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1 Introduction and preliminaries
Let (X,ρ) be a complete metric space. A map T : X �→ X, such that for some constant
λ ∈ (, ) and for every x, y ∈ X, there is the inequality

ρ(Tx,Ty)≤ λ ·max
{
ρ(x, y),ρ(x,Tx),ρ(y,Ty),ρ(x,Ty),ρ(y,Tx)

}
, (.)

is called a quasicontraction. Let us remark that Ćirić [] (see also [, ]) introduced and
studied quasicontractions as one of the most general types of contractive maps. The well-
known Ćirić result is that every quasicontraction T possesses a unique fixed point.
There existmany generalizations of the concept ofmetric spaces in the literature. In par-

ticular, Matthews [] introduced the notion of partial metric space as a part of the study of
denotational semantics of dataflow networks, showing that the Banach contraction map-
ping theorem can be generalized to the partial metric context for applications in program
verification. After that, fixed point results in partial metric spaces have been studied by
many other authors.
References [–] are some works in this line of research. The existence of several con-

nections between partial metrics and topological aspects of domain theory were pointed
out in, e.g., [, , –].
In this paper we study fixed point results about certain extensions of the notion of Ćirić

quasicontraction to the setting of partial metric spaces, and we give some generalized
versions of the fixed point theorem ofMatthews as well as themain result of Ilić et al. [].
The theory is illustrated by some examples.
Throughout this paper, the letters R, R+,Q, N denote the sets of real numbers, nonneg-

ative real numbers, rational numbers and positive integers, respectively.
Let us recall [] that a mapping p : X ×X →R+, where X is a nonempty set, is said to be

a partial metric on X if for any x, y, z ∈ X, the following four conditions hold true:
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(P) x = y if and only if p(x,x) = p(y, y) = p(x, y),
(P) p(x,x)≤ p(x, y),
(P) p(x, y) = p(y,x),
(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).
The pair (X,p) is then called a partial metric space. A sequence {xm}∞m= of elements ofX

is called p-Cauchy if the limit limm,n p(xn,xm) exists and is finite. The partial metric space
(X,p) is called complete if for each p-Cauchy sequence {xm}∞m=, there is some z ∈ X such
that

p(z, z) = lim
n
p(z,xn) = lim

n,m
p(xn,xm). (.)

If (X,p) is a partial metric space, then ps(x, y) = p(x, y) – p(x,x) – p(y, y), x, y ∈ X, is a
metric on X, {xn}n≥ converges to z ∈ X with respect to ps if and only if (.) holds, and
(X,p) is a complete partial metric space if and only if (X,ps) is a complete metric space
(see [, ]).
A sequence xn in a partial metric space (X,p) is called -Cauchy [] if limm,n p(xn,

xm) = . We say that (X,p) is -complete if every -Cauchy sequence in X converges,
with respect to p, to a point x ∈ X such that p(x,x) = . Note that every -Cauchy se-
quence in (X,p) is Cauchy in (X,ps), and that every complete partial metric space is -
complete. A paradigm for partial metric spaces is the pair (X,p) where X = Q ∩ [, +∞)
and p(x, y) =max{x, y} for x, y≥ , which provides an example of a -complete partial met-
ric space which is not complete.

2 Auxiliary results
In this section we define three extensions of the notion of Ćirić quasicontraction to the
context partial metric spaces and establish a few auxiliary results that will be used in the
next, main section.

Definition . Let (X,p) be a partial metric space and T : X → X be a mapping. If for
some α ∈ [, ) and all x, y ∈ X, there holds

p(Tx,Ty) ≤max
{
αM(x, y),p(x,x),p(y, y)

}
, (.)

where M(x, y) :=max{p(x,Tx),p(x,Ty),p(x, y),p(Tx, y),p(y,Ty)}, then we shall say that T is
a p-quasicontraction. If for all x, y ∈ X, the stronger condition

p(Tx,Ty) ≤max

{
αM(x, y),

p(x,x) + p(y, y)


}
(.)

is satisfied, we shall call T a p-quasicontraction. If the even stronger condition

p(Tx,Ty) ≤ αM(x, y) (.)

holds for all x, y ∈ X, then we shall say that T is a p-quasicontraction.

