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Abstract
The purpose of this paper is to deal with the problem of finding hierarchically a
common fixed point of a sequence of nearly nonexpansive self-mappings defined on
a closed convex subset of a real Hilbert space which is also a solution of some
particular variational inequality problem. We introduce two explicit iterative schemes
and establish strong convergence results for sequences generated iteratively by the
explicit schemes under suitable conditions. Our strong convergence results include
the previous results as special cases, and can be viewed as an improvement and
refinement of several corresponding known results for hierarchical variational
inequality problems.
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1 Introduction
Variational inequality problems were initially studied by Stampacchia [] in . Since
then, many kinds of variational inequalities have been extended and generalized in sev-
eral directions using novel and innovative techniques (see [–] and the references
therein).
The classical variational inequality problem or the Stampacchia variational inequality

problem in a Hilbert space is defined as follows:
Let C be a nonempty closed convex subset of a real Hilbert space H , and let T : C → H

be a nonlinear mapping. Then the classical variational inequality problem is a problem of
finding x∗ ∈ C such that

〈
Tx∗, y – x∗〉 ≥  for all y ∈ C. (.)

Problem (.) is denoted by VI(C,T). A point x∗ ∈ C is a solution of VI(C,T) if and only if
x∗ is a fixed point of PC(I – λT), where λ >  is a constant, I is the identity mapping from
C into itself, and PC is the metric projection from H onto a closed convex subset C of H .
The set of solutions of (.) is denoted by �(C,T), that is,

�(C,T) =
{
x∗ ∈ C :

〈
Tx∗, y – x∗〉 ≥  for all y ∈ C

}
.
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The variational inequality VI(C,T) is called a monotone variational inequality if the op-
erator T is a monotone operator. The problem of kind (.) is connected with the con-
vex minimization problem, complementarity problem, saddle point problem, fixed point
problem,Nash equilibriumproblem, the problemof finding a point x ∈H satisfyingTx = 
and so on, and it has several applications in different branches of natural sciences, social
sciences, management and engineering (see [–] and the references therein). In this
context, we discuss the variational inequality problem over the set of fixed points of a
mapping which is known as a hierarchical variational inequality problem or a hierarchical
fixed point problem.
The hierarchical variational inequality problem over the set of fixed points of a nonex-

pansive mapping is defined as follows:
LetC be a nonempty closed convex subset of a real Hilbert spaceH , and let T ,S : C → C

be two nonexpansive mappings. Then the hierarchical variational inequality problem is
given as follows:

Find x∗ ∈ F(S) such that
〈
(I – T)x∗, y – x∗〉 ≥  for all y ∈ F(S). (.)

Problem (.) is denoted by VIF(S)(C,T). The set of solutions of (.) is denoted by
�F(S)(C,T), that is,

�F(S)(C,T) =
{
x∗ ∈ F(S) :

〈
(I – T)x∗, y – x∗〉 ≥  for all y ∈ F(S)

}
.

It is easy to observe thatVIF(S)(C,T) is equivalent to the fixed point problem x∗ = PF(S)Tx∗,
that is, x∗ is a fixed point of the nonexpansive mapping PF(S)T . Of course, if T = I , then the
set of solutions of VIF(S)(C,T) is �F(S)(C,T) = F(S).
Firstly, Moudafi and Maingé [] introduced an implicit iterative algorithm to solve

problem (.) and proved weak and strong convergence results, and after that, many itera-
tivemethods have been developed for solving hierarchical problem (.) by several authors
(see, e.g., [–]).
Very recently, Gu et al. [] motivated and inspired by the results of Marino and Xu

[], Yao et al. [] introduced and studied two iterative schemes for solving hierarchical
variational inequality problem and proved the corresponding strong convergence results
for the generated sequences in the context of a countable family of nonexpansivemappings
under suitable conditions on parameters.
In this paper, inspired by Gu et al. [] and Sahu et al. [], we introduce two explicit

iterative schemes which generate sequences via iterative algorithms. We prove that the
generated sequences converge strongly to the unique solutions of particular variational
inequality problems defined over the set of common fixed points of a sequence of nearly
nonexpansive mappings. Our results, in one sense, extend the results of Gu et al. [] to
the sequence of nonexpansive mappings and, in another sense, to the sequence of nearly
nonexpansive mappings, which is a wider class of sequence of nonexpansive mappings.
Our results also generalize the results of Cianciaruso et al. [], Yao et al. [], Moudafi
[], Xu [] and many other related works.

