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1 Introduction
Branciari [] was the first to study the existence of fixed points for the contractivemapping
of integral type. He established a nice integral version of the Banach contraction principle
and proved the following fixed point theorem.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (, ) is a constant and ϕ ∈ �. Then f has a unique fixed point a ∈ X such that
limn→∞ f nx = a for each x ∈ X.

Afterwards, many authors continued the study of Branciari and obtained many fixed
point theorems for several classes of contractive mappings of integral type; see, e.g., [–
] and the references therein. In particular, in , Liu et al. [] extended the result of
Branciari [] and deduced the following fixed point theorems.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

where ϕ ∈ � and α :R+ → [, ) is a function with

lim sup
s→t

α(s) < , ∀t > .

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.
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Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,fx)


ϕ(t)dt + β

(
d(x, y)

)∫ d(y,fy)


ϕ(t)dt, ∀x, y ∈ X,

where ϕ ∈ � and α,β :R+ → [, ) are two functions with

α(t) + β(t) < , ∀t ∈R
+, lim sup

s→+
β(s) < , lim sup

s→t+

α(s)
 – β(s)

< , ∀t > .

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

In , Dutta and Choudhuty [] proved the following result.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
, ∀x, y ∈ X,

where ψ ,ϕ : R+ → R
+ are both continuous and monotone nondecreasing functions with

ψ(t) = ϕ(t) =  if and only if t = . Then f has a unique fixed point a ∈ X such that
limn→∞ f nx = a for each x ∈ X.

However, to the best of our knowledge, no one studied the following contractive map-
pings of integral type:

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,φ,ψ) ∈ � × � × �;

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ α

(
d(x, y)

)
ψ

(∫ d(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,ψ ,α) ∈ � × � × �;

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ α

(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)

+ β
(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,ψ ,φ) ∈ � × � × � and (α,β) ∈ �.
It is clear that the above contractivemappings of integral type include thesemappings in

Theorems .-. as special cases. The purpose of this paper is to investigate the existence
of fixed points for contractive mappings (.)-(.) of integral type. Under certain condi-
tions, we prove the existence, uniqueness and iterative approximations of fixed points for
contractive mappings (.)-(.) of integral type in complete metric spaces. Three exam-
ples with uncountably many points are constructed.
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2 Preliminaries
Throughout this paper, we assume that R+ = [,+∞), N = N ∪ {}, N denotes the set of
all positive integers, (X,d) is a metric space, f : X → X is a self-mapping and

dn = d
(
f nx, f n+x

)
, ∀(n,x) ∈N ×X,

� = {ϕ : ϕ :R+ →R
+ is Lebesgue integrable, summable on each compact subset of

R
+ and

∫ ε

 ϕ(t)dt >  for each ε > };
� = {ϕ : ϕ :R+ →R

+ satisfies that lim infn→∞ ϕ(an) >  ⇔ lim infn→∞ an >  for each
{an}n∈N ⊂R

+};
� = {ϕ : ϕ :R+ →R

+ is nondecreasing continuous and ϕ(t) = ⇔ t = };
� = {ϕ : ϕ :R+ →R

+ satisfies that ϕ() = };
� = {ϕ : ϕ :R+ → [, ) satisfies that lim sups→t ϕ(s) <  for each t > };
� = {(α,β) : α,β :R+ → [, ) satisfy that lim sups→+ β(s) < , lim sups→t+

α(s)
–β(s) < 

and α(t) + β(t) <  for each t > }.
The following lemmas play important roles in this paper.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a.
Then

lim
n→∞

∫ rn


ϕ(t)dt =

∫ a


ϕ(t)dt.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn


ϕ(t)dt = 

if and only if limn→∞ rn = .

Lemma . Let ϕ ∈ �. Then ϕ(t) >  if and only if t > .

Proof Let t > . Put an = t for each n ∈N. It is easy to see that t = lim infn→∞ an > , which
together with ϕ ∈ � ensures that

ϕ(t) = lim inf
n→∞ ϕ(an) > .

Conversely, suppose that ϕ(t) >  for some t ∈ R
+. Set an = t for each n ∈ N. It is clear

that ϕ(t) = lim infn→∞ ϕ(an) > , which together with ϕ ∈ � guarantees that

t = lim inf
n→∞ an > .