Lemma. Let (X,p) be a partial metric space,T : X → X be a p-quasicontraction, x ∈ X
and n,m and k be integers such that m ≥ n≥ k ≥ .
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If p(Tnx,Tmx) > p(Tix,Tix) for all i ∈ {n– k, . . . ,n– } ∪ {m– k, . . . ,m– }, then for some
i, j ∈ {n – k, . . . ,m}, there must hold

p
(
Tnx,Tmx

) ≤ αkp
(
Tix,Tjx

)
.

Proof This is an easy induction on k. For k =  this follows from (.) and the assumptions
made. Now suppose that the assertion holds for some k ≥  and all m ≥ n ≥ k, and let
m,n ≥ k +  be such that we have p(Tnx,Tmx) > p(Tix,Tix) for all i ∈ {n – (k + ), . . . ,n –
} ∪ {m – (k + ), . . . ,m – }.
From p(Tnx,Tmx) > max{p(Tn–x,Tn–x),p(Tm–x,Tm–x)} and (.) we see that there

must hold p(Tnx,Tmx) ≤ αp(Tnx,Tmx) for some (n,m) ∈ {(n – ,n), (m – ,m), (n –
,m – ), (n – ,m), (n,m – )} if n < m, or for some (n,m) ∈ {(n – ,n), (n – ,n – )} if
n =m; in either case, we havem ≥ n ≥ n –  ≥ k.
There cannot be any i ∈ {n – k, . . . ,n – } ∪ {m – k, . . . ,m – } ⊆ {n – (k + ), . . . ,n –

} ∪ {m – (k + ), . . . ,m – } such that p(Tnx,Tmx) ≤ p(Tix,Tix) because this would
imply p(Tnx,Tmx) ≤ p(Tix,Tix). Thus, by the induction hypothesis, there are i, j ∈
{n – k, . . . ,m} ⊆ {n – (k + ), . . . ,m} such that p(Tnx,Tmx) ≤ αkp(Tix,Tjx), whence
p(Tnx,Tmx) ≤ αk+p(Tix,Tjx). �

Lemma. Let (X,p) be a partialmetric space,T : X → X be a p-quasicontraction, x ∈ X
and Nx := 

(–α)p(x,Tx) + p(x,x). Then
() for all i, j ≥ , there holds

p
(
Tix,Tjx

) ≤Nx, (.)

() if we put Sx := supi≥ p(Tix,Tix), then for some i≥  we have

p
(
Tix,Tix

)
= Sx. (.)

Proof () Fixm ≥  and put d :=max{p(Tix,Tjx) : ≤ i, j ≤m}.
It is easy to see that there must be some i ∈ {, , . . . ,m} with d = p(x,Tix). Indeed,

take any i, j ∈ {, , . . . ,m} such that d = p(Tix,Tjx). If  ∈ {i, j}, we are done. Otherwise
i, j ≥ , so p(Tix,Tjx)≤max{αp(Tix,Tjx),p(Ti–x,Ti–x),p(Tj–x,Tj–x)} for some i, j ∈
{, , . . . ,m}. Therefore either d ≤ αp(Tix,Tjx) ≤ αd, i.e., d =  = p(x,Tkx) for any  ≤
k ≤m, or d ≤max{p(Ti–x,Ti–x),p(Tj–x,Tj–x)} ≤ d, thus d ∈ {p(x,Ti–x),p(x,Tj–x)}.
Now take any i ∈ {, , . . . ,m} such that d = p(x,Tix). If i = , then d ≤ Nx follows

trivially. If i ≥ , then for some i, i ∈ {, , . . . ,m},

d = p
(
x,Tix

) ≤ p(x,Tx) + p
(
Tx,Tix

)
≤ p(x,Tx) +max

{
αp

(
Tix,Tix

)
,p(x,x),p

(
Ti–x,Ti–x

)}
,

so d ≤ p(x,Tx) + max{αd,p(Tlx,Tlx)}, where l is the least integer such that  ≤ l ≤ m
and p(Tlx,Tlx) = max{p(Tix,Tix) :  ≤ i ≤ m}. So it must either be d ≤ d(x,Tx)