2 Preliminaries
Let C be a nonempty subset of a real Hilbert space H with the inner product 〈·, ·〉 and the
norm ‖ · ‖, respectively. A mapping T : C →H is called
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() monotone if

〈Tx – Ty,x – y〉 ≥  for all x, y ∈ C,

() η-strongly monotone if there exists a positive real number η such that

〈Tx – Ty,x – y〉 ≥ η‖x – y‖ for all x, y ∈ C,

() k-Lipschitzian if there exists a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖ for all x, y ∈ C,

() ρ-contraction if there exists a constant ρ ∈ (, ) such that

‖Tx – Ty‖ ≤ ρ‖x – y‖ for all x, y ∈ C,

() nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C,

() nearly nonexpansive [, ] with respect to a fixed sequence {an} in [,∞) with
an →  if

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + an for all x, y ∈ C and n ∈N.

Throughout this paper, we denote by I the identity mapping ofH . Also, we denote by →
and ⇀ the strong convergence and weak convergence, respectively. The symbol N stands
for the set of all natural numbers and ωw({xn}) denotes the set of all weak subsequential
limits of {xn}.
Let C be a nonempty closed convex subset of H . Then, for any x ∈ H , there exists a

unique nearest point in C, denoted by PC(x), such that

∥∥x – PC(x)
∥∥ = inf‖x – y‖ for all y ∈ C.

The mapping PC is called themetric projection from H onto C.
It is observed that PC is a nonexpansive and monotone mapping from H onto C (see

Agarwal et al. [] for other properties of projection operators).
Let C be a nonempty subset of a real Hilbert space H , and let S,S : C → H be two

mappings. We denote by B(C) the collection of all bounded subsets of C. The deviation
between S and S on B ∈ B(C) [], denoted by ‖S – S‖∞,B, is defined by

‖S – S‖∞,B = sup
{∥∥S(x) – S(x)

∥∥ : x ∈ B
}
.

In what follows, we shall make use of the following lemmas and proposition.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . If
x ∈H and y ∈ C, then y = PC(x) if and only if the following inequality holds:

〈x – y, z – y〉 ≤  for all z ∈ C.
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Lemma . ([]) Let f : C → H be a λ-contraction mapping and T : C → C be nonex-
pansive. Then the following hold:
(a) The mapping I – f is ( – λ)-strongly monotone, i.e.,

〈
x – y, (I – f )x – (I – f )y

〉 ≥ ( – λ)‖x – y‖ for all x, y ∈ C.

(b) The mapping I – T is monotone, i.e.,

〈
x – y, (I – T)x – (I – T)y

〉 ≥  for all x, y ∈ C.

Lemma . ([]) Let T be a nonexpansive self-mapping of a nonempty closed convex
subset C of a real Hilbert space H . Then I –T is demiclosed at zero, i.e., if {xn} is a sequence
in C weakly converging to some x ∈ C and the sequence {(I –T)xn} strongly converges to ,
then x ∈ F(T).

Lemma . ([]) Let {tn} and {dn} be the sequences of nonnegative real numbers such
that

tn+ ≤ ( – bn)tn + cn + dn for all n ∈N,

where {bn} is a real number sequence in (, ) and {cn} is a real number sequence. Assume
that the following conditions hold:

(i)
∑∞

n= dn < ∞;
(ii)

∑∞
n= bn =∞ and lim supn→∞

cn
bn ≤ .

Then limn→∞ tn = .

Lemma . ([, ]) Let C be a nonempty closed convex subset of a real Hilbert space H
and ti >  (i = , , , . . . ,N ) such that

∑N
i= ti = . Let T,T,T, . . . ,TN : C → C be nonex-

pansive mappings with
⋂N

i= F(Ti) �= ∅ and let T =
∑N

i= tiTi. Then T is nonexpansive from
C into itself and F(T) =

⋂N
i= F(Ti).

Let C be a nonempty subset of a real Hilbert space H . Let T := {Tn}∞n= be a sequence
of mappings from C into itself. We denote by F(T ) the set of common fixed points of the
sequence T , that is, F(T ) =

⋂∞
n= F(Tn). Fix a sequence {an} in [,∞) with an → , and

let {Tn} be a sequence of mappings from C into H . Then the sequence {Tn} is called a
sequence of nearly nonexpansive mappings [] with respect to a sequence {an} if

‖Tnx – Tny‖ ≤ ‖x – y‖ + an for all x, y ∈ C and n ∈N.

