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Abstract
This paper provides a new hybrid-type shrinking projection method for strong
convergence results in a Hilbert space. The paper continues - by utilizing the
proposed hybrid algorithm - with a strong convergence towards an approximate
common element of the set of solutions of a finite family of generalized equilibrium
problems and the set of common fixed points of two finite families of k-strict
pseudo-contractions in a Hilbert space. Comparatively, our results improve and
extend various results announced in the current literature.
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1 Introduction
Let H be a real Hilbert space equipped with the inner product 〈·, ·〉 and the induced norm
‖ · ‖ and let C be a nonempty closed convex subset of H . A map T : C → C is said to be
(i) Lipschitzian if ‖Tx–Ty‖ ≤ L‖x– y‖ for some L >  and for all x, y ∈ C; (ii) nonexpansive
if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C; (iii) k-strict pseudo-contraction if there exists a
constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥ for all x, y ∈ C.

Denote by F(T) the set of all fixed points of T .
In , Browder and Petryshyn [] introduced the class of strict pseudo-contractions

as an important generalization of the class of nonexpansive maps. Clearly, T is nonexpan-
sive if and only if T is a -strict pseudo-contraction. Moreover, T is said to be pseudo-
contraction if k =  and a strong pseudo-contraction if there exists a positive constant
λ ∈ (, ) such that T –λI is a pseudo-contraction. Therefore, the class of k-strict pseudo-
contractions falls into the one between the classes of nonexpansive maps and pseudo-
contractions. We further remark that the class of strong pseudo-contractions is indepen-
dent of the class of k-strict pseudo-contractions. IfT is a k-strict pseudo-contraction, then
T satisfies the Lipschitz condition

‖Tx – Ty‖ ≤  + k
 – k

‖x – y‖ for all x, y ∈ C.
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Recent developments in fixed point theory reflect that an iterative construction of fixed
points of nonlinear maps is an active area of research. Note that the class of k-strict
pseudo-contractions is prominent among the classes of nonlinear maps in the current
literature. Although strict pseudo-contractions have more powerful applications than
nonexpansive maps for solving inverse problems, iterative algorithms for strict pseudo-
contractions are far less developed than those for nonexpansive maps.
In fixed point theory, various iterative schemas for computing approximate fixed points

of nonlinear maps have been proposed and analyzed. Such iterative schemas can be com-
pared w.r.t. their efficiency and convergence properties. In many situations, strong con-
vergence of an iterative algorithm of a nonlinear map is much more desirable than weak
convergence. Obviously, a trivial choice for approximation is the classical Picard algorithm
(i.e., xn+ = Tn(x)). On the other hand, if we takeX =R,C := [, ],T(x) := –x and x := ,
then the Picard algorithm alternates between  and  and does not converge to the fixed
point 

 . The classical Mann algorithm, which prevails the Picard algorithm, exhibits weak
convergence even in the setting of a Hilbert space. Moreover, Chidume andMutangadura
[] constructed an example for a Lipschitz pseudo-contraction with a unique fixed point
for which the Mann algorithm fails to converge. These facts indicate that the iterative
schemas should be modified for the desirable strong convergence properties.
The hybrid projection algorithm in mathematical programming was introduced by

Haugazeau [] in . Later, many researchers studied the hybrid projectionmethod and
its various modifications for strong convergence results. In , Solodov and Svaiter []
established a strong convergence result for finding zeros of maximal monotone operators.
They proposed and analyzed the following algorithm:

vk ∈ Ayk , vk +μk(yk – xk) = εk ;

‖εk‖ ≤ σ max
{‖vk‖,μk‖yk – xk‖

}
;

Hk =
{
z ∈H : 〈z – yk , vk〉 ≤ 

}
;

Wk =
{
z ∈H : 〈xk – z,x – xk〉 ≥ 

}
;

xk+ = PHk∩Wkx.

(.)

In fact, algorithm (.) enforces strong convergence by combining the classical proximal
point algorithm with simple projection steps onto intersection of two half-spaces Hk and
Wk containing the solution set. Inspired by the seminal work of Solodov and Svaiter [],
Nakajo and Takahashi [] proposed the following hybrid method for nonexpansive maps
in Hilbert spaces:

x ∈ C chosen arbitrarily,

yk = αkxk + ( – αk)Txk ,

Ck =
{
z ∈ C : ‖yk – z‖ ≤ ‖xk – z‖},

Qk =
{
z ∈ C : 〈xn – z,x – xn〉 ≥ 

}
,

xk+ = PCk∩Qkx.

