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Abstract
In this paper, we prove strong convergence for the modified Ishikawa iteration
process of a total asymptotically nonexpansive mapping satisfying condition (A) in a
real uniformly convex Banach space. Our result generalizes the results due to Rhoades
(J. Math. Anal. Appl. 183:118-120, 1994).
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1 Introduction
Let X be a real Banach space, let C be a nonempty closed convex subset of X, and let T be
a mapping of C into itself. Then T is said to be asymptotically nonexpansive [] if there
exists a sequence {kn}, kn ≥ , with limn→∞ kn = , such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ (.)

for all x, y ∈ C and n≥ . T is said to be uniformly L-Lipschitzian if there exists a constant
L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖

for all x, y ∈ C and n ≥ . If T is asymptotically nonexpansive, then it is uniformly
L-Lipschitzian. We denote by N the set of all positive integers. T is said to be total asymp-
totically nonexpansive (in brief, TAN) [] if there exist two nonnegative real sequences
{cn} and {dn} with cn,dn →  as n→ ∞, φ ∈ �(R+) such that

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + cnφ

(‖x – y‖) + dn, (.)

for all x, y ∈ C and n ≥ , where R+ := [,∞) and φ ∈ �(R+) if and only if φ is strictly
increasing, continuous on R+ and φ() = . It is clear that if we take φ(t) = t for all t ≥ 
and dn =  for all n ≥  in (.), it is reduced to (.). Approximating fixed points of the
modified Ishikawa iterative scheme under total asymptotically nonexpansive mappings
has been investigated by several authors; see, for example, Chidume and Ofoedu [, ],
Kim [], Kim and Kim [] and others. For a mapping T of C into itself in a Hilbert space,
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Schu [] considered the following modified Ishikawa iteration process (cf. Ishikawa []) in
C defined by

x ∈ C,

xn+ = ( – αn)xn + αnTnyn, (.)

yn = ( – βn)xn + βnTnxn,

where {αn} and {βn} are two real sequences in [, ]. If βn =  for all n ≥ , then iteration
process (.) becomes the following modified Mann iteration process (cf.Mann []):

x ∈ C,

xn+ = ( – αn)xn + αnTnxn,
(.)

where {αn} is a real sequence in [, ].
Rhoades [] proved the following results which extended Theorems . and . of Schu

[] to uniformly convex Banach spaces.

Theorem . Let X be a uniformly convex Banach space, let C be a nonempty bounded
closed convex subset of X , and let T : C → C be a completely continuous asymptotically
nonexpansive mapping with {kn} satisfying kn ≥ ,

∑∞
n=(krn – ) < ∞, r =max{,p}. Then,

for any x ∈ C, the sequence {xn} defined by (.), where {αn} satisfies a≤ αn ≤  – a for all
n≥  and some a > , converges strongly to some fixed point of T .

Theorem . Let X be a uniformly convex Banach space, let C be a nonempty bounded
closed convex subset of E, and let T : C → C be a completely continuous asymptotically
nonexpansive mapping with {kn} satisfying kn ≥ ,

∑∞
n=(krn – ) < ∞, r =max{,p}. Then,

for any x ∈ C, the sequence {xn} defined by (.), where {αn}, {βn} satisfy a ≤ ( – αn), ( –
βn) ≤  – a for all n ≥  and some a > , converges strongly to some fixed point of T .

On the other hand, Kim [] proved the following result which generalized Theorem 
of Senter and Dotson [].

Theorem . Let X be a real uniformly convex Banach space, let C be a nonempty closed
convex subset of X, and let T be a nonexpansivemapping of C into itself satisfying condition
(A) with F(T) �= ∅. Suppose that for any x in C, the sequence {xn} is defined by xn+ =
( –αn)xn +αn[βnxn + ( – βn)Txn], for all n ≥ , where {αn} and {βn} are sequences in [, ]
such that

∑∞
n= αn(–αn) = ∞ and

∑∞
n= βn <∞.Then {xn} converges strongly to some fixed

point of T .

In this paper, we prove that if T is a total asymptotically nonexpansive self-mapping
satisfying condition (A), the iteration {xn} defined by (.) converges strongly to some
fixed point of T , which generalizes the results due to Rhoades [].