One can observe that the sequence of nonexpansive mappings is essentially a sequence
of nearly nonexpansive mappings.
We now introduce the following:
Let C be a nonempty closed convex subset of a Hilbert space H . Let T = {Tn}∞n= be a

sequence of nearly nonexpansivemappings fromC into itself with sequence {an} such that⋂∞
n= F(Tn) �= ∅. Let T : C → C be a mapping such that Tx = limn→∞ Tnx for all x ∈ C with

F(T) =
⋂∞

n= F(Tn). Then {Tn} is said to satisfy condition (G) if for each sequence {xn} in C
with xn ⇀ w and xn – Tixn →  for all i ∈N imply w ∈ F(T).
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Proposition . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Tn} be a sequence of nonexpansive mappings from C into itself. Then {Tn} satisfies condi-
tion (G).

Proposition . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T = {Tn}∞n= be a sequence of nearly nonexpansivemappings fromC into itself with sequence
{an} such that

⋂∞
n= F(Tn) �= ∅. Then

‖Tnx – x‖ ≤ 〈x – Tnx,x – x̃〉 + (
an + ‖x – x̃‖)an

for all x ∈ C and x̃ ∈ ⋂∞
n= F(Tn).

Proof Let x ∈ C and x̃ ∈ ⋂∞
n= F(Tn). Then

‖Tnx – Tnx̃‖ ≤ (‖x – x̃‖ + an
) = ‖x – x̃‖ + (

an + ‖x – x̃‖)an.
Since x̃ ∈ ⋂∞

n= F(Tn), we have

‖x – x̃‖ + (
an + ‖x – x̃‖)an

≥ ‖Tnx – x̃‖ = ∥∥(Tnx – x) + (x – x̃)
∥∥

= ‖Tnx – x‖ + ‖x – x̃‖ + 〈Tnx – x,x – x̃〉.

Therefore,

‖Tnx – x‖ ≤ 〈x – Tnx,x – x̃〉 + (
an + ‖x – x̃‖)an. �

Proposition . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T = {Tn}∞n= be a sequence of nearly nonexpansivemappings fromC into itself with sequence
{an}. Then

〈
(I – Tn)x – (I – Tn)y,x – y

〉 ≥ –an‖x – y‖ for all x, y ∈ C and n ∈ N.

Proof Let x, y ∈ C. Then

〈
(I – Tn)x – (I – Tn)y,x – y

〉
= ‖x – y‖ – 〈Tnx – Tny,x – y〉
≥ ‖x – y‖ – ‖Tnx – Tny‖‖x – y‖
≥ ‖x – y‖ – (‖x – y‖ + an

)‖x – y‖ = –an‖x – y‖. �

3 Main result
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : C → H be a λ-contraction, and let {Sn} be a sequence of nonexpansive mappings from
C into itself. Let S be a nonexpansive mapping from C into itself such that limn→∞ Snx = Sx
for all x ∈ C. Let T = {Tn}∞n= be a sequence of uniformly continuous nearly nonexpansive
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mappings fromC into itself with sequence {an} such that F(T ) �= ∅. Let T be amapping from
C into itself defined by Tx = limn→∞ Tnx for all x ∈ C. Suppose that F(T) =

⋂∞
n= F(Tn). For

arbitrary x ∈ C, consider the sequence {xn} generated by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = ( – βn)xn + βnSnxn,

xn+ = PC[αnf (xn) +
∑n

i=(αi– – αi)Tiyn]

(.)

for all n ∈ N, where α = , {αn} is a strictly decreasing sequence in (, ) and {βn} is a
sequence in (, ) satisfying the conditions:

(i) limn→∞ αn = ,
∑∞

n= αn =∞;
(ii)

∑∞
n=(αn– – αn) < ∞,

∑∞
n= |βn– – βn| <∞ and limn→∞ βn

αn
= τ ∈ (,∞);

(iii) limn→∞ ((αn––αn)+|βn–βn–|)
αnβn

= ;
(iv) there exists a constant N >  such that 

αn
| 
βn

– 
βn–

| ≤N ;
(v) limn→∞ γn

βn
= , where γn :=

∑n
i=(αi– – αi)ai, and either

∑∞
n= ‖Sn+ – Sn‖∞,B <∞

or limn→∞
‖Sn+–Sn‖∞,B

αn
=  for each B ∈ B(C).