This completes the proof. �

3 Main results
In this section we show the existence, uniqueness and iterative approximations of fixed
points for contractive mappings (.)-(.) of integral type, respectively.
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Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying
(.). Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Proof Let x be an arbitrary point in X. Firstly, we show that

dn ≤ dn–, ∀n ∈N. (.)

Suppose that (.) does not hold. It follows that there exists some n ∈N satisfying

dn > dn–. (.)

Note that (.) and ϕ ∈ � imply that

∫ dn


ϕ(t)dt > . (.)

Using (.), (.) and (ϕ,φ,ψ) ∈ � × � × �, we conclude immediately that

ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)

=ψ

(∫ d(f n x,f n+x)


ϕ(t)dt

)

≤ ψ

(∫ d(f n–x,f nx)


ϕ(t)dt

)
– φ

(∫ d(f n–x,f n x)


ϕ(t)dt

)

=ψ

(∫ dn–


ϕ(t)dt

)
– φ

(∫ dn–


ϕ(t)dt

)

≤ ψ

(∫ dn–


ϕ(t)dt

)
,

which yields that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ dn–


ϕ(t)dt

)
(.)

and

φ

(∫ dn–


ϕ(t)dt

)
= . (.)

Combining (.) and Lemma ., we get that

∫ dn–


ϕ(t)dt = ,

which together with ψ ∈ � and (.) means that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ dn–


ϕ(t)dt

)
=ψ() = ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/300
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that is,

∫ dn


ϕ(t)dt = ,

which contradicts (.). Hence (.) holds.
Secondly, we show that

lim
n→∞dn = . (.)

In view of (.), we deduce that the nonnegative sequence {dn}n∈N is nonincreasing, which
means that there exists a constant c with limn→∞ dn = c≥ . Suppose that c > . It follows
from (.) that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ ψ

(∫ d(f nx,f n–x)


ϕ(t)dt

)
– φ

(∫ d(f nx,f n–x)


ϕ(t)dt

)

= ψ

(∫ dn–


ϕ(t)dt

)
– φ

(∫ dn–


ϕ(t)dt

)
, ∀n ∈N. (.)

Taking upper limit in (.) and using Lemma. and (ϕ,φ,ψ) ∈ �×�×�, we conclude
that

ψ

(∫ c


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ dn


ϕ(t)dt

)

≤ lim sup
n→∞

[
ψ

(∫ dn–


ϕ(t)dt

)
– φ

(∫ dn–


ϕ(t)dt

)]

≤ lim sup
n→∞

ψ

(∫ dn–


ϕ(t)dt

)
– lim inf

n→∞ φ

(∫ dn–


ϕ(t)dt

)

= ψ

(∫ c


ϕ(t)dt

)
– lim inf

n→∞ φ

(∫ dn–


ϕ(t)dt

)

< ψ

(∫ c


ϕ(t)dt

)
,

which is a contradiction. Hence c = .
Thirdly, we show that {f nx}n∈N is a Cauchy sequence. Suppose that {f nx}n∈N is not a

Cauchy sequence, which means that there is a constant ε >  such that for each positive
integer k, there are positive integers m(k) and n(k) with m(k) > n(k) > k satisfying

d
(
f m(k)x, f n(k)x

)
> ε. (.)

For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
(.). It follows that

d
(
f m(k)x, f n(k)x

)
> ε and d

(
f m(k)–x, f n(k)x

) ≤ ε, ∀k ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/300
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Note that

d
(
f m(k)x, f n(k)x

) ≤ d
(
f n(k)x, f m(k)–x

)
+ dm(k)–, ∀k ∈N;

∣∣d(
f m(k)x, f n(k)+x

)
– d

(
f m(k)x, f n(k)x

)∣∣ ≤ dn(k), ∀k ∈N;
∣∣d(

f m(k)+x, f n(k)+x
)
– d

(
f m(k)x, f n(k)+x

)∣∣ ≤ dm(k), ∀k ∈ N;
∣∣d(

f m(k)+x, f n(k)+x
)
– d

(
f m(k)+x, f n(k)+x

)∣∣ ≤ dn(k)+, ∀k ∈N.

(.)

