(
Tnyn,xn

)
= αnknd

(
βnSnxn ⊕ ( – βn)xn,p

)
+ ( – αn)d(xn,p)

– cMα( – α)d
(
Tnyn,xn

)
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≤ αnknβnd
(
Snxn,p

) + αnkn( – βn)d(xn,p)

– cMαnknmin
{
β
n , ( – βn)

}
d
(
Tnyn,xn

)
+ ( – αn)d(xn,p) – cMεd

(
Tnyn,xn

)
≤ αnβnknd(xn,p)

 + αn( – βn)knd(xn,p)


+ ( – αn)d(xn,p)

– cMknε
d

(
Tnxn,xn

)
– cMεd

(
Tnyn,xn

)
≤ αnβnknd(xn,p)

 + αn( – βn)knd(xn,p)


+ ( – αn)knd(xn,p)


– cMknε
d

(
Tnxn,xn

)
– cMεd

(
Tnyn,xn

)
= knd(xn,p)

 – cMknε
d

(
Snxn,xn

)
– cMεd

(
Tnyn,xn

)
= d(xn,p) +

(
kn – 

)
d(xn,p) – cMknε

d
(
Snxn,xn

)
– cMεd

(
Tnyn,xn

)
.

Since limn→∞ d(xn,p) exists, therefore we have

d(xn+,p) ≤ d(xn,p) – cMεd
(
Tnxn,xn

)
– cMεd

(
Tnyn,xn

)
+

(
kn – 

)
M

for someM > .
This inequality implies the following two important inequalities:

cMεd
(
Tnyn,xn

) ≤ d(xn,p) – d(xn+,p) +
(
kn – 

)
M (.)

and

cMεd
(
Snxn,xn

) ≤ d(xn,p) – d(xn+,p) +
(
kn – 

)
M. (.)

Let m be any positive integer. Summing up the terms from  to m on both sides in in-
equality (.), we have

cMε
m∑
n=

d
(
Tnyn,xn

) ≤ d(x,p) – d(xm+,p) +
m∑
n=

(
kn – 

)
M

≤ d(x,p) +
m∑
n=

(
kn – 

)
M.

When m→ ∞ in the above inequality, we get that

cMε
∞∑
n=

d
(
Tnyn,xn

)
< ∞,

and hence

lim
n→∞d

(
Tnyn,xn

)
= . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/290
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Adapting a similar procedure for inequality (.), we get that

lim
n→∞d

(
Snxn,xn

)
= . (.)

Therefore the inequality

d
(
Tnxn,xn

) ≤ d
(
Tnxn,Tnyn

)
+ d

(
Tnyn,xn

)
≤ knd(xn, yn) + d

(
Tnyn,xn

)
= knd

(
xn,βnSnxn ⊕ ( – βn)xn

)
+ d

(
Tnyn,xn

)
= knβnd

(
xn,Snxn

)
+ d

(
Tnyn,xn

)
≤ knd

(
xn,Snxn

)
+ d

(
Tnyn,xn

)

together with (.) and (.) gives that

lim
n→∞d

(
Tnxn,xn

)
= .

Next we prove that

lim
n→∞d(Sxn,xn) =  = lim

n→∞d(Txn,xn).

Note that

d(xn+,xn) = d
(
αnTnyn ⊕ ( – αn)xn,xn

)
= αnd

(
Tnyn,xn

)
≤ ( – ε)d

(
Tnyn,xn

) →  as n→ ∞.

Finally,

d(xn+,Sxn+) ≤ d
(
xn+,Sn+xn+

)
+ d

(
Sxn+,Sn+xn+

)
≤ d

(
xn+,Sn+xn+

)
+ kd

(
xn+,Snxn+

)
≤ k

[
d(xn+,xn) + d

(
xn,Snxn

)
+ d

(
Snxn,Snxn+

)]
+ d

(
xn+,Sn+xn+

)
≤ d

(
xn+,Sn+xn+

)
+ kd

(
xn,Snxn

)
+ k( + kn)d(xn+,xn)

gives that

lim
n→∞d(Sxn,xn) = .