Then the sequence {xn} converges strongly to a point x∗ ∈ ⋂∞
n= F(Tn), which is the unique

solution of the following variational inequality:

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥  for all x ∈

∞⋂
n=

F(Tn). (.)

Proof It was proved in [] that variational inequality problem (.) has the unique solu-
tion. Let p ∈ ⋂∞

n= F(Tn). We now break the proof into the following steps.
Step . {xn} is bounded.
From (.), we have

‖yn – p‖ = ∥∥( – βn)xn + βnSnxn – p
∥∥

≤ ( – βn)‖xn – p‖ + βn
(‖Snxn – Snp‖ + ‖Snp – p‖)

≤ ‖xn – p‖ + βn‖Snp – p‖.

It follows that

‖xn+ – p‖

=

∥∥∥∥∥PC

[
αnf (xn) +

n∑
i=

(αi– – αi)Tiyn

]
– PC(p)

∥∥∥∥∥
≤

∥∥∥∥∥αnf (xn) +
n∑
i=

(αi– – αi)Tiyn – p

∥∥∥∥∥
=

∥∥∥∥∥αn
(
f (xn) – p

)
+

n∑
i=

(αi– – αi)(Tiyn – p)

∥∥∥∥∥
≤ αn

(∥∥f (xn) – f (p)
∥∥ +

∥∥f (p) – p
∥∥)

+
n∑
i=

(αi– – αi)‖Tiyn – Tip‖

≤ αnλ‖xn – p‖ + αn
∥∥f (p) – p

∥∥ +
n∑
i=

(αi– – αi)
(‖yn – p‖ + ai

)
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≤ αnλ‖xn – p‖ + αn
∥∥f (p) – p

∥∥
+ ( – αn)

(‖xn – p‖ + βn‖Snp – p‖) + γn

≤ [
 – αn( – λ)

]‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + βn‖Snp – p‖ + γn.

Note that limn→∞ βn
αn

= τ ∈ (,∞) and limn→∞ γn
βn

= , so there exists a constantK >  such
that

αn‖f (p) – p‖ + βn‖Snp – p‖ + γn

αn
≤ K for all n ∈ N.

Thus, we have

‖xn+ – p‖ ≤ (
 – αn( – λ)

)‖xn – p‖ + αnK

≤max

{
‖xn – p‖, K

 – λ

}
for all n ∈N.

Hence {xn} is bounded. So, {f (xn)}, {yn}, {Tixn} and {Tiyn} are bounded.
Step . ‖xn+ – xn‖ →  as n→ ∞.
Set un := αnf (xn)+

∑n
i=(αi– –αi)Tiyn for all n ∈N. SetM := supn>{‖f (xn–)‖+‖Tnyn–‖+

‖Sn–xn–‖ + ‖xn–‖}. From (.) we have

‖xn+ – xn‖
=

∥∥PC(un) – PC(un–)
∥∥

≤ ‖un – un–‖

=

∥∥∥∥∥αn
(
f (xn) – f (xn–)

)
+ (αn – αn–)f (xn–)

+
n∑
i=

(αi– – αi)(Tiyn – Tiyn–) + (αn– – αn)Tnyn–

∥∥∥∥∥
≤ αn

∥∥f (xn) – f (xn–)
∥∥ +

n∑
i=

(αi– – αi)
(‖yn – yn–‖ + ai

)

+ (αn– – αn)
(∥∥f (xn–)∥∥ + ‖Tnyn–‖

)
≤ αnλ‖xn – xn–‖ +

n∑
i=

(αi– – αi)‖yn – yn–‖

+ (αn– – αn)
(∥∥f (xn–)∥∥ + ‖Tnyn–‖

)
+ γn

≤ αnλ‖xn – xn–‖ + ( – αn)‖yn – yn–‖
+ (αn– – αn)M + γn. (.)

Set B := {xn}. Now, from (.) we have

‖yn – yn–‖
=

∥∥(
( – βn)xn + βnSnxn

)
–

(
( – βn–)xn– + βn–Sn–xn–

)∥∥
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=
∥∥( – βn)(xn – xn–) + (βn– – βn)xn– + βn(Snxn – Snxn–)

+ βn(Snxn– – Sn–xn–) + (βn – βn–)Sn–xn–
∥∥

≤ ∥∥( – βn)(xn – xn–) + (βn– – βn)xn– + βn(Snxn – Snxn–)

+ (βn – βn–)Sn–xn–
∥∥ + βn‖Sn – Sn–‖∞,B

≤ ‖xn – xn–‖ + |βn – βn–|M + βn‖Sn – Sn–‖∞,B. (.)