In light of (.) and (.), we get that

ε = lim
k→∞

d
(
f n(k)x, f m(k)x

)
= lim

k→∞
d
(
f m(k)x, f n(k)+x

)

= lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= lim

k→∞
d
(
f m(k)+x, f n(k)+x

)
. (.)

In view of (.), we deduce that

ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ ψ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)
– φ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)
, ∀k ∈N. (.)

Taking upper limit in (.) and using (.), (ϕ,φ,ψ) ∈ � × � × � and Lemma ., we
deduce that

ψ

(∫ ε


ϕ(t)dt

)

= lim sup
k→∞

ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim sup
k→∞

[
ψ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)
– φ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)]

≤ lim sup
k→∞

ψ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)
– lim inf

k→∞
φ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)

=ψ

(∫ ε


ϕ(t)dt

)
– lim inf

k→∞
φ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)

< ψ

(∫ ε


ϕ(t)dt

)
,

which is impossible. Thus {f nx}n∈N is a Cauchy sequence.
Since (X,d) is complete, it follows that there exists a point a ∈ X satisfying

limn→∞ f nx = a. By virtue of (.), we infer that

ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)
≤ ψ

(∫ d(f nx,a)


ϕ(t)dt

)
– φ

(∫ d(f nx,a)


ϕ(t)dt

)
, ∀n ∈ N,
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which together with (ϕ,φ,ψ) ∈ � × � × � and Lemmas . and . gives that

ψ

(∫ d(a,fa)


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)

≤ lim sup
n→∞

[
ψ

(∫ d(f nx,a)


ϕ(t)dt

)
– φ

(∫ d(f nx,a)


ϕ(t)dt

)]

≤ lim sup
n→∞

ψ

(∫ d(f nx,a)


ϕ(t)dt

)
– lim inf

n→∞ φ

(∫ d(f nx,a)


ϕ(t)dt

)

=ψ() – 

= ,

which together with ψ ∈ � yields that

∫ d(a,fa)


ϕ(t)dt = ,

that is, a = fa.
Finally, we show that a is a unique fixed point of f in X. Suppose that f has another fixed

point b ∈ X \ {a}. It follows from (.) and (ϕ,φ,ψ) ∈ � × � × � that

ψ

(∫ d(a,b)


ϕ(t)dt

)
=ψ

(∫ d(fa,fb)


ϕ(t)dt

)

≤ ψ

(∫ d(a,b)


ϕ(t)dt

)
– φ

(∫ d(a,b)


ϕ(t)dt

)

< ψ

(∫ d(a,b)


ϕ(t)dt

)
,

which is a contradiction. This completes the proof. �

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying
(.). Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Proof Let x be an arbitrary point in X. Suppose that (.) holds for some n ∈ N. Using
(.), (.) and (ϕ,ψ ,α) ∈ � × � × �, we get that

ψ

(∫ dn


ϕ(t)dt

)
> 

and

ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)
=ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ α
(
d
(
f n–x, f nx

))
ψ

(∫ d(f n–x,f nx)


ϕ(t)dt

)

= α(dn–)ψ
(∫ dn–


ϕ(t)dt

)
<ψ

(∫ dn–


ϕ(t)dt

)
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/300
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which is a contradiction, and hence (.) does not hold. Consequently, (.) is true. Notice
that the nonnegative sequence {dn}n∈N is nonincreasing, which implies that there exists
a constant c ≥  with limn→∞ dn = c. Suppose that c > . In light of (.), we infer that

ψ

(∫ dn


ϕ(t)dt

)
=ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ α
(
d
(
f n–x, f nx

))
ψ

(∫ d(f n–x,f nx)


ϕ(t)dt

)

= α(dn–)ψ
(∫ dn–


ϕ(t)dt

)
, ∀n ∈N. (.)