–α
≤ Nx or

d ≤ p(x,Tx) + p(Tlx,Tlx). The latter possibility in the case l =  gives d ≤Nx directly, and
if l ≥ , then, since the minimality of l implies p(Tlx,Tlx) > p(Tl–x,Tl–x), we must have
for some j, j ∈ {l–, l} that d ≤ p(x,Tx) +αp(Tjx,Tjx)≤ p(x,Tx) +αd and again d ≤Nx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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() By part () we have Sx < ∞. If Sx = , then there is nothing to prove. Thus let Sx > .
Suppose to the contrary that for all i≥ ,

p
(
Tix,Tix

)
< Sx. (.)

Take k ∈ N such that αkNx < Sx
 and i ∈ N such that p(Tix,Tix) > Sx

 . By (.) we
may assume that i ≥ k. Also by (.) there must be some n ∈ N such that n > i and
p(Tnx,Tnx) > p(Tix,Tix) for all  ≤ i≤ i. Denote by n the least such integer.
Since p(Tnx,Tnx) > p(Tix,Tix) for all  ≤ i < n and since n ≥ k, Lemma . implies

that for some j, j ≥ n – k, we have p(Tnx,Tnx) ≤ αkp(Tjx,Tjx) ≤ αkNx < Sx
 . But

Sx
 < p(Tix,Tix) < p(Tnx,Tnx), a contradiction. �

Lemma. Let (X,p) be a partialmetric space,T : X → X be a p-quasicontraction, x ∈ X
and rx := lim supi p(Tix,Tix). Then

lim
n,m

p
(
Tnx,Tmx

)
= rx. (.)

Proof Notice first that rx <∞ by Lemma .. The lemma easily follows from the following
two claims:
() for each ε > , there is some k ∈N such that for all n,m ≥ k, we have

p(Tnx,Tmx) < rx + ε;
and
() if rx > , then

p
(
Tix,Tix

) ≥ p
(
Ti+x,Ti+x

)
holds for all but finitely many i≥ . (.)

To prove (), fix any ε > . From rx = lim supi p(Tix,Tix) < rx+ε, we see that there is some
k ∈N such that αkNx < rx + ε and such that for all i≥ k we have p(Tix,Tix) < rx + ε.
Letm ≥ n≥ k. If p(Tnx,Tmx)≤ p(Tix,Tix) for some i≥ k, then p(Tnx,Tmx) < rx + ε.

Otherwise, as n – k ≥ k, by Lemma . there are i, j ≥ n – k such that p(Tnx,Tmx) ≤
αkp(Tix,Tjx) ≤ αkNx < rx + ε.
To prove () suppose rx > . Take any positive ε < rx(–α)

α
and let k ∈ N be as claimed to

exist in ().Wewill show that for any n≥ k, it must be that p(Tnx,Tnx) =max{p(Tix,Tix) |
i≥ n}. Indeed, suppose that for some n≥ k this were not true. By () of Lemma ., there
is an integer l such that l ≥ n and p(Tlx,Tlx) = max{p(Tix,Tix) | i ≥ n}. Let m be the
least such integer. Then by our assumption m –  ≥ n, so, by the choice of m, we must
have p(Tmx,Tmx) > p(Tm–x,Tm–x). Hence p(Tmx,Tmx) ≤ αp(Tm–x,Tmx) ≤ α(rx + ε).
Since by definition of rx andm it must be rx ≤ p(Tmx,Tmx), the last inequality now yields
rx ≤ α(rx + ε), i.e., rx(–α)

α
≤ ε, a contradiction. �

Lemma . Let (X,p) be a partial metric space, T : X → X be a p-quasicontraction and
x, y ∈ X be such that

lim
n,m

p
(
Tnx,Tmx

)
= lim

n
p
(
y,Tnx

)
= p(y, y).

Then p(y, y) = p(y,Ty).