Now, using (.) in (.), we obtain that

‖xn+ – xn‖
≤ ‖un – un–‖
≤ αnλ‖xn – xn–‖ + ( – αn)

[‖xn – xn–‖
+ |βn – βn–|M + βn‖Sn – Sn–‖∞,B

]
+ (αn– – αn)M + γn

≤ (
 – αn( – λ)

)‖xn – xn–‖ +M
[
(αn– – αn) + |βn – βn–|

]
+ ( – αn)βn‖Sn – Sn–‖∞,B + γn

≤ (
 – αn( – λ)

)‖xn – xn–‖ +M
[
(αn– – αn) + |βn – βn–|

]
+ βn‖Sn – Sn–‖∞,B + γn. (.)

Thus, by using conditions (i), (v),
∑∞

n=(αn– –αn) < ∞,
∑∞

n= |βn– –βn| < ∞ and applying
Lemma ., we conclude that

lim
n→∞‖xn+ – xn‖ = . (.)

Step . We claim limn→∞ ‖xn – Tixn‖ =  for all i ∈N.
Since Tixn ∈ C for all i ∈N and

∑n
i=(αi– – αi) + αn = , we get

n∑
i=

(αi– – αi)Tixn + αnz ∈ C for all z ∈ C.

Noticing xn+ = PC(un) and fixing z ∈ ⋂∞
n= F(Tn), from (.) we have

n∑
i=

(αi– – αi)(xn – Tixn)

= PC(un) + ( – αn)xn –

( n∑
i=

(αi– – αi)Tixn + αnz

)

+ αnz – xn+

= PC(un) – PC

( n∑
i=

(αi– – αi)Tixn + αnz

)

+ ( – αn)(xn – xn+) + αn(z – xn+).
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Hence,

n∑
i=

(αi– – αi)〈xn – Tixn,xn – p〉

=

〈
PC(un) – PC

( n∑
i=

(αi– – αi)Tixn + αnz

)
,xn – p

〉

+
〈
( – αn)(xn – xn+),xn – p

〉
+ αn〈z – xn+,xn – p〉

≤
∥∥∥∥∥un –

n∑
i=

(αi– – αi)Tixn – αnz

∥∥∥∥∥‖xn – p‖

+ ( – αn)‖xn – xn+‖‖xn – p‖ + αn‖z – xn+‖‖xn – p‖

=

∥∥∥∥∥αn
(
f (xn) – z

)
+

n∑
i=

(αi– – αi)(Tiyn – Tixn)

∥∥∥∥∥‖xn – p‖

+ ( – αn)‖xn – xn+‖‖xn – p‖ + αn‖z – xn+‖‖xn – p‖

≤ αn
∥∥f (xn) – z

∥∥‖xn – p‖ +
n∑
i=

(αi– – αi)
(‖yn – xn‖ + ai

)‖xn – p‖

+ ( – αn)‖xn – xn+‖‖xn – p‖ + αn‖z – xn+‖‖xn – p‖
≤ αn

∥∥f (xn) – z
∥∥‖xn – p‖ + ( – αn)‖yn – xn‖‖xn – p‖

+ ( – αn)‖xn – xn+‖‖xn – p‖
+ αn‖z – xn+‖‖xn – p‖ + γn‖xn – p‖

≤ αn
∥∥f (xn) – z

∥∥‖xn – p‖ + ( – αn)βn‖Snxn – xn‖‖xn – p‖
+ ( – αn)‖xn – xn+‖‖xn – p‖ + αn‖z – xn+‖‖xn – p‖ + γnR

≤ (αn + βn)M′ + ( – αn)‖xn – xn+‖R + γnR, (.)

where R is a positive constant such that ‖xn – p‖ ≤ R for all n ∈N and

M′ = sup
n∈N

{∥∥f (xn) – z
∥∥‖xn – p‖,‖Snxn – xn‖‖xn – p‖,‖z – xn+‖‖xn – p‖}.

Set ξn := 
 (an + ‖xn – p‖)an. From Proposition ., using (.), we obtain that




n∑
i=

(αi– – αi)‖xn – Tixn‖

≤
n∑
i=

(αi– – αi)〈xn – Tixn,xn – p〉 + ξn

≤ (αn + βn)M′ + ( – αn)‖xn – xn+‖R + γnR.