2 Preliminaries
Throughout this paper, we denote by X a real Banach space. Let C be a nonempty closed
convex subset of X, and let T be a mapping from C into itself. Then we denote by F(T) the
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set of all fixed points of T , i.e., F(T) = {x ∈ C : Tx = x}.We also denote by a∨b :=max{a,b}.
A Banach space X is said to be uniformly convex if the modulus of convexity δX = δX(ε),
 < ε ≤ , of X defined by

δX(ε) = inf

{
 –

‖x + y‖


: x, y ∈ X,‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

satisfies the inequality δX(ε) >  for every ε ∈ (, ]. When {xn} is a sequence in X, then
xn → x will denote strong convergence of the sequence {xn} to x.

Definition . [] A mapping T : C → C with F(T) �= ∅ is said to satisfy condition (A) if
there exists a nondecreasing function f : [,∞)→ [,∞) with f () =  and f (r) >  for all
r ∈ (,∞) such that

‖x – Tx‖ ≥ f
(
d
(
x,F(T)

))

for all x ∈ C, where d(x,F(T)) = infz∈F(T) ‖x – z‖.

3 Strong convergence theorem
We first begin with the following lemma.

Lemma. [] Let {an}, {bn} and {cn} be sequences of nonnegative real numbers such that∑∞
n= bn < ∞,

∑∞
n= cn < ∞ and

an+ ≤ ( + bn)an + cn

for all n ≥ . Then limn→∞ an exists.

Lemma. [] Let X be a uniformly convex Banach space. Let x, y ∈ X. If ‖x‖ ≤ , ‖y‖ ≤ 
and ‖x – y‖ ≥ ε > , then ‖λx + ( – λ)y‖ ≤  – λ( – λ)δ(ε) for  ≤ λ ≤ .

Lemma . Let C be a nonempty closed convex subset of a uniformly convex Banach space
X, and let T : C → C be aTANmappingwith F(T) �= ∅. Suppose that {cn}, {dn} andφ satisfy
the following two conditions:

(I) ∃α,β >  such that φ(t) ≤ αt for all t ≥ β .
(II)

∑∞
n= cn < ∞,

∑∞
n= dn < ∞.

Suppose that the sequence {xn} is defined by (.). Then limn→∞ ‖xn – z‖ exists for any
z ∈ F(T).

Proof For any z ∈ F(T), we set

M := ∨ φ(β) < ∞.

From (I) and strict increasing of φ, we obtain

φ(t) ≤ φ(β) + αt, t ≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/302
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By using (.), we have

∥∥Tnxn – z
∥∥ ≤ ‖xn – z‖ + cnφ

(‖xn – z‖) + dn

≤ ‖xn – z‖ + cn
{
φ(β) + α‖xn – z‖} + dn

≤ ( + αcn)‖xn – z‖ + κnM,

where κn = cn + dn and
∑∞

n= κn < ∞. Since

‖yn – z‖ =
∥∥βnTnxn + ( – βn)xn – z

∥∥
≤ βn

∥∥Tnxn – z
∥∥ + ( – βn)‖xn – z‖

≤ βn
{
( + αcn)‖xn – z‖ + κnM

}
+ ( – βn)‖xn – z‖

≤ ( + αcn)‖xn – z‖ + κnM,

and thus

‖yn – z‖ + cnφ
(‖yn – z‖)

≤ ( + αcn)‖xn – z‖ + κnM + cn
{
φ(β) + α‖yn – z‖}

≤ ( + αcn)‖xn – z‖ + κnM + cnφ(β) + αcn( + αcn)‖xn – z‖ + αcnκnM

≤ ( + σn)‖xn – z‖ + δnM,

where σn = αcn + αcn, δn = κn + cn + αcnκn,
∑∞

n= σn <∞ and
∑∞

n= δn < ∞. So, we have

∥∥Tnyn – z
∥∥ ≤ ‖yn – z‖ + cnφ

(‖yn – z‖) + dn

≤ ( + σn)‖xn – z‖ + δnM + dn

≤ ( + σn)‖xn – z‖ + ηnM,

where ηn = δn + dn and
∑∞

n= ηn <∞. Hence

‖xn+ – z‖ =
∥∥( – αn)xn + αnTnyn – z

∥∥
≤ ( – αn)‖xn – z‖ + αn

∥∥Tnyn – z
∥∥

≤ ( – αn)‖xn – z‖ + αn
{
( + σn)‖xn – z‖ + ηnM

}
≤ ( + σn)‖xn – z‖ + ηnM.