(.)

They showed that algorithm (.) converges strongly to PF(T)x under some appropriate
conditions. Moreover, algorithm (.) is also known as the CQ-method for the Mann al-
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gorithm because, at each step, theMann algorithm is used to construct the sets Ck andQk

which are in turn used to construct the next iterate of xk+ and hence the name.
In , Takahashi et al. [] introduced another type of the hybrid method which guar-

antees strong convergence by the shrinking effect of a sequence of closed convex sets
{Ck+}. More precisely, their algorithm reads as follows:

x ∈ C chosen arbitrarily where C = C,

yk = αkxk + ( – αk)Txk ,

Ck+ =
{
z ∈ Ck : ‖z – yk‖ ≤ ‖z – xk‖

}
,

xk+ = PCk+x, k ≥ .

(.)

Very recently, Dong et al. [] proposed a shrinking projectionmethod similar to (.) for
nonexpansive maps in a Hilbert space setting. They, in fact, established a strong conver-
gence result by the shrinking effect of one of the half-spaces as defined in (.), namelyQk .
For i = , , , . . . ,N , let Ai : C →H be a finite family of nonlinear maps and fi : C×C →

R (the set of reals) be a finite family of bifunctions. A generalized equilibrium problem is
to find the set

GEP(fi) =
{
x ∈ C : fi(x, y) + 〈Aix, y – x〉 ≥ 

}
for all y ∈ C. (.)

Note that if Ai ≡  and fi(x, y) = f (x, y) for all i ≥ , then the problem (.) reduces to
the classical equilibrium problem EP(f ). That is, to find x ∈ C such that f (x, y)≥ . More-
over, if fi(x, y) ≡  and Ai = A for all i ≥ , then the problem (.) reduces to the classical
variational inequality problem VI(C,A). That is, to find x ∈ C such that 〈Ax, y – x〉 ≥ .
Equilibrium problems provide a unified approach to address a variety of problems aris-

ing in various disciplines of science. The problem (.) is very general in the sense that
it includes - as special cases - optimization problem, minimax problem, variational in-
equality problem, Nash equilibrium problem in noncooperative games and others; see,
for instance, [–]. Combettes and Hirstoaga [] introduced an iterative method to find
an approximate solution of EP(f ). Since then, numerous algorithms have been analyzed
to find a common element of the set of solutions of EP(f ) or GEP(f ) and the set of fixed
points of a nonlinear map; see, for example, [–] and the references therein.
In , Ceng et al. [] introduced an implicit-type algorithm for finding a common el-

ement of the set of solutions of an equilibriumproblem and the set of fixed points of a strict
pseudo-contraction in a real Hilbert space. Recently, Kim et al. [] and Kangtunyakarn
[] approximated a common element of the set of solutions of two generalized equilib-
rium problems and the set of fixed points of a strict pseudo-contraction using the shrink-
ing projection algorithm as defined in (.). Quite recently, Cholamjiak and Suantai []
established a strong convergence result regarding a system of generalized equilibrium
problems and a countable family of strict pseudo-contractions in a real Hilbert space.
Inspired and motivated by the work of Nakajo and Takahashi [], Takahashi et al. [],

Dong et al. [], Ceng et al. [] and Cholamjiak and Suantai [], we propose a hybrid
method based on the shrinking effect of the two half-spaces, namely Cn and Qn, of the
underlying Hilbert spaceH . The proposed algorithm approximates a common element of
the set of solutions of a finite family of generalized equilibrium problems and the set of
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common fixed points of two finite families of k-strict pseudo-contractions. Our results
refine and improve various results announced in the current literature.

2 Preliminaries
Throughout the paper, we write xn → x (resp. xn ⇀ x) to indicate strong convergence
(resp. weak convergence). Let H be a real Hilbert space, a map PC :H → C defined by

‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C

is known as a metric projection or a nearest point projection of H onto C. Moreover, PC

is characterized as nonexpansive in Hilbert spaces. We know that for x ∈ H and z ∈ C,
z = PCx is equivalent to 〈x – z, z – u〉 ≥  for all u ∈ C.
Let A : C →H be a δ-inverse-strongly monotone map, if there exists δ >  such that

〈x – y,Ax –Ay〉 ≥ δ‖Ax –Ay‖ for all x, y ∈ C.