Using (.), condition (i), limn→∞ γn
βn

=  and limn→∞ βn
αn

= τ ∈ (,∞), we have

lim
n→∞

n∑
i=

(αi– – αi)‖xn – Tixn‖ = .
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Since (αi– – αi)‖xn – Tixn‖ ≤ ∑n
i=(αi– – αi)‖xn – Tixn‖ for all i ∈ N and {αn} is strictly

decreasing, we have

lim
n→∞‖xn – Tixn‖ =  for all i ∈N.

Step . ‖yn – Tiyn‖ →  as n→ ∞ for all i ∈N.
Noticing that limn→∞ βn

αn
= τ ∈ (,∞) and using condition (i), we have βn →  as n → ∞.

Therefore, we obtain that

‖yn – xn‖ = βn‖Snxn – xn‖ →  as n→ ∞. (.)

So that for all i ∈N, we have

‖yn – Tixn‖ ≤ ‖yn – xn‖ + ‖xn – Tixn‖ →  as n→ ∞. (.)

Since each Ti is uniformly continuous, from (.) and (.), we have

‖yn – Tiyn‖ ≤ ‖yn – Tixn‖ + ‖Tixn – Tiyn‖ →  as n→ ∞

for all i ∈N.
Step . limn→∞ ‖xn+–xn‖

βn
=  and limn→∞ ‖un–un–‖

βn
= ‖un–un–‖

αn
= .

From (.) we obtain that

‖xn+ – xn‖
βn

≤ ‖un – un–‖
βn

≤ (
 – αn( – λ)

)‖xn – xn–‖
βn

+M
(
(αn– – αn)

βn
+

|βn – βn–|
βn

)
+ ‖Sn – Sn–‖∞,B +

γn

βn

=
(
 – αn( – λ)

)‖xn – xn–‖
βn–

+
(
 – αn( – λ)

)‖xn – xn–‖
(


βn

–


βn–

)

+M
(
(αn– – αn)

βn
+

|βn – βn–|
βn

)
+ ‖Sn – Sn–‖∞,B +

γn

βn
. (.)

We observe that

(
 – αn( – λ)

)( 
βn

–


βn–

)
≤ αn


αn

∣∣∣∣ 
βn

–


βn–

∣∣∣∣ ≤ αnN .

Set

μn = αn( – λ),

ϕn = αnN‖xn – xn–‖ +M
(
(αn– – αn)

βn
+

|βn – βn–|
βn

)
,

νn = ‖Sn – Sn–‖∞,B +
γn

βn
.

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Sahu et al. Fixed Point Theory and Applications #CITATION Page 11 of 16
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

From (.) we obtain that

‖xn+ – xn‖
βn

≤ ‖un – un–‖
βn

≤ (
 – αn( – λ)

)‖xn – xn–‖
βn–

+ αnN‖xn – xn–‖

+M
(
(αn– – αn)

βn
+

|βn – βn–|
βn

)
+ ‖Sn – Sn–‖∞,B +

γn

βn

≤ (
 – αn( – λ)

)‖un– – un–‖
βn–

+ αnN‖xn – xn–‖

+M
(
(αn– – αn)

βn
+

|βn – βn–|
βn

)
+ ‖Sn – Sn–‖∞,B +

γn

βn

≤ ( –μn)
‖un– – un–‖

βn–
+ ϕn + νn.

Using conditions (i), (iii), (v) and applying Lemma ., we have

lim
n→∞

‖xn+ – xn‖
βn

=  and lim
n→∞

‖un – un–‖
βn

=
‖un – un–‖

αn
= .

Step . Set vn := xn–xn+
(–αn)βn and un := αnf (xn) +

∑n
i=(αi– – αi)Tiyn for all n ∈ N. Then, for

any z ∈ ⋂∞
n= F(Tn), we can calculate 〈vn,xn – z〉.

From (.) we have

xn+ = PC(un) – un + αnf (xn) +
n∑
i=

(αi– – αi)(Tiyn – yn) + ( – αn)yn,

which gives that

xn – xn+

= ( – αn)xn + αnxn

–

(
PC(un) – un + αnf (xn) +

n∑
i=

(αi– – αi)(Tiyn – yn) + ( – αn)yn

)

= ( – αn)βn(xn – Snxn) +
(
un – PC(un)

)
+

n∑
i=

(αi– – αi)(yn – Tiyn) + αn
(
xn – f (xn)

)
.