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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Proof Denote δn := p(y,Tnx) – p(Tnx,Tnx) and θn := p(y,Tn–x) – p(y, y) and notice that

p(y,Ty) ≤ δn + p
(
Tnx,Ty

)
≤ δn +max

{
αp

(
Tn–x,Ty

)
,αp

(
Tnx, y

)
,αp

(
Tn–x, y

)
,

αp
(
Tn–x,Tnx

)
,αp(y,Ty),p

(
Tn–x,Tn–x

)
,p(y, y)

}
implies, using p(Tn–x,Ty) ≤ θn + p(y,Ty), that

p(y,Ty) ≤ δn

( – α)
+max

{
α

( – α)
θn,αp

(
Tnx, y

)
,αp

(
Tn–x, y

)
,αp

(
Tn–x,Tnx

)
,

p
(
Tn–x,Tn–x

)
,p(y, y)

}
.

Now simply take the limit as n → ∞ in the above inequality. �

3 Main results
In this paper we study three extensions of Ćirić quasicontraction to a partial metric space.
For such mappings, we prove fixed point theorems. Among other things, we generalize a
recent result of Altun, Sola and Simsek, and we give some generalized versions of the fixed
point theorem of Matthews, and the main result of Ćirić is also recovered. The theory is
illustrated by some examples.

Theorem . Let (X,p) be a complete partial metric space and T : X → X be a p-
quasicontraction. Then
() for each x ∈ X , the sequence {Tnx}n≥ converges with respect to ps to some point ẋ

such that p(ẋ, ẋ) = p(ẋ,Tẋ);
() there is some u ∈ X such that u = Tu and p(u,u) = infx∈X p(ẋ, ẋ).

Proof By Lemmas . and . and completeness of (X,p), for each x ∈ X, there must be
some ẋ ∈ X with p(ẋ, ẋ) = p(ẋ,Tẋ) such that

p(ẋ, ẋ) = lim
n
p
(
ẋ,Tnx

)
= lim

n,m
p
(
Tnx,Tmx

)
= rx.

Also notice that we must have

p
(
Tnx,Tnx

) ≥ rx for all but finitely many n. (.)

Denote I := infx∈X rx = infx∈X p(ẋ, ẋ). Using the construction described bellow, we will
find a specific u ∈ X such that p(u,u) = p(u,Tu) = I and later on we prove that we must
actually have Tu = u for that particular point u. This will complete the proof.
Use (.) and (.) to find for each n ∈N some xn ∈ X and in ∈N such that

{
p
(
Tin–xn,Tin–xn

)
,p

(
Tin–xn,Tinxn

)
,

p
(
Tinxn,Tinxn

)
,p

(
Tinxn,Tin+xn

)} ⊆
[
I, I +


n

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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Set δ′
n,m := [p(Tinxn,Tin+xn) – p(Tin+xn,Tin+xn)] + [p(Timxm,Tim+xm) – p(Tim+xm,

Tim+xm)] and θ ′
n := p(Tinxn,Tin+xn) – p(Tinxn,Tinxn).

Now

p
(
Tinxn,Timxm

)
≤ δ′

n,m + p
(
Tin+xn,Tim+xm

)
≤ δ′

n,m +max
{
αp

(
Tinxn,Tim+xm

)
,αp

(
Tin+xn,Timxm

)
,αp

(
Tinxn,Timxm

)
,

αp
(
Tinxn,Tin+xn

)
,αp

(
Timxm,Tim+xm

)
,p

(
Tinxn,Tinxn

)
,p

(
Timxm,Timxm

)}

gives, using p(Tinxn,Tim+xm) ≤ p(Tinxn,Timxm) + θ ′
m and similarly p(Timxm,Tin+xn) ≤

p(Timxm,Tinxn + θ ′
n),

I ≤ p
(
Tinxn,Tinxn

) ≤ p
(
Tinxn,Timxm

)
≤ δ′

n,m

 – α
+max

{
αθ ′

m
 – α

,
αθ ′

n
 – α

, I +


min{n,m}
}
.