Similarly,

lim
n→∞d(Txn,xn) = .

That is,

lim
n→∞d(Sxn,xn) =  = lim

n→∞d(Txn,xn). �

http://www.fixedpointtheoryandapplications.com/content/2013/1/290


Khan Fixed Point Theory and Applications 2013, 2013:290 Page 9 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/290

The following concept is needed to proceed further.
Let f be nondecreasing on [,∞) with f () =  and f (t) >  for all t ∈ (,∞). Then the

mappings S,T : C → C with F 
= ∅ satisfy Condition (A) if

d(x,Tx)≥ f
(
d(x,F)

)
or d(x,Sx)≥ f

(
d(x,F)

)
for x ∈ C.

Using Condition (A) and Theorem , we prove a convergence theorem in complete -
uniformly convex spaces as follows.

Theorem  Let C be a nonempty convex subset of a complete -uniformly convex hyper-
bolic space X. Let S,T : C → C be asymptotically nonexpansive mappings with sequence
{kn} ⊂ [,∞) such that

∑∞
n=(kn –) < ∞ and satisfy Condition (A).Define {αn} and {βn} to

satisfy  < ε ≤ αn,βn ≤  – ε for n ≥ . Then the sequence {xn} in (.) converges to a point
in F .

Proof By Lemma , limn→∞ d(Sxn,xn) =  = limn→∞ d(Txn,xn). Using Condition (A), we
get that limn→∞ d(xn,F) = . Now Theorem  gives that {xn} converges to a point in F .

�

Another convergence theorem is established in the following result under any of Con-
ditions (ii)-(iii) without requiring the completeness of the space X.

Theorem Let C be a nonempty convex subset of a -uniformly convex hyperbolic space X .
Let S,T : C → C be asymptotically nonexpansive mappings with sequence {kn} ⊂ [,∞)
such that

∑∞
n=(kn – ) < ∞ and either S or T is semi-compact. Define {αn} and {βn} to

satisfy  < ε ≤ αn,βn ≤  – ε for all n ≥ . Then the sequence {xn} in (.) converges to a
point in F .

Proof Lemma  gives that limn→∞ d(Sxn,xn) =  = limn→∞ d(Txn,xn). Suppose that T is
semi-compact. Since limn→∞ d(xn,p) exists, therefore {xn} is bounded. As limn→∞ d(Txn,
xn) =  and T is semi-compact, so there is a subsequence {xni} of {xn} such that
xni → q ∈ C, and hence Txni → Tq and Sxni → Sq. Therefore limi→∞ d(Sxni ,xni ) =  =
limi→∞ d(Txni ,xni ) implies that d(Sq,q) =  = d(Tq,q). That is, q ∈ F . As limn→∞ d(xn,p)
exists and xni → q, therefore xn → q. �

Let {Ti : i = , , . . . ,k} be a family of mappings on C. The multi-step iteration scheme of
Khan et al. [] may be adapted in a convex hyperbolic space as follows:

xn+ = ( – αkn)xn ⊕ αknTn
k y(k–)n,

y(k–)n = ( – α(k–)n)xn ⊕ α(k–)nTn
k–y(k–)n,

y(k–)n = ( – α(k–)n)xn ⊕ α(k–)nTn
k–y(k–)n,

· · ·
yn = ( – αn)xn ⊕ αnTn

 yn,

yn = ( – αn)xn ⊕ αnTn
 yn,

(.)

where yn = xn for all n ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/290
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Following the line of action of the proofs of Theorem  and Lemma , we can easily
prove the following results.