IfA is a δ-inverse-stronglymonotonemap ofC ontoH , thenA is ( 
δ
)-Lipschitz continuous.

Moreover, for x, y ∈ C and r > , we have

∥∥(I – rA)x – (I – rA)y
∥∥ =

∥∥x – y – r(Ax –Ay)
∥∥

= ‖x – y‖ – r〈x – y,Ax –Ay〉 + r‖Ax –Ay‖

≤ ‖x – y‖ + r(r – δ)‖Ax –Ay‖. (.)

If r ≤ δ, then I – rA is a nonexpansive map from C onto H .
The following crucial results for a k-strict pseudo-contraction can be found in [,

Proposition .].

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . If T : C →
H is a k-strict pseudo-contraction, then the fixed point set F(T) is closed and convex so that
the projection PF(T) is well defined.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H and T :
C → C be a k-strict pseudo-contraction. Then (I – T) is demiclosed, that is, if {xn} is a
sequence in C with xn ⇀ x and xn – Txn → , then x ∈ F(T).

The following lemma is well known in the context of a real Hilbert space.

Lemma . Let H be a real Hilbert space, then the following identity holds:

∥∥αx + ( – α)y
∥∥ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the fol-
lowing conditions (cf. [] and []):
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x) ≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C, lim supt↓ f (tz + ( – t)x, y) ≤ f (x, y);
(A) f (x, ·) is convex and lower semicontinuous for all x ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/30
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A central result in the theory of equilibrium problems - for an approximate solution of
EP(f ) - is the following result due to [].

Lemma. Let C be a closed convex subset of a real Hilbert space H , and let f : C×C →R

be a bifunction satisfying (A)-(A). For r >  and x ∈H , there exists z ∈ C such that

f (z, y) +

r
〈y – z, z – x〉 ≥  for all y ∈ C.

Moreover, define a map Vr :H → C by

Vr(x) =
{
z ∈ C : f (z, y) +


r
〈y – z, z – x〉 ≥  for all y ∈ C

}

for all x ∈ H . Then the following hold:
() EP(f ) is closed and convex;
() Vr is single-valued;
() Vr is a firmly nonexpansive-type map, i.e.,

‖Vrx –Vry‖ ≤ 〈Vrx –Vry,x – y〉 for all x, y ∈H ;

() F(Vr) = EP(f ).

3 Main result
Let H be a real Hilbert space and C be its nonempty closed convex subset. Let Ti(modN),
Si(modN) : C → C be two finite families of k-strict pseudo-contractions such that k =
max{ki :  ≤ i ≤ N}. Let fi(modN) : C × C → R be a finite family of bifunctions and
Ai(modN) : C → H be a finite family of δ-inverse-strongly monotone maps such that
δ =max{δi :  ≤ i≤ N}.
Throughout this section, we assume that the modN function takes values in the in-

dexing set I = {, , , . . . ,N} and the set of common fixed points of two finite families
of k-strict pseudo-contractions {Ti}Ni= and {Si}Ni= is nonempty, that is, F = (

⋂N
i= F(Ti)) ∩

(
⋂N

i= F(Si)) �= ∅.

Algorithm Our hybrid algorithm reads as follows:

x ∈ C =Q = C,

yn,i = βn,izn,i + ( – βn,i)Sizn,i,

zn,i = αn,iun,i + ( – αn,i)Tiun,i,

fi(un,i, y) + 〈Aixn, y – un,i〉 + 
rn,i

〈y – un,i,un,i – xn〉 ≥ , ∀y ∈ C, (.)

Cn+ =
{
z ∈ Cn : sup

i≥
‖yn,i – z‖ ≤ ‖xn – z‖

}
,

Qn+ =
{
z ∈ Qn : 〈z – xn,x – xn〉 ≥ 

}
,

xn+ = PCn+∩Qn+x, n≥ .
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It is worthmentioning that at each iteration, algorithm (.) computes a projection onto
intersection of two half-spaces. Since these half-spaces are closed and convex, so one can
follow Dykstra’s algorithm [] for the computation of such a projection.
The main result of this section is as follows.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
let Ti(modN),Si(modN) : C → C be two finite families of k-strict pseudo-contractions.
Let fi(modN) : C × C → R be a finite family of bifunctions satisfying (A)-(A) and let
Ai(modN) : C → H be a finite family of δ-inverse-strongly monotone maps. Let {rn,i} ⊂
(,∞) and {αn,i}, {βn,i} be two control sequences such that
(C)  ≤ k < a ≤ αn,i,βn,i ≤ b < ;
(C)  < r < rn,i < s < δ for all i≥ .
Assume that F := [