By Lemma ., we see that limn→∞ ‖xn – z‖ exists. �

Theorem . Let X be a uniformly convex Banach space, and let C be a nonempty closed
convex subset of X. Let T : C → C be a uniformly continuous and TAN mapping with
F(T) �= ∅. Suppose that {cn}, {dn} and φ satisfy the following two conditions:

(I) ∃α,β >  such that φ(t) ≤ αt for all t ≥ β .
(II)

∑∞
n= cn < ∞,

∑∞
n= dn < ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/302
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Suppose that for any x in C, the sequence {xn} defined by (.) satisfies∑∞
n= αn(–αn) = ∞

and limβn = . Then {xn} converges strongly to some fixed point of T .

Proof For any z ∈ F(T), by Lemma ., {xn} is bounded. We set

M := ∨ φ(β)∨ sup
n≥

‖xn – z‖ <∞.

By Lemma ., we see that limn→∞ ‖xn – z‖ (≡ r) exists. Without loss of generality, we
assume r > . As in the proof of Lemma ., we obtain

∥∥Tnyn – z
∥∥ ≤ ( + σn)‖xn – z‖ + ηnM

≤ ‖xn – z‖ + νnM,

where νn = σn + ηn and
∑∞

n= νn < ∞. By using Lemma . and Takahashi [], we obtain

‖xn+ – z‖ =
∥∥( – αn)xn + αnTnyn – z

∥∥
=

∥∥( – αn)(xn – z) + αn
(
Tnyn – z

)∥∥
≤ (‖xn – z‖ + νnM

)[
 – αn( – αn)δX

( ‖Tnyn – xn‖
‖xn – z‖ + νnM

)]
.

Hence we obtain

αn( – αn)
(‖xn – z‖ + νnM

)
δX

( ‖Tnyn – xn‖
‖xn – z‖ + νnM

)

≤ ‖xn – z‖ – ‖xn+ – z‖ + νnM.

Thus

αn( – αn)
(‖xn – z‖ + νnM

)
δX

( ‖Tnyn – xn‖
‖xn – z‖ + νnM

)
< ∞.

Since δX is strictly increasing, continuous and
∑∞

n= αn( – αn) = ∞, we obtain

lim inf
n→∞

∥∥Tnyn – xn
∥∥ = . (.)

By using (.) in the proof of Lemma ., we have

∥∥Tn–xn– – z
∥∥ ≤ ‖xn– – z‖ + cn–φ

(‖xn– – z‖) + dn–

≤ ‖xn– – z‖ + cn–
{
φ(β) + α‖xn– – z‖} + dn–

≤ ( + αcn–)‖xn– – z‖ + ρn–M,

where ρn– = cn– + dn– and
∑∞

n= ρn– < ∞. Thus

‖yn– – z‖ =
∥∥βn–Tn–xn– + ( – βn–)xn– – z

∥∥
≤ βn–

∥∥Tn–xn– – z
∥∥ + ( – βn–)‖xn– – z‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/302
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≤ βn–
{
( + αcn–)‖xn– – z‖ + ρn–M

}
+ ( – βn–)‖xn– – z‖

≤ ( + αcn–)‖xn– – z‖ + ρn–M,

and hence

‖yn– – z‖ + cn–φ
(‖yn– – z‖)