Theorem  Let C be a nonempty closed and convex subset of a complete -uniformly
convex hyperbolic space X, and let {Ti : i = , , . . . ,k} be a family of asymptotically quasi-
nonexpansive self-mappings of C, i.e., d(Tn

i x,pi) ≤ uind(x,pi) for all x ∈ C and pi ∈ F(Ti),
i = , , . . . ,k. Suppose that F =

⋂k
i= F(Ti) 
= ∅, x ∈ C and

∑∞
n=(uin – ) < ∞ for all i. Then

the iterative sequence {xn}, defined by (.), converges to a common fixed point of the family
of mappings if and only if lim infn→∞ d(xn,F) = .

Theorem  Let C be a nonempty closed and convex subset of a -uniformly convex hy-
perbolic space X, and let {Ti : i = , , , . . . ,k} be a family of asymptotically nonexpansive
mappings of C, i.e., d(Tn

i x,pi) ≤ uind(x,pi) for all x ∈ C and pi ∈ F(Ti), where {uin} are se-
quences in [,∞) with

∑∞
n=(uin –) < ∞ for each i ∈ {, , , . . . ,k}.Assume that F 
= ∅ and

the sequence {xn} is in (.) with αin ∈ [δ,  – δ] for some δ ∈ (,  ). If for some i,  ≤ i ≤ k,
Ti is semi-compact, then {xn} converges to a point in F.

Remark  () Theorem  extends (unifies) Theorem  of Khan and Takahashi [] (The-
orems -) in the setting of -uniformly convex hyperbolic spaces.
() Theorem  establishes Theorem  byQihou [] together with its Corollaries  and ,

which are themselves extensions of the results of Ghosh and Debnath [] and Petryshyn
and Williamson [], for two asymptotically nonexpansive mappings on a -uniformly
convex hyperbolic space.
() All the results of this paper, in particular, hold in CAT() spaces.

Remark  In a uniformly convex Banach space B, iterative scheme (.) for nonexpansive
mappings becomes the scheme (∗) of Kuhfittig ([], p.) which he applied to solve the
system of equations of the type

x – Six = fi for i = , , , . . . ,m,

where each Si is a nonexpansive self-mapping on X and each fi is a given element of X.
Following Kuhfittig [], we can apply our iteration scheme (.) to find a solution of the
system of equations of the type

x – Sni x = fi for i = , , , . . . ,m (.)

for a family {Si} of asymptotically nonexpansive mappings on B.

Competing interests
The author declares that he has no competing interests.

Acknowledgements
The author is grateful to King Fahd University of Petroleum & Minerals for supporting the research project IN 121037.

Received: 16 May 2013 Accepted: 7 October 2013 Published: 09 Nov 2013

http://www.fixedpointtheoryandapplications.com/content/2013/1/290


Khan Fixed Point Theory and Applications 2013, 2013:290 Page 11 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/290

References
1. Browder, FE, Petryshyn, WV: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am.

Math. Soc. 72, 571-575 (1966)
2. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
3. Ishikawa, S: Fixed point by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
4. Fukhar-ud-din, H, Khan, AR, Akhtar, Z: Fixed point results for generalized nonexpansive maps in uniformly convex

metric spaces. Nonlinear Anal. 75, 4747-4760 (2012)
5. Goebel, K, Kirk, W: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35,

171-174 (1972)
6. Ibn Dehaish, BA: Ishikawa iteration process for asymptotic pointwise nonexpansive mappings in metric spaces. Fixed

Point Theory Appl. 2013, Article ID 98 (2013). doi:10.1186/1687-1812-2013-98
7. Ibn Dehaish, BA, Khamsi, MA, Khan, AR: Mann iteration process for asymptotic pointwise nonexpansive mappings in

metric spaces. J. Math. Anal. Appl. 397, 861-868 (2013)
8. Khamsi, MA, Khan, AR: Inequalities in metric spaces with applications. Nonlinear Anal. 74, 4036-4045 (2011)
9. Fukhar-ud-din, H, Khan, SH: Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and

applications. J. Math. Anal. Appl. 328, 821-829 (2007)
10. Fukhar-ud-din, H, Khan, AR, Kalsoom, A, Khan, MAA: One-step implicit algorithm for two finite families of

nonexpansive maps in hyperbolic spaces. J. Adv. Math. Stud. 6(1), 73-81 (2013)
11. Ghosh, MK, Debnath, L: Convergence of Ishikawa iterates of quasi-nonexpansive mappings. J. Math. Anal. Appl. 207,