⋂N
i= F(Ti)] ∩ [

⋂N
i= F(Si)] ∩ [

⋂N
i=GEP(fi,Ai)] �= ∅, then the sequence

{xn} generated by (.) converges strongly to x = PFx, where PF is the metric projection of
H onto F .

Proof It follows from Lemma . that un,i can be written as un,i = Vrn,i (xn – rn,iAixn) for all
n≥ . Moreover, it follows from the nonexpansiveness of I – rn,iAi that

‖un,i – p‖ ≤ ‖xn – p‖,

where p =
⋂N

i=Tip =
⋂N

i= Sip =
⋂N

i=Vrn,i (p – rn,iAip).
We proceed to show that algorithm (.) is well defined. It is obvious from the definitions

of respective sets that Cn+ is closed and Qn+ is closed and convex. Now, we show that
Cn+ is convex. Since C = C is convex, we assume that Ck is convex for some k ≥ . For
any z ∈ Ck , the inequality ‖yn,i – z‖ ≤ ‖xn – z‖ is equivalent to

‖yn,i‖ – ‖xn‖ – 〈z, yn,i – xn, 〉 ≥ .

Hence, Ck+ is convex, and consequently Cn+ is convex for each n≥ .
Next, we show by induction that F ⊂ Cn+ ∩ Qn+ for all n ≥ . Obviously, F ⊂ C ∩

Q = C. Let p ∈F . From (.), (.) and Lemma ., we have the following estimate:

‖zn,i – p‖ =
∥∥αn,i(un,i – p) + ( – αn,i)(Tiun,i – p)

∥∥

= αn,i‖un,i – p‖ + ( – αn,i)‖Tiun,i – p‖

– αn,i( – αn,i)‖un,i – Tiun,i‖

≤ αn,i‖un,i – p‖ + ( – αn,i)
(‖un,i – p‖ + k‖un,i – Tiun,i‖

)
– αn,i( – αn,i)‖un,i – Tiun,i‖

= ‖un,i – p‖ – ( – αn,i)(αn,i – k)‖un,i – Tiun,i‖. (.)

Since αn,i – k >  (by (C)), therefore the above estimate (.) yields

‖zn,i – p‖ ≤ ‖un,i – p‖ ≤ ‖xn – p‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/30


Khan and Fukhar-ud-din Fixed Point Theory and Applications 2013, 2013:30 Page 7 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/30

Moreover,

‖yn,i – p‖ =
∥∥βn,i(zn,i – p) + ( – βn,i)(Sizn,i – p)

∥∥

= βn,i‖zn,i – p‖ + ( – βn,i)‖Sizn,i – p‖

– βn,i( – βn,i)‖zn,i – Sizn,i‖

≤ βn,i‖zn,i – p‖ + ( – βn,i)
(‖zn,i – p‖ + k‖zn,i – Sizn,i‖

)
– βn,i( – βn,i)‖zn,i – Sizn,i‖

≤ ‖zn,i – p‖ – ( – βn,i)(βn,i – k)‖zn,i – Sizn,i‖. (.)

Reasoning as above and utilizing (.), the estimate (.) implies that

‖yn,i – p‖ ≤ ‖xn – p‖. (.)

This implies that p ∈ Cn+ for all n ≥ . It suffices to show that p ∈ Qn+ for all n ≥ . We
prove this by induction. Note that F ⊂ Q = C is obvious. Assume that F ⊂ Qk also F ⊂
Ck ∩Qk for some k ≥ . This implies xk is a projection of x ontoCk ∩Qk , and consequently
we have

〈xk – z,x – xk〉 ≥  for all z ∈ Ck ∩Qk .

Since F ⊂ Ck ∩Qk , we have

〈xk – p,x – xk〉 ≥  for all p ∈F .