Taking upper limit in (.) and using Lemma . and (ϕ,ψ ,α) ∈ � × � × �, we know
that

ψ

(∫ c


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ dn


ϕ(t)dt

)

≤ lim sup
n→∞

[
α(dn–)ψ

(∫ dn–


ϕ(t)dt

)]

≤ lim sup
n→∞

α(dn–) · lim sup
n→∞

ψ

(∫ dn–


ϕ(t)dt

)

< ψ

(∫ c


ϕ(t)dt

)
,

which is a contradiction, and hence c = , that is, (.) holds.
Now we show that {f nx}n∈N is a Cauchy sequence. Suppose that {f nx}n∈N is not a

Cauchy sequence. As in the proof of Theorem ., we conclude that there exist ε > 
and {m(k),n(k) : k ∈ N} ⊆ N with m(k) > n(k) > k for each k ∈ N satisfying (.)-(.).
By means of (.), (.), Lemma . and (ϕ,ψ ,α) ∈ � × � × �, we get that

ψ

(∫ ε


ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

= lim sup
k→∞

[
α
(
d
(
f m(k)x, f n(k)+x

))
ψ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)]

≤ lim sup
k→∞

α
(
d
(
f m(k)x, f n(k)+x

)) · lim sup
k→∞

ψ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)

<ψ

(∫ ε


ϕ(t)dt

)
,

which is a contradiction. Hence {f nx}n∈N is a Cauchy sequence.
It follows from completeness of (X,d) that there exists a ∈ X with limn→∞ f nx = a. In

view of (.), we have

ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)
≤ α

(
d
(
f nx,a

))
ψ

(∫ d(f nx,a)


ϕ(t)dt

)
, ∀n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/300
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Taking upper limit in (.) and making use of (ϕ,ψ ,α) ∈ � × � × � and Lemmas .
and ., we get that

ψ

(∫ d(a,fa)


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)

≤ lim sup
n→∞

[
α
(
d
(
f nx,a

))
ψ

(∫ d(f nx,a)


ϕ(t)dt

)]

≤ lim sup
n→∞

α
(
d
(
f nx,a

)) · lim sup
n→∞

ψ

(∫ d(f nx,a)


ϕ(t)dt

)

= ,

which means that

ψ

(∫ d(a,fa)


ϕ(t)dt

)
= ,

that is, fa = a.
Next we prove that a is a unique fixed point of f in X. Suppose that f has another fixed

point b ∈ X \ {a}. It follows from (.) and (ϕ,ψ ,α) ∈ � × � × � that

ψ

(∫ d(a,b)


ϕ(t)dt

)
=ψ

(∫ d(fa,fb)


ϕ(t)dt

)
≤ α

(
d(a,b)

)
ψ

(∫ d(a,b)


ϕ(t)dt

)

< ψ

(∫ d(a,b)


ϕ(t)dt

)
,

which is a contradiction. This completes the proof. �

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying
(.) and

φ(t) ≤ ψ(t), ∀t ∈R
+. (.)

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Proof Let x be an arbitrary point in X. If there exists n ∈ N satisfying dn = , it is clear
that f nx is a fixed point of f and limn→∞ f nx = f nx. Now we assume that dn �=  for all
n ∈N. Suppose that (.) holds for some n ∈N. It follows from (.) that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ α
(
d
(
f n–x, f nx

))
φ

(∫ d(f n–x,f n x)


ϕ(t)dt

)

+ β
(
d
(
f n–x, f nx

))
ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

= α(dn–)φ
(∫ dn–


ϕ(t)dt

)
+ β(dn–)ψ

(∫ dn


ϕ(t)dt

)
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/300
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which together with (.), (.), (ϕ,ψ ,φ) ∈ � × � × � and (α,β) ∈ � implies that

 < ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)

≤ α(dn–)
 – β(dn–)

φ

(∫ dn–


ϕ(t)dt

)

≤ α(dn–)
 – β(dn–)

ψ

(∫ dn–


ϕ(t)dt

)

< ψ

(∫ dn–


ϕ(t)dt

)
,

which is a contradiction, and hence (.) does not hold. Consequently, (.) holds.
Next we show that limn→∞ dn = . Note that the nonnegative sequence {dn}n∈N is non-

increasing, which implies that there exists a constant c ≥  with limn→∞ dn = c. Suppose
that c > . It follows from (.) that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ α
(
d
(
f n–x, f nx

))
φ

(∫ d(f n–x,f nx)


ϕ(t)dt

)

+ β
(
d
(
f n–x, f nx

))
ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

= α(dn–)φ
(∫ dn–


ϕ(t)dt

)
+ β(dn–)ψ

(∫ dn


ϕ(t)dt

)
, ∀n ∈N,

which means that

ψ

(∫ dn


ϕ(t)dt

)
≤ α(dn–)

 – β(dn–)
φ

(∫ dn–


ϕ(t)dt

)
, ∀n ∈N. (.)