So limn,m p(Tinxn,Timxm) = I , and thus there is some u ∈ X such that

p(u,u) = lim
n,m

p
(
Tinxn,Timxm

)
= lim

n
p
(
u,Tinxn

)
= I = inf

x∈X rx. (.)

Let us show that

p(u,u) = p(u,Tu). (.)

Set λn := p(u,Tinxn) – p(Tinxn,Tinxn) and μn := p(u,Tin–xn) – p(u,u). From

p(u,Tu) ≤ λn + p
(
Tinxn,Tu

)
≤ λn +max

{
αp

(
Tin–xn,Tu

)
,αp

(
Tinxn,u

)
,αp

(
Tin–xn,u

)
,

αp
(
Tin–xn,Tinxn

)
,αp(u,Tu),p

(
Tin–xn,Tin–xn

)
,p(u,u)

}

it follows, using p(Tin–xn,Tu) ≤ p(u,Tu) +μn, that

p(u,Tu) ≤ λn

 – α
+max

{
αμn

 – α
,αp

(
Tinxn,u

)
,αp

(
Tin–xn,u

)
,

αp
(
Tin–xn,Tinxn

)
,p

(
Tin–xn,Tin–xn

)
,p(u,u)

}
,

so we must have p(u,Tu) ≤ p(u,u).
We now prove by induction on n ∈N∪ {} that

lim
k
p
(
Tik xk ,Tnu

)
= p(u,u) = I. (.)

For n = , this is just (.).

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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Now suppose that (.) holds for some n≥ . We have

I ≤ p
(
Timxm,Tn+u

)
≤ max

{
αp

(
Tim–xm,Tn+u

)
,αp

(
Timxm,Tnu

)
,αp

(
Tim–xm,Tnu

)
,

αp
(
Tim–xm,Timxm

)
,αp

(
Tnu,Tn+u

)
,p

(
Tim–xm,Tim–xm

)
,p

(
Tnu,Tnu

)}
.

From this, using

p
(
Tim–xm,Tn+u

) ≤ p
(
Timxm,Tn+u

)
+

[
p
(
Timxm,Tim–xm

)
– p

(
Timxm,Timxm

)]
≤ p

(
Timxm,Tn+u

)
+


m

(here we recall (.))

and

p
(
Tim–xm,Tnu

) ≤ p
(
Timxm,Tnu

)
+

[
p
(
Timxm,Tim–xm

)
– p

(
Timxm,Timxm

)]
≤ p

(
Timxm,Tnu

)
+


m

and

p
(
Tnu,Tn+u

) ≤ p
(
Timxm,Tn+u

)
+

[
p
(
Tnu,Timxm

)
– p

(
Timxm,Timxm

)]
and

p
(
Tnu,Tnu

) ≤ p(u,u), which follows after taking the limit as k → ∞ in

p
(
Tnu,Tnu

) ≤ p
(
Tnu,Tik xk

)
– p

(
Tik xk ,Tik xk

)
,

we deduce that

I ≤ p
(
Timxm,Tn+u

)
≤ max

{
α

( – α)m
,α

[
p
(
Timxm,Tnu

)
+


m

]
,

α

( – α)
[
p
(
Timxm,Tnu

)
– p

(
Timxm,Timxm

)]
, I +


m
,p(u,u)

}
.

The last inequality, in view of the induction hypothesis and (.), immediately gives

lim
m

p
(
Timxm,Tn+u

)
= p(u,u) = I.

We finally prove Tu = u. By (.) we only need to show p(Tu,Tu) = p(u,u). For a proof
by contradiction, assume this is not the case. Then p(Tu,Tu) < p(u,u) = I .
Set y := Tu. By (.) and ry ≥ I , there must be some j ≥  such that p(Tjy,Tjy) ≥ I .