Then we conclude that

xn – xn+
( – αn)βn

= xn – Snxn +


( – αn)βn

(
un – PC(un)

)

+


( – αn)βn

n∑
i=

(αi– – αi)(yn – Tiyn) +
αn

( – αn)βn

(
xn – f (xn)

)
.
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Noticing that xn+ = PC(un). For any z ∈ ⋂∞
n= F(Tn), we have

〈vn,xn – z〉

=


( – αn)βn

〈
un – PC(un),PC(un–) – z

〉
+ 〈xn – Snxn,xn – z〉

+


( – αn)βn

n∑
i=

(αi– – αi)〈yn – Tiyn,xn – z〉

+
αn

( – αn)βn

〈
(I – f )xn,xn – z

〉
. (.)

By using Lemma ., we obtain that

〈xn – Snxn,xn – z〉
=

〈
(I – Sn)xn – (I – Sn)z,xn – z

〉
+

〈
(I – Sn)z,xn – z

〉
≥ 〈

(I – Sn)z,xn – z
〉
, (.)〈

(I – f )xn,xn – z
〉

=
〈
(I – f )xn – (I – f )z,xn – z

〉
+

〈
(I – f )z,xn – z

〉
≥ ( – λ)‖xn – z‖ + 〈

(I – f )z,xn – z
〉
, (.)

〈yn – Tiyn,xn – z〉
=

〈
(I – Ti)yn – (I – Ti)z,xn – yn

〉
+

〈
(I – Ti)yn – (I – Ti)z, yn – z

〉
≥ 〈

(I – Ti)yn – (I – Ti)z,xn – yn
〉
– ai‖yn – z‖

= βn
〈
(I – Ti)yn,xn – Snxn

〉
– ai‖yn – z‖ for all i ∈N. (.)

Also, from Lemma . we get that

〈
un – PC(un),PC(un–) – z

〉
=

〈
un – PC(un),PC(un–) – PC(un)

〉
+

〈
un – PC(un),PC(un) – z

〉
≥ 〈

un – PC(un),PC(un–) – PC(un)
〉
. (.)

Substituting (.), (.), (.) and (.) into (.), we have

〈vn,xn – z〉

≥ 
( – αn)βn

〈
un – PC(un),PC(un–) – PC(un)

〉
+

〈
(I – Sn)z,xn – z

〉

+


( – αn)

n∑
i=

(αi– – αi)
[〈
(I – Ti)yn,xn – Snxn

〉
– ai‖yn – z‖]

+
αn

( – αn)βn

〈
(I – f )z,xn – z

〉
+

αn( – λ)
( – αn)βn

‖xn – z‖. (.)

Step . xn → x̃, where x̃ is a strong cluster point of the sequence {xn}.

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Sahu et al. Fixed Point Theory and Applications #CITATION Page 13 of 16
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

From (.) we observe that

‖xn – z‖ ≤ ( – αn)βn

αn( – λ)
[〈vn,xn – z〉 – 〈

(I – Sn)z,xn – z
〉]

–


 – λ

〈
(I – f )z,xn – z

〉

–
βn

αn( – λ)

n∑
i=

(αi– – αi)
[〈
(I – Ti)yn,xn – Snxn

〉
– ai‖yn – z‖]

+
‖un – un–‖
αn( – λ)

∥∥un – PC(un)
∥∥.

Noticing that vn = xn–xn+
(–αn)βn → , ‖un–un–‖

αn
→ , and for all i ∈ N, (I – Ti)yn →  as n → ∞.

It is easy to see that a weak cluster point of {xn} is also a strong cluster point. Note that the
sequence {xn} is bounded, then there exists a subsequence {xnk } of {xn} which converges
to a point x∗ ∈ C. We also have, for all i ∈N, (I –Ti)xn →  as n→ ∞. By using condition
(G), we get that x∗ ∈ F(T). Thus, for all z ∈ ⋂∞

n= F(Tn), we obtain that

〈
(I – f )xnk ,xnk – z

〉
≤ ( – αnk )βnk

αnk
〈vnk ,xnk – z〉 – 

αnk

∥∥unk – PC(unk )
∥∥‖unk– – unk‖

–
( – αnk )βnk

αnk

〈
(I – Snk )z,xnk – z

〉

–
βnk
αnk

nk∑
i=

(αi– – αi)
〈
(I – Ti)ynk ,xnk – Snk xnk

〉
+

βnkγnk
αnk

‖ynk – z‖.

Now, letting k → ∞, we have

〈
(I – f )x∗,x∗ – z

〉 ≤ –τ
〈
(I – S)z,x∗ – z

〉
for all z ∈

∞⋂
n=

F(Tn).