≤ ( + αcn–)‖xn– – z‖ + ρn–M + cn–
{
φ(β) + α‖yn– – z‖}

≤ ( + αcn–)‖xn– – z‖ + ρn–M + cn–φ(β) + αcn–( + αcn–)‖xn– – z‖
+ αcn–ρn–M

≤ ( +μn–)‖xn– – z‖ + ϕn–M,

where μn– = αcn– + αcn–, ϕn– = ρn– + cn– + αcn–ρn–,
∑∞

n= μn– < ∞ and∑∞
n= ϕn– < ∞. So, we have

∥∥Tn–yn– – z
∥∥ ≤ ‖yn– – z‖ + cn–φ

(‖yn– – z‖) + dn–

≤ ( +μn–)‖xn– – z‖ + ϕn–M + dn–

≤ ‖xn– – z‖ +ωn–M,

where ωn– = μn– + ϕn– + dn– and
∑∞

n= ωn– < ∞. By using Lemma . and Takahashi
[], we obtain

‖xn – z‖ =
∥∥( – αn–)xn– + αn–Tn–yn– – z

∥∥
=

∥∥( – αn–)(xn– – z) + αn–
(
Tn–yn– – z

)∥∥
≤ (‖xn– – z‖ +ωn–M

)[
 – αn( – αn)δX

( ‖Tn–yn– – xn–‖
‖xn– – z‖ +ωn–M

)]
.

By the same method as above, we obtain

lim inf
n→∞

∥∥Tn–yn– – xn–
∥∥ = . (.)

Since {xn} is bounded and T is a TAN mapping, we obtain

‖yn – xn‖ =
∥∥βnTnxn + ( – βn)xn – xn

∥∥
≤ βn

∥∥Tnxn – xn
∥∥

≤ βnM′,

whereM′ = supn≥ ‖Tnxn – xn‖ < ∞. By using limβn = , we have

lim
n→∞‖xn – yn‖ = . (.)

Since

∥∥Tnyn – yn
∥∥ ≤ ∥∥Tnyn – xn

∥∥ + ‖xn – yn‖,

http://www.fixedpointtheoryandapplications.com/content/2013/1/302
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by (.) and (.), we obtain

lim inf
n→∞

∥∥Tnyn – yn
∥∥ = . (.)

By using (.) and (.), we obtain

lim inf
n→∞

∥∥Tn–yn– – yn–
∥∥ = . (.)

Since

∥∥Tn–xn– – xn–
∥∥ ≤ ∥∥Tn–xn– – Tn–yn–

∥∥ +
∥∥Tn–yn– – xn–

∥∥
≤ ‖xn– – yn–‖ + cn–φ

(‖xn– – yn–‖
)
+ dn–

+
∥∥Tn–yn– – xn–

∥∥,
by using (.) and (.), we have

lim inf
n→∞

∥∥Tn–xn– – xn–
∥∥ = . (.)

Since

‖xn – xn–‖ =
∥∥( – αn–)xn– + αn–Tn–yn– – xn–

∥∥
= αn–

∥∥Tn–yn– – xn–
∥∥

≤ ∥∥Tn–yn– – yn–
∥∥ + ‖yn– – xn–‖,

by (.) and (.), we get

lim inf
n→∞ ‖xn – xn–‖ = . (.)

From

∥∥Tn–xn – xn
∥∥ ≤ ∥∥Tn–xn – Tn–xn–

∥∥ +
∥∥Tn–xn– – xn–

∥∥ + ‖xn– – xn‖
≤ ‖xn – xn–‖ + cn–φ

(‖xn – xn–‖
)
+ dn– +

∥∥Tn–xn– – xn–
∥∥,

by (.) and (.), we obtain

lim inf
n→∞

∥∥Tn–xn – xn
∥∥ = . (.)

Since

‖xn – Txn‖
≤ ‖xn – yn‖ +

∥∥yn – Tnyn
∥∥ +

∥∥Tnyn – Tnxn
∥∥ +

∥∥Tnxn – Txn
∥∥

≤ ∥∥yn – Tnyn
∥∥ + ‖xn – yn‖ + cnφ

(‖xn – yn‖
)
+ dn +

∥∥Tnxn – Txn
∥∥
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and by the uniform continuity of T , (.), (.) and (.), we have

lim inf
n→∞ ‖xn – Txn‖ = . (.)

By using condition (A), we obtain

f
(
d
(
xn,F(T)

)) ≤ ‖xn – Txn‖ (.)

for all n ≥ . As in the proof of Lemma ., we obtain

‖xn+ – z‖ ≤ ( + σn)‖xn – z‖ + ηnM. (.)