Let m be the least such j. By our assumption, we must have m ≥ . Then p(Tjy,Tjy) <
p(Tmy,Tmy) for all  ≤ j < m. Thus by Lemma . there must be some i, j ∈ {, , . . . ,m}
such that p(Tmy,Tmy) ≤ αmp(Tiy,Tjy). So

I ≤ p
(
Tmy,Tmy

) ≤ αmp
(
Ti+u,Tj+u

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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We have p(Ti+u,Tj+u) ≤ I , which follows by (.) and (.) after taking the limit as
n → ∞ in p(Ti+u,Tj+u) ≤ p(Ti+u,Tinxn) + p(Tinxn,Tj+u) – p(Tinxn,Tinxn). But m ≥ 
now yields I ≤ αI , i.e.,  = I > p(Tu,Tu), a contradiction. �

Theorem . Let (X,p) be a complete partial metric space and T : X → X be a p-
quasicontraction. Then there is a unique fixed point u ∈ X of T . For each x ∈ X, the se-
quence {Tnx}n≥ converges with respect to ps to some point ẋ such that p(ẋ, ẋ) = p(ẋ,Tẋ),
and there is the equality p(u,u) = infx∈X p(ẋ, ẋ).

Proof By Theorem . it remains to verify the uniqueness of the fixed point, so let u, v ∈ X
be such that Tu = u and Tv = v. By (.) we have

p(u, v) = p(Tu,Tv) ≤max

{
αp(u, v),

p(u,u) + p(v, v)


}
.

Hence either p(u, v) =  or  ≥ p(u, v) – p(u,u) – p(v, v) = ps(u, v) and the assertion fol-
lows. �

Theorem . Let (X,p) be a -complete partial metric space and T : X → X be a p-
quasicontraction. Then there is a unique fixed point u ∈ X of T . Furthermore, we have
p(u,u) =  and for each x ∈ X the sequence {Tnx}n≥ converges to u with respect to ps.

Proof By Lemma . we have limn,m p(Tnx,Tmx) = rx. Also rx < ∞ by Lemma ..
If we had rx > , then there would be some positive ε < rx(–α)

+α
and n ∈ N such that

p(Tix,Tjx) ∈ (rx – ε, rx + ε) for all i, j ∈ {n – ,n}. Thus by (.) there would be some
i, j ∈ {n – ,n} such that

rx – ε < p
(
Tnx,Tnx

) ≤ αp
(
Tix,Tjx

) ≤ α(rx + ε),

i.e., rx(–α)
+α

< ε, a contradiction.
So rx =  and thus by -completeness of (X,p) there is some u ∈ X such that limn,m p(Tnx,

Tmx) = limn p(u,Tnx) = p(u,u) = . But by Lemma . we have p(u,Tu) = p(u,u) =  so
Tu = u. The argument for uniqueness of the fixed point is standard. �

Remark . Recently a very interesting paper by Haghi, Rezapour and Shahzad []
showed up in which the authors associated to each partial metric space (X,p) a metric
space (X,d) by setting d(x,x) =  and d(x, y) = p(x, y) if x �= y and proved that (X,p) is
-complete if and only if (X,d) is complete. They then proceeded to demonstrate how
using the associated metric d some of the fixed point results in partial metric spaces can
easily be deduced from the corresponding known results in metric spaces.
Let us point out that these considerations can apply neither to p-quasicontractions nor

to p-quasicontractions, since the terms p(x,x) and p(y, y) on the right-hand side of (.)
and 

 (p(x,x) + p(y, y)) on the right-hand side of (.) do not get multiplied by α. Thus
Theorems . and . cannot follow from the result of Ćirić they generalize.
On the other hand, using the approach of Haghi, Rezapour and Shahzad, we now show

how Theorem . can be directly deduced from Ćirić’s result [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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Given the assumptions of Theorem ., let d be defined as said above. So (X,d) is a
complete metric space (see Proposition . of []). Observe that we have d(x, y) ≤ p(x, y)
for all x, y ∈ X. For x, y ∈ X, set

S(x, y) =
{
(x, y), (x,Tx), (x,Ty), (y,Ty), (y,Tx)

}
and also Mp(x, y) = max{p(a,b) | (a,b) ∈ S(x, y)} and Md(x, y) = max{d(a,b) | (a,b) ∈
S(x, y)}. We thus have that

p(Tx,Ty) ≤ αMp(x, y)

for all x, y ∈ X.We check that for all x, y ∈ X it holds d(Tx,Ty) ≤ αMd(x, y), so that themain
result from [] can immediately be applied. Since in the case x = y the inequality trivially
holds, suppose x �= y. So p(x, y) = d(x, y).
Since d(Tx,Ty) ≤ p(Tx,Ty) ≤ αMp(x, y), it suffices to show that Mp(x, y) ≤ Md(x, y). Let