Hence, p ∈Qk+, and consequentlyF ⊂ Cn+∩Qn+ for all n≥ . SinceF is now closed and
convex, so it follows from Lemma . that PF is well defined. Note that xn+ = PCn+∩Qn+x,
therefore ‖xn+ – x‖ ≤ ‖p – x‖ for all p ∈F ⊂ Cn+ ∩Qn+. In particular, we have ‖xn+ –
x‖ ≤ ‖PFx – x‖. This implies that {xn} is bounded. On the other hand, xn = PCn∩Qnx
and xn+ ∈ Cn+ ∩Qn+ ⊂Qn+, we have

‖xn – x‖ ≤ ‖xn+ – x‖.

That is, the sequence {‖xn – x‖} is nondecreasing. This implies limn→∞ ‖xn – x‖ exists.
Note that

‖xn+ – xn‖ = ‖xn+ – x + x – xn‖

= ‖xn+ – x‖ + ‖xn – x‖ – 〈xn – x,xn+ – x〉
= ‖xn+ – x‖ + ‖xn – x‖ – 〈xn – x,xn+ – xn + xn – x〉
= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn – x,xn+ – xn〉
≤ ‖xn+ – x‖ – ‖xn – x‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/30
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Taking lim sup on both sides of the above estimate, we have lim supn→∞ ‖xn+ – xn‖ = .
That is,

lim
n→∞‖xn+ – xn‖ = . (.)

Since xn+ ∈ Cn+, we have ‖yn,i – xn+‖ ≤ ‖xn – xn+‖. This implies

lim
n→∞‖yn,i – xn+‖ = . (.)

Moreover, it follows from (.), (.) and the following inequality:

‖yn,i – xn‖ ≤ ‖yn,i – xn+‖ + ‖xn+ – xn‖

that

lim
n→∞‖yn,i – xn‖ = . (.)

Note that

‖un,i – p‖ =
∥∥Vrn,i (I – rn,iAi)xn –Vrn,i (I – rn,iAi)p

∥∥

=
∥∥(I – rn,iAi)xn – (I – rn,iAi)p

∥∥

=
∥∥xn – p – rn,i(Aixn –Aip)

∥∥

= ‖xn – p‖ – rn,i〈Aixn –Aip,xn – p〉 + rn,i‖Aixn –Aip‖

≤ ‖xn – p‖ + rn,i(rn,i – δ)‖Aixn –Aip‖. (.)

Since ‖yn,i – p‖ ≤ ‖zn,i – p‖ ≤ ‖un,i – p‖, therefore utilizing (.), we get

‖yn,i – p‖ ≤ ‖xn – p‖ – rn,i(δ – rn,i)‖Aixn –Aip‖.

Re-arranging the terms in the above estimate and utilizing (C), we have

r(δ – s)‖Aixn –Aip‖ ≤ ‖xn – p‖ – ‖yn,i – p‖ ≤ (‖xn – p‖ + ‖yn,i – p‖)‖xn – yn,i‖.

Hence, (.) implies that

lim
n→∞‖Aixn –Aip‖ =  for all i≥ . (.)

Since k < a ≤ βn,i ≤ b < , then the following variant of the estimate (.) implies that

( – b)(a – k)‖zn,i – Sizn,i‖ ≤ ‖xn – p‖ – ‖yn,i – p‖

≤ (‖xn – p‖ + ‖yn,i – p‖)‖xn – yn,i‖.

Again, utilizing (.), we have

lim
n→∞‖zn,i – Sizn,i‖ =  for all i≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/30
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Observe that ‖yn,i – zn,i‖ = (–βn,i)‖Sizn,i – zn,i‖. It follows from the fact that k < a≤ βn,i ≤
b <  and (.) that

lim
n→∞‖yn,i – zn,i‖ =  for all i≥ . (.)

Moreover, ‖xn – zn,i‖ ≤ ‖xn – yn,i‖+‖yn,i – zn,i‖. Letting n→ ∞ on both sides and utilizing
(.) and (.), we have

lim
n→∞‖xn – zn,i‖ =  for all i ≥ . (.)

Reasoning as above, that is, k < a ≤ αn,i ≤ b < , we consider the following variant of the
estimate (.):

( – b)(a – k)‖un,i – Tiun,i‖ ≤ ‖xn – p‖ – ‖zn,i – p‖

≤ (‖xn – p‖ + ‖zn,i – p‖)‖xn – zn,i‖.

Hence, we conclude from the above estimate and (.) that

lim
n→∞‖un,i – Tiun,i‖ =  for all i≥ . (.)