Taking upper limit in (.) and using (.), (ϕ,ψ ,φ) ∈ � × � × �, (α,β) ∈ � and
Lemma ., we arrive at

ψ

(∫ c


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ dn


ϕ(t)dt

)

≤ lim sup
n→∞

[
α(dn–)

 – β(dn–)
φ

(∫ dn–


ϕ(t)dt

)]

≤ lim sup
n→∞

α(dn–)
 – β(dn–)

· lim sup
n→∞

ψ

(∫ dn–


ϕ(t)dt

)

≤ lim sup
s→c+

α(s)
 – β(s)

· ψ
(∫ c


ϕ(t)dt

)

< ψ

(∫ c


ϕ(t)dt

)
,

which is impossible. Therefore c = , that is, limn→∞ dn = .
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Next we show that {f nx}n∈N is a Cauchy sequence. Suppose that {f nx}n∈N is not a
Cauchy sequence. As in the proof of Theorem ., we conclude that there exist ε > 
and {m(k),n(k) : k ∈ N} ⊆ N with m(k) > n(k) > k for each k ∈ N satisfying (.)-(.).
By means of (.), we deduce that

ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ α
(
d
(
f m(k)x, f n(k)+x

))
φ

(∫ d(f m(k)x,f m(k)+x)


ϕ(t)dt

)

+ β
(
d
(
f m(k)x, f n(k)+x

))
ψ

(∫ d(f n(k)+x,f n(k)+x)


ϕ(t)dt

)

= α
(
d
(
f m(k)x, f n(k)+x

))
φ

(∫ dm(k)


ϕ(t)dt

)

+ β
(
d
(
f m(k)x, f n(k)+x

))
ψ

(∫ dn(k)


ϕ(t)dt

)
, ∀k ∈N. (.)

Taking upper limit in (.) and making use of (.), (.), Lemma ., (ϕ,ψ ,φ) ∈ � ×
� × � and (α,β) ∈ �, we deduce that

 < ψ

(∫ ε


ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim sup
k→∞

[
α
(
d
(
f m(k)x, f n(k)+x

))
φ

(∫ dm(k)


ϕ(t)dt

)

+ β
(
d
(
f m(k)x, f n(k)+x

))
ψ

(∫ dn(k)


ϕ(t)dt

)]

≤ lim sup
k→∞

α
(
d
(
f m(k)x, f n(k)+x

)) · lim sup
k→∞

ψ

(∫ dm(k)


ϕ(t)dt

)

+ lim sup
k→∞

β
(
d
(
f m(k)x, f n(k)+x

)) · lim sup
k→∞

ψ

(∫ dn(k)


ϕ(t)dt

)

≤ lim sup
s→ε

α(s) · ψ
(∫ 


ϕ(t)dt

)
+ lim sup

s→ε

β(s) · ψ
(∫ 


ϕ(t)dt

)

= ,

which is a contradiction. Hence {f nx}n∈N is a Cauchy sequence.
Completeness of (X,d) implies that there exists a point a ∈ X such that limn→∞ f nx = a.

In view of (.), (ϕ,ψ ,φ) ∈ � × � × �, (α,β) ∈ � and Lemma ., we infer that

ψ

(∫ d(a,fa)


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)

≤ lim sup
n→∞

[
α
(
d
(
f nx,a

))
φ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

+ β
(
d
(
f nx,a

))
ψ

(∫ d(a,fa)


ϕ(t)dt

)]
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≤ lim sup
n→∞

α
(
d
(
f nx,a

)) · lim sup
n→∞

ψ

(∫ dn


ϕ(t)dt

)

+ lim sup
n→∞

β
(
d
(
f nx,a

)) · ψ
(∫ d(a,fa)


ϕ(t)dt

)

≤ lim sup
s→+

β(s) · ψ
(∫ d(a,fa)


ϕ(t)dt

)
,

which together with (α,β) ∈ � yields that

ψ

(∫ d(a,fa)


ϕ(t)dt

)
= ,

which gives that d(fa,a) = , that is, fa = a.
Finally, we prove that a is a unique fixed point of f in X. Suppose that f has another fixed

point b ∈ X \ {a}. It follows from (.) and (ϕ,ψ ,φ) ∈ � × � × � and (α,β) ∈ � that