(c, e) ∈ S(x, y) be such that Mp(x, y) = p(c, e). If c �= e, then Mp(x, y) = p(c, e) = d(c, e) ≤
Md(x, y). If c = e, then, since c ∈ {x, y}, it follows that Mp(x, y) = p(c, c) ≤ max{p(x,x),
p(y, y)} ≤ p(x, y) = d(x, y) ≤Md(x, y).

Remark . Even though the results of Haghi et al. can deduce the same fixed point as the
corresponding partialmetric fixed point result, using the partialmetric version computers
evaluate faster sincemany nonsense terms are omitted. This is very important in computer
science due to its cost and explains the vast body of partial metric fixed point results found
in literature.

Now we give corollaries of the above theorems.

Corollary . ([]) Let (X,p) be a complete partialmetric space, α ∈ [, ) and T : X → X
be a given mapping. Suppose that for each x, y ∈ X, the following condition holds:

p(Tx,Ty) ≤max
{
αp(x, y),p(x,x),p(y, y)

}
. (.)

Then
() the set Xp := {x ∈ X | p(x,x) = infy∈X p(y, y)} is nonempty;
() there is a unique u ∈ Xp such that Tu = u;
() for each x ∈ Xp, the sequence {Tnx}n≥ converges with respect to the metric ps to u.

Proof Put ρp := infx∈X p(x,x) and I := infx∈X p(ẋ, ẋ). Note that (.) implies p(Tx,Tx) ≤
p(x,x) for all x ∈ X. So, from p(ẋ, ẋ) = limn p(Tnx,Tnx) and p(Tn+x,Tn+x) ≤ p(Tnx,Tnx),
n ≥ , we see that p(ẋ, ẋ) ≤ p(Tx,Tx) = p(x,x). Thus ρp = I . By Theorem ., there is
some u ∈ X with Tu = u and p(u,u) = ρp. This means that u ∈ Xp �= ∅. Now let x ∈ Xp be
arbitrary. Since ρp ≤ p(ẋ, ẋ) ≤ p(Tnx,Tnx) ≤ p(x,x) = ρp, for all n ∈ N, we have p(ẋ, ẋ) =
p(Tnx,Tnx) = ρp = p(u,u), and so limn,m p(Tnx,Tmx) = p(u,u). Also, from p(u,Tn+x) ≤
{αp(u,Tnx),ρp} using p(u,Tnx) ≤ p(u,Tn+x) + p(Tn+x,Tnx) – p(Tn+x,Tn+x), it follows

ρp ≤ p
(
u,Tn+x

) ≤
{

α

 – α

[
p
(
Tn+x,Tnx

)
– p

(
Tn+x,Tn+x

)]
,ρp

}
.

Hence limn p(u,Tnx) = ρp = p(u,u).

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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Finally, if v ∈ Xp is a fixed point, then by the preceding discussion p(u,u) = limn p(Tnv,
Tnv) = limn p(u,Tnv), i.e., p(u,u) = p(v, v) = p(u, v) so u = v. �

Corollary . Let (X,p) be a complete partial metric space, α ∈ [, ) and T : X → X be a
given mapping. Suppose that for each x, y ∈ X, the following condition holds:

p(Tx,Ty) ≤max

{
αp(x, y),

p(x,x) + p(y, y)


}
. (.)

Then there is a unique z ∈ X such that Tz = z. Furthermore, z ∈ Xp and for each x ∈ Xp, the
sequence {Tnx}n≥ converges with respect to the metric ps to z.

As a corollary we obtain the already mentioned result of Matthews (see also Corollary 
of [] and []). Let us remark that the result of Matthews is for a complete partial metric
space, but it is true for a -complete partial metric space.