On the other hand, ‖zn,i – un,i‖ = ( – αn,i)‖Tiun,i – un,i‖. Making use of the fact that k <
a ≤ αn,i ≤ b <  and (.), we get

lim
n→∞‖zn,i – un,i‖ =  for all i≥ . (.)

Moreover, we conclude from the estimates (.) and (.) that

lim
n→∞‖yn,i – un,i‖ =  for all i≥ . (.)

As a direct consequence of the estimates (.) and (.), we have

lim
n→∞‖xn – un,i‖ =  for all i≥ . (.)

Next, we show that ω(xn) ⊂ F , where ω(xn) is the set of all weak ω-limit of {xn}. Since
{xn} is bounded, therefore ω(xn) �= ∅. Let q ∈ ω(xn), there exists a subsequence {xnj} of {xn}
such that xnj ⇀ q. It follows from the estimate (.) that unj ,i ⇀ q. We first show that
q ∈ GEP(f,A), where f = fnj for some j ≥ . From unj ,i = Vrnj ,i

(I – rnj ,iAi)xn, for all n ≥ ,
we have

f(unj ,i, y) + 〈Axnj , y – unj ,i〉 +

rnj ,i

〈y – unj ,i,unj ,i – xnj〉 ≥  for all y ∈ C.

From (A), we have

〈Axnj , y – unj ,i〉 +

rnj ,i

〈y – unj ,i,unj ,i – xnj〉 ≥ f(y,unj ,i) for all y ∈ C. (.)
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Let yt = ty + ( – t)q for  < t <  and y ∈ C. Since q ∈ C, this implies that yt ∈ C. It follows
from the estimate (.) that

〈yt – unj ,i,Ayt〉 ≥ 〈yt – unj ,i,Ayt〉 – 〈Axnj , yt – unj ,i〉

–
〈
yt – unj ,i,

unj ,i – xnj
rnj ,i

〉
+ f(yt ,unj ,i)

= 〈yt – unj ,i,Ayt –Aunj ,i〉 + 〈yt – unj ,i,Aunj ,i –Axnj〉

–
〈
yt – unj ,i,

unj ,i – xnj
rnj ,i

〉
+ f(yt ,unj ,i). (.)

Since limn→∞ ‖xnj –unj ,i‖ = , therefore limn→∞ ‖Axnj –Aunj ,i‖ = . Moreover, it follows
from the monotonicity of A that 〈yt – unj ,i,Ayt –Aunj ,i〉 ≥ . Hence, (A) implies that

〈yt – q,Ayt〉 ≥ f(yt ,q). (.)

Using (.), (A) and (A), the following estimate:

 = f(yt , yt) ≤ tf(yt , y) + ( – t)f(yt ,q)

≤ tf(yt , y) + ( – t)〈yt – q,Ayt〉
= tf(yt , y) + ( – t)t〈y – q,Ayt〉,

implies that

f(yt , y) + ( – t)〈y – q,Ayt〉 ≥ . (.)

Letting t → , we have f(q, y) + 〈y – q,Aq〉 ≥  for all y ∈ C. Thus, q ∈ GEP(f,A).
In a similar fashion, we have some k ≥  such that f = fnk and q ∈ GEP(f,A). There-
fore, q ∈ ⋂N

i=GEP(fi,Ai). Since unj ,i ⇀ q, so it follows from (.) and Lemma . that
q ∈ ⋂N

i= F(Ti). Reasoning as above, we can show that q ∈ ⋂N
i= F(Si). Hence, q ∈ F . Let

x = PFx, which implies that x = PFx ∈ Cn+. Since xn+ = PCn+∩Qn+x ∈ Cn+, we have

‖xn+ – x‖ ≤ ‖x – x‖.

On the other hand, we have

‖x – x‖ ≤ ‖q – x‖
≤ lim inf

j→∞ ‖xnj – x‖
≤ lim sup

j→∞
‖xnj – x‖

≤ ‖x – x‖.