Now, since variational inequality problem (.) has the unique solution, then we get that
ωw(xn) = {x̃}. Note that every weak cluster point of the sequence {xn} is also a strong cluster
point. Then we have limn→∞ xn = x̃. �

Recently, Marino et al. [] used a different approach to obtain the convergence of a
more general iterative method that involves an equilibrium problem.We now present the
result of Gu et al. [, Theorem .] as a corollary.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : C → H be a λ-contraction. Let S : C → C be a nonexpansive mapping, and let T =
{Tn}∞n= be a countable family of nonexpansive mappings from C into itself such that F(T ) =⋂∞

n= F(Tn) �= ∅. For arbitrary x ∈ C, consider the sequence {xn} generated by the following
iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnSxn + ( – βn)xn,

xn+ = PC[αnf (xn) +
∑n

i=(αi– – αi)Tiyn]
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for all n ∈ N, where α = , {αn} is a strictly decreasing sequence in (, ) and {βn} is a
sequence in (, ) satisfying conditions (i)-(iv) of Theorem .. Then the sequence {xn} con-
verges strongly to a point x∗ ∈ ⋂∞

n= F(Tn), which is the unique solution of the following
variational inequality:

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥  for all x ∈

∞⋂
n=

F(Tn).

Again, we present the result of Yao et al. [, Theorem .] as a corollary.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : C →H be a λ-contraction.Let S : C → C be a nonexpansivemapping, and let T : C → C
be a nonexpansive mapping such that F(T) �= ∅. For arbitrary x ∈ C, consider the sequence
{xn} generated by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = ( – βn)xn + βnSxn,

xn+ = PC[αnf (xn) + ( – αn)Tyn]

for all n ∈N, where {αn} and {βn} are two sequences in (, ) satisfying conditions (i)-(iv) of
Theorem .. Then the sequence {xn} converges strongly to a point x∗ ∈ F(T), which is the
unique solution of the following variational inequality:

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥  for all x ∈ F(T).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : C → H be a λ-contraction, and let {Sn} be a sequence of nonexpansive mappings from
C into itself. Let S be a nonexpansive mapping from C into itself such that limn→∞ Snx = Sx
for all x ∈ C. Let t, t, t, . . . , tN >  such that

∑N
i= ti = . Let T,T,T, . . . ,TN : C → C

be nonexpansive mappings such that
⋂N

i= F(Ti) �= ∅, and assume that T =
∑N

i= tiTi. For
arbitrary x ∈ C, consider the sequence {xn} generated by the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnSnxn + ( – βn)xn,

xn+ = PC[αnf (xn) + ( – αn)
∑N

i= tiTiyn]

for all n ∈N, where {αn} and {βn} are two sequences in (, ) satisfying conditions (i)-(iv) of
Theorem .. Then the sequence {xn} converges strongly to a point x∗ ∈ ⋂N

i= F(Ti), which is
the unique solution of the following variational inequality:

〈

τ
(I – f )x∗ + (I – S)x∗,x – x∗

〉
≥  for all x ∈

N⋂
i=

F(Ti).

Proof The proof follows from Lemma . and Corollary .. �
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4 Numerical example
We present an example to show the effectiveness and convergence of the sequence gener-
ated by the considered iterative scheme.

Example . Let H = R and C = [, ]. Let T be a self-mapping defined by Tx =  – x
for all x ∈ C. Let f : C → H be a contraction mapping defined by f (x) = 

x –

 for all

x ∈ C, and let {Sn} be a sequence of nonexpansive mappings from C into itself defined by
Snx = x + 

n such that Sx = limn→∞ Snx for all x ∈ C, where S is a nonexpansive mapping
defined by Sx = x for all x ∈ C. Define sequences {αn} and {βn} in (, ) by αn = βn = 

(n+)/ .
Without loss of generality, we may assume that an = 

n/ for all n ∈ N. For each n ∈ N,
define Tn : C → C by

Tnx =

⎧⎨
⎩ – x if x ∈ [, ),

an if x = .

It was shown in [] that T = {Tn} is a sequence of nearly nonexpansive mappings from C
into itself such that F(T ) = { 

 } and Tx = limn→∞ Tnx for all x ∈ C, where T is a nonexpan-
sive mapping.
One can observe that all the assumptions of Theorem . are satisfied, and the sequence

{xn} generated by (.) converges to a unique solution 
 of variational inequality (.) over

F(T ).
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