 ≤ ψ

(∫ d(fa,fb)


ϕ(t)dt

)

≤ α
(
d(a,b)

)
φ

(∫ d(a,fa)


ϕ(t)dt

)
+ β

(
d(a,b)

)
ψ

(∫ d(b,fb)


ϕ(t)dt

)

= ,

which is a contradiction. This completes the proof. �

4 Three examples
Now we construct three examples to explain Theorems .-..

Example . Let X = [,  ] ∪ {} ∪ {} be endowed with the Euclidean metric d = | · |.
Assume that f : X → X and ϕ,φ,ψ :R+ →R

+ are defined by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x
 , ∀x ∈ [,  ],

, x = ,

, x = ,

ϕ(t) =

⎧⎨
⎩

t
 , ∀t ∈ [, ],

, ∀t ∈ (, +∞),

φ(t) =

⎧⎨
⎩

t
 , ∀t ∈ [, ],
t
 , ∀t ∈ (, +∞),

ψ(t) =

⎧⎨
⎩
t, ∀t ∈ [, ],
t+
 , ∀t ∈ (, +∞).

Clearly, (X,d) is a complete metric and (ϕ,φ,ψ) ∈ � × � × �. Let x, y ∈ X with x < y.
In order to verify (.), we have to consider the following four cases.
Case . Let x, y ∈ [,  ]. Note that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ 
 |x–y|


ϕ(t)dt

)
=ψ

( |x – y|


)
=

|x – y|


≤ |x – y|


–
|x – y|


=ψ

( |x – y|


)
– φ

( |x – y|


)

http://www.fixedpointtheoryandapplications.com/content/2013/1/300
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=ψ

(∫ |x–y|


ϕ(t)dt

)
– φ

(∫ |x–y|


ϕ(t)dt

)

=ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
.

Case . Let x ∈ [,  ] and y = . It follows that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ x



ϕ(t)dt

)
=ψ

(
x



)
=
x


≤ ( – x)


–
( – x)



=ψ

(
( – x)



)
– φ

(
( – x)



)

=ψ

(∫ |x–|


ϕ(t)dt

)
– φ

(∫ |x–|


ϕ(t)dt

)

=ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
.

Case . Let x ∈ [,  ] and y = . It follows that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ –x



ϕ(t)dt

)
=ψ

(
( – x)



)
=
( – x)


<



≤ 


[(


– x

)

+ 
]
–



(


– x

)

=ψ

(


– x

)
– φ

(


– x

)

=ψ

(∫ 


ϕ(t)dt +

∫ –x


ϕ(t)dt

)
– φ

(∫ 


ϕ(t)dt +

∫ –x


ϕ(t)dt

)

=ψ

(∫ –x


ϕ(t)dt

)
– φ

(∫ –x


ϕ(t)dt

)

=ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
.

Case . Let x =  and y = . Note that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ 


ϕ(t)dt

)
=ψ

(



)
=


<



=



(



+ 
)
–



· 


=ψ

(



)
– φ

(



)

=ψ

(∫ 


ϕ(t)dt +

∫ 


ϕ(t)dt

)
– φ

(∫ 


ϕ(t)dt +

∫ 


ϕ(t)dt

)

=ψ

(∫ 


ϕ(t)dt

)
– φ

(∫ 


ϕ(t)dt

)

=ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
.

That is, (.) holds. Thus Theorem . guarantees that f has a unique fixed point  ∈ X
such that limn→∞ f nx =  for each x ∈ X.
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Example . Let X = [, ]∪ [, ] be endowed with the Euclideanmetric d = | · |. Assume
that f : X → X and ϕ,ψ :R+ →R

+ and α :R+ → [, ) are defined by

f (x) =

⎧⎨
⎩

x
 , ∀x ∈ [, ],
x
 , ∀x ∈ [, ],

ϕ(t) =

⎧⎨
⎩
t, ∀t ∈ [, ],

t, ∀t ∈ [, ],

ψ(t) = t

 , ∀t ∈R

+, α(t) =

⎧⎪⎪⎨
⎪⎪⎩


 +

t
 , ∀t ∈ [, ],


t , ∀t ∈ (, ),
√
t , ∀t ∈ (, +∞).