That is,

‖q – x‖ = lim
j→∞‖xnj – x‖ = ‖x – x‖.
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Therefore, we conclude that limj→∞ xnj = q = PFx. From the arbitrariness of {xnj}, we get
that limn→∞ xn = PFx. This completes the proof. �

In particular, if Ti and Si - in algorithm (.) - are two finite families of nonexpansive
maps, then the following result holds.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and let
Ti(modN),Si(modN) : C → C be two finite families of nonexpansive maps. Let fi(modN) :
C×C →R be a finite family of bifunctions satisfying (A)-(A) and let Ai(modN) : C →H
be a finite family of δ-inverse-strongly monotone maps. Let {rn,i} ⊂ (,∞) and {αn,i}, {βn,i}
be two control sequences such that
(C)  ≤ k < a ≤ αn,i,βn,i ≤ b < ;
(C)  < r < rn,i < s < δ for all i≥ .
Assume that F := [

⋂N
i= F(Ti)] ∩ [

⋂N
i= F(Si)] ∩ [

⋂N
i=GEP(fi,Ai)] �= ∅, then the sequence

{xn} generated by (.) converges strongly to x = PFx, where PF is the metric projection of
H onto F .

In order to address variational inequality problems coupled with the fixed point prob-
lems, we prove the following result with a slight modification of algorithm (.).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
let Ti(modN),Si(modN) : C → C be two finite families of k-strict pseudo-contractions.
Let fi(modN) : C × C → R be a finite family of bifunctions satisfying (A)-(A) and let
Ai(modN) : C → H be a finite family of δ-inverse-strongly monotone maps. Let {rn,i} ⊂
(,∞) and {αn,i}, {βn,i} be two control sequences such that
(C)  ≤ k < a ≤ αn,i,βn,i ≤ b < ;
(C)  < r < rn,i < s < δ for all i≥ .
Assume thatF := [

⋂N
i= F(Ti)]∩ [

⋂N
i= F(Si)]∩ [

⋂N
i=VI(C,Ai)] �= ∅, then the sequence {xn}

generated by

x ∈ C =Q = C,

hn,i = PC(I – rn,iAi)xn,

zn,i = αn,ihn,i + ( – αn,i)Tihn,i,

yn,i = βn,izn,i + ( – βn,i)Sizn,i, (.)

Cn+ =
{
z ∈ Cn : sup

i≥
‖yn,i – z‖ ≤ ‖xn – z‖

}
,

Qn+ =
{
z ∈ Qn : 〈z – xn,x – xn〉 ≥ 

}
,

xn+ = PCn+∩Qn+x, n≥ ,

converges strongly to x = PFx, where PF is the metric projection of H onto F .

Proof Set fi(x, y) ≡  for each i≥ , then

〈Aixn, y – un,i〉 + 
rn,i

〈y – un,i,un,i – xn〉 ≥ 
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is equivalent to

〈xn – rn,iAixn – un,i,un,i – y〉 ≥ .

This implies that hn,i = un,i := PC(xn – rn,iAixn). The desired result then follows from The-
orem . immediately. �

As an application of Theorem . - by substituting Ai ≡  for all i ≥  in algorithm (.)
- we have the following result for a finite family of equilibrium problems.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
let Ti(modN),Si(modN) : C → C be two finite families of k-strict pseudo-contractions. Let
fi(modN) : C×C →R be a finite family of bifunctions satisfying (A)-(A). Let {αn,i}, {βn,i}
be two control sequences such that
(C)  ≤ k < a ≤ αn,i,βn,i ≤ b < .
Assume that F := [

⋂N
i= F(Ti)] ∩ [

⋂N
i= F(Si)] ∩ [

⋂N
i= EP(fi)] �= ∅, then the sequence {xn}

generated by

x ∈ C =Q = C,

fi(un,i, y) +

rn,i

〈y – un,i,un,i – xn〉 ≥ , ∀y ∈ C,

yn,i = βn,izn,i + ( – βn,i)Sizn,i,

zn,i = αn,iun,i + ( – αn,i)Tiun,i, (.)

Cn+ =
{
z ∈ Cn : sup

i≥
‖yn,i – z‖ ≤ ‖xn – z‖

}
,

Qn+ =
{
z ∈ Qn : 〈z – xn,x – xn〉 ≥ 

}
,

xn+ = PCn+∩Qn+x, n≥ ,

converges strongly to x = PFx, where PF is the metric projection of H onto F .

Remark . Additionally - in Theorem . - if we set βn,i ≡ , then Theorem . sets
analogue [, Theorem .] in the following aspects:

(i) from a single k-strict pseudo-contraction to a finite family of maps;
(ii) from an equilibrium problem to a finite family of generalized equilibrium problems.
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