Thus

inf
z∈F(T)

‖xn+ – z‖ ≤ ( + σn) inf
z∈F(T)

‖xn – z‖ + ηnM.

By using Lemma ., we see that limn→∞ d(xn,F(T)) (≡ c) exists. We first claim that
limn→∞ d(xn,F(T)) = . In fact, assume that c = limn→∞ d(xn,F(T)) > . Then we can
choose n ∈ N such that  < c

 < d(xn,F(T)) for all n ≥ n. By using condition (A), (.)
and (.), we obtain

 < f
(
c


)
≤ f

(
d
(
xni ,F(T)

)) ≤ ‖xni – Txni‖ → 

as i → ∞. This is a contradiction. So, we obtain c = . Next, we claim that {xn} is a Cauchy
sequence. Since

∑∞
n= σn < ∞, we obtain

∏∞
n=( + σn) := U < ∞. Let ε >  be given. Since

limn→∞ d(xn,F(T)) =  and
∑∞

n= ηn < ∞, there exists n ∈ N such that for all n ≥ n, we
obtain

d
(
xn,F(T)

)
<

ε

U + 
and

∞∑
i=n

ηi <
ε

M
. (.)

Let n,m ≥ n and p ∈ F(T). Then, by (.), we obtain

‖xn – xm‖ ≤ ‖xn – p‖ + ‖xm – p‖

≤
n–∏
i=n

( + σi)‖xn – p‖ +M
n–∑
i=n

ηi +
m–∏
i=n

( + σi)‖xn – p‖ +M
m–∑
i=n

ηi

≤ 

[ ∞∏
i=n

( + σi)‖xn – p‖ +M
∞∑
i=n

ηi

]
.

Taking the infimum over all p ∈ F(T) on both sides and by (.), we obtain

‖xn – xm‖ ≤ 

[ ∞∏
i=n

( + σi)d
(
xn ,F(T)

)
+M

∞∑
i=n

ηi

]

< 
[
(U + )

ε

U + 
+M

ε

M

]
= ε

http://www.fixedpointtheoryandapplications.com/content/2013/1/302
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for all n,m ≥ n. This implies that {xn} is a Cauchy sequence. Let limn→∞ xn = q. Then
d(q,F(T)) = . Since F(T) is closed, we obtain q ∈ F(T). Hence {xn} converges strongly to
some fixed point of T . �

Remark . If T : C → C is completely continuous, then it satisfies demicompact and, if
T is continuous and demicompact, it satisfies condition (A); see Senter and Dotson [].

Remark . If {αn} is bounded away from both  and , i.e., a ≤ αn ≤ b for all n ≥ 
and some a,b ∈ (, ), then

∑∞
n= αn( – αn) = ∞ and limn→∞ βn =  hold. However, the

converse is not true. For example, consider αn = 
n .

We give an example of a mapping T : C → C which satisfies all the assumptions of T in
Theorem ., i.e., T : C → C is a uniformly continuous mapping with F(T) �= ∅ which is
TAN on C, not Lipschitzian and hence not asymptotically nonexpansive.

Example . Let X :=R and C := [, ]. Define T : C → C by

Tx =

⎧⎨
⎩, x ∈ [, ];

√


√
 – x, x ∈ [, ].

Note that Tnx =  for all x ∈ C and n ≥  and F(T) = {}. Clearly, T is both uniformly
continuous and TAN on C. We show that T satisfies condition (A). In fact, if x ∈ [, ],
then |x – | = |x – Tx|. Similarly, if x ∈ [, ], then

|x – | = x –  ≤ x –
√


√
 – x = |x – Tx|.

So, we get d(x,F(T)) = |x – | ≤ |x – Tx| for all x ∈ C. But T is not Lipschitzian. Indeed,
suppose not, i.e., there exists L >  such that

|Tx – Ty| ≤ L|x – y|

for all x, y ∈ C. If we take x =  – 
(L+) >  and y = , then

√


√
 – x ≤ L( – x) ⇔ 

L
≤  – x

 + x
=


L + L + 

.

This is a contradiction.
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