Obviously, (ϕ,ψ ,α) ∈ � × � × �. Put x, y ∈ X with x < y. In order to verify (.), we
have to consider three possible cases as follows.
Case . Let x, y ∈ [, ]. It is clear that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=

(∫ y–x



t dt

) 

=
(x + y)


|x – y| ≤ 


|x – y|

≤
(


+


|x – y|

)
|x – y|

= α
(
d(x, y)

)
ψ

(∫ d(x,y)


ϕ(t)dt

)
.

Case . Let x, y ∈ [, ]. It follows that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=

(∫ y–x



t dt

) 

=

(
x + y


)

|x – y| ≤ 


|x – y|

≤
(


+


|x – y|

)
|x – y|

= α
(
d(x, y)

)
ψ

(∫ d(x,y)


ϕ(t)dt

)
.

Case . Let x ∈ [, ] and y ∈ [, ]. It follows that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=

(∫ y
 –

x



t dt

) 

=

(
y


–
x



)

≤
(



)

<  <
√|x – y|

= α
(|x – y|)|x – y| = α

(|x – y|)
(∫ 


t dt +

∫ |x–y|


t dt

) 


= α
(
d(x, y)

)(∫ |x–y|


ϕ(t)dt

) 


= α
(
d(x, y)

)
ψ

(∫ d(x,y)


ϕ(t)dt

)
.

That is, (.) holds. Consequently, the conditions of Theorem . are satisfied. It follows
from Theorem . that f has a unique fixed point  ∈ X such that limn→∞ f nx =  for each
x ∈ X.
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Example . Let X = [  , ]∪ [  , ] be endowedwith the Euclideanmetric d = | · |. Assume
that f : X → X, ϕ,φ,ψ :R+ →R

+ and α,β :R+ → [, ) are defined by

f (x) =

⎧⎨
⎩
, ∀x ∈ [  , ],
x
 , ∀x ∈ [  , ],

φ(t) =

⎧⎨
⎩
, t ∈ [, 

 )
t
 , t ∈ [ 

 , +∞),

ϕ(t) = t, ψ(t) = t, α(t) =
t

(  + t)
, β(t) =

t

(  + t)
, ∀t ∈R

+.

It is easy to see that (ϕ,ψ ,φ) ∈ � × � × �, (α,β) ∈ � and (.) holds. In order to
verify (.), we have to consider the five possible cases below.
Case . Let x, y ∈ [  , ] with x ≥ y. Note that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ |x–y|



ϕ(t)dt

)
=ψ

(
(x – y)



)
=
(x – y)


≤ x – y



≤ x – y


· x

(  + x – y)
≤ x – y

(  + x – y)
· 


(
x



)

= α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)

≤ α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)
d + β

(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
.

Case . Let x, y ∈ [  , ] with y > x. Note that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ |y–x|



ϕ(t)dt

)
=
(y – x)


≤ (y – x)


· y

(  + y – x)

=
(y – x)

(  + y – x)
· y




= β

(
d(x, y)

)
ψ

(
y



)

= β
(
d(x, y)

)
ψ

(∫ y



ϕ(t)dt

)
= β

(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)

≤ α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)
+ β

(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
.

Case . Let x ∈ [  , ] and y ∈ [  , ]. It follows that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ x–



ϕ(t)dt

)
=ψ

(
(x – )



)
=
(x – )


≤ 


<



=



· 


· 


≤ x – y
(  + x – y)

· 


· x = α
(
d(x, y)

)
φ

(
x



)

= α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)

≤ α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)
+ β

(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
.
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Case . Let x ∈ [  , ] and y ∈ [  , ]. Note that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
=ψ

(∫ |y–|



t dt

)
=
(y – )


≤ 


<



· 


≤ (y – x)

(  + y – x)
· y




= β

(
d(x, y)

)
ψ

(
y



)

= β
(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)

≤ α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)
+ β

(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
.

Case . Let x, y ∈ [  , ]. Notice that fx = fy = . It follows that

ψ

(∫ d(fx,fy)


ϕ(t)dt

)

=  ≤ α
(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)
+ β

(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
.

That is, (.) holds. Thus all the conditions of Theorem . are satisfied. It follows from
Theorem . that f has a unique fixed point  ∈ X such that limn→∞ f nx =  for each x ∈ X.
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