96-103 (1997)
12. Khan, AR, Domlo, AA, Fukhar-ud-din, H: Common fixed points Noor iteration for a finite family of asymptotically

quasi-nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 341, 1-11 (2008)
13. Khan, SH, Fukhar-ud-din, H: Weak and strong convergence of a scheme with errors for two nonexpansive mappings.

Nonlinear Anal. 61, 1295-1301 (2005)
14. Khan, SH, Takahashi, W: Approximating common fixed points of two asymptotically nonexpansive mappings. Sci.

Math. Jpn. 53, 143-148 (2001)
15. Qihou, L: Iterative sequences for asymptotically quasi-nonexpansive mappings. J. Math. Anal. Appl. 259, 1-7 (2001)
16. Rhoades, BE: Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 183, 118-120 (1994)
17. Schu, J: Weak and strong convergence of fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math.

Soc. 43, 153-159 (1991)
18. Tan, KK, Xu, HK: Fixed point iteration process for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 122,

733-739 (1994)
19. Khan, AR: On modified Noor iterations for asymptotically nonexpansive mappings. Bull. Belg. Math. Soc. Simon Stevin

17, 127-140 (2010)
20. Menger, K: Untersuchungen über allgemeine Metrik. Math. Ann. 100, 75-163 (1928)
21. Kirk, WA: Geodesic geometry and fixed point theory. II. In: International Conference on Fixed Point Theory and

Applications, pp. 113-142. Yokohama Publ., Yokohama (2004)
22. Kirk, WA: A fixed point theorem in CAT(0) spaces and R-trees. Fixed Point Theory Appl. 4, 309-316 (2004)
23. Kirk, WA: Fixed Point Theory for Nonexpansive Mappings, I and II. Lecture Notes in Mathematics, vol. 886, pp. 485-505.

Springer, Berlin (1981)
24. Leustean, L: A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 325, 386-399 (2007)
25. Abbas, M, Khamsi, MA, Khan, AR: Common fixed point and invariant approximation in hyperbolic ordered metric

spaces. Fixed Point Theory Appl. 2011, Article ID 25 (2011). doi:10.1186/1687-1812-2011-25
26. Takahashi, W: A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 22, 142-149 (1970)
27. Busemann, H: Spaces with non-positive curvature. Acta Math. 80, 259-310 (1948)
28. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Series of Monographs

and Textbooks in Pure and Applied Mathematics, vol. 83. Dekker, New York (1984)
29. Kuhfittig, PKF: Common fixed points of nonexpansive mappings by iteration. Pac. J. Math. 97, 137-139 (1981)
30. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
31. Beauzamy, B: Introduction to Banach Spaces and Their Geometry. North-Holland, Amsterdam (1985)
32. Petryshyn, WV, Williamson, TE: Strong and weak convergence of the sequence of successive approximations for

quasi-nonexpansive mappings. J. Math. Anal. Appl. 43, 459-497 (1973)

10.1186/1687-1812-2013-290
Cite this article as: Khan: Common fixed point and solution of nonlinear functional equations. Fixed Point Theory and
Applications 2013, 2013:290

http://www.fixedpointtheoryandapplications.com/content/2013/1/290
http://dx.doi.org/10.1186/1687-1812-2013-98
http://dx.doi.org/10.1186/1687-1812-2011-25

	Common ﬁxed point and solution of nonlinear functional equations
	Abstract
	MSC
	Keywords

	Introduction
	Convergence in 2-uniformly convex hyperbolic spaces
	Competing interests
	Acknowledgements
	References