Corollary . (Matthews []) Let (X,p) be a -complete partial metric space, α ∈ [, )
and T : X → X be a given mapping. Suppose that for each x, y ∈ X, the following condition
holds:

p(Tx,Ty) ≤ αp(x, y). (.)

Then there is a unique z ∈ X such that Tz = z. Also p(z, z) =  and for each x ∈ X the se-
quence {Tnx}n≥ converges with respect to the metric ps to z.

Remark . In the case p = ρ is a metric, by Theorem ., the main result of Ćirić [] is
recovered. Theorem . also implies Corollaries - of [], and the next Hardy and Rogers
type [] fixed point result. This result, under some extra conditions, was proved as one
of the main results, Theorem  of [].

Corollary . Let (X,p) be a -complete partial metric space, a,b, c,d, e ≥ ,  ≤ a + b +
c+d+e < , and T : X → X be a givenmapping. Suppose that for each x, y ∈ X, the following
condition holds:

p(Tx,Ty) ≤ ap(x, y) + bp(x,Tx) + cp(x,Ty) + dp(Tx, y) + ep(y,Ty). (.)

Then there is a unique z ∈ X such that Tz = z. Also p(z, z) =  and for each x ∈ X the se-
quence {Tnx}n≥ converges with respect to the metric ps to z.

Example . Let X := [, ]∪ [, ] and define p : X →R by

p(x, y) =

{
max{x, y}, {x, y} ∩ [, ] �= ∅,
|x – y|, {x, y} ⊆ [, ].

Then (X,p) is a complete partial metric space. Define T : X → X by

Tx =

⎧⎪⎨
⎪⎩

x+
 ,  ≤ x≤ ,
, x = ,
+x
 ,  < x ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/303
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If  < x ≤ y ≤ , then it is easy to see that p(Tx,Ty) = +y
 and M(x, y) = y. Given any

λ ∈ [, ), we have that p(Tx,Ty) > λM(x, y) holds for all  < x ≤ y ≤  if λ ≤ 
 , i.e., for all

 < x ≤ y < 
λ– if λ > 

 . On the other hand, we have that

p(Tx,Ty) ≤ 

p(x, y), {x, y} ⊆ [, ]

and

p(Tx,Ty) ≤ p(x,x) + p(y, y)


, {x, y} ∩ [, ] �= ∅.

Thus T is a p-quasicontraction on X which is not a p-quasicontraction. By Theorem .,
there is a unique fixed point z = . Also we have p(, ) =  =min{p(x,x) | x ∈ X}.

Example . Denote by X∞ the set of all sequences x :N→N and for n ∈N by Xn the set
of all n-tuples x : {, . . . ,n} → N of positive integers. Put X := X∞ ∪ ⋃

n∈NXn. For x, y ∈ X,
set

I(x, y) =
{
i ∈N∪ {} | [j ∈ dom(x)∩ dom(y)∧ j ≤ i

] ⇒ x(j) = y(j)
}

and define p(x, y) := inf{ 
i | i ∈ I(x, y)} (thus if x() �= y(), then I(x, y) = {} and p(x, y) = ).

Here ‘dom(x)’ stands for the domain of the function x. Then (X,p) is a partial metric space
(see []) and a complete one as can easily be verified.
Define T : X → X by Tx = y, where:
- x ∈ X∞ ⇒ y ∈ X∞ and x ∈ Xn ⇒ y ∈ Xn+;
- y() = , i ∈ dom(x) \ {} ⇒ y(i) =min{x(i),x(i – )} (this condition is vacuous if x ∈ X)
and if in addition x ∈ Xn, then y(n + ) = .

Note that taking, e.g., x = (, , ) and y = (, , ), we have Tx = (, , , ) and Ty =
(, , , ) so p(Tx,Ty) = 

 = p(x, y) > 
 = p(x,x) = p(y, y). Thus the contractive condition of

Corollary . is not satisfied. Nevertheless, there is a unique fixed point ofT - the sequence
s∞ :N →N defined by s∞(i) =  for all i ∈ N. We will show that T is a p-quasicontraction.
Consider arbitrary x, y ∈ X.
Case . There is a nonnegative integer i with i +  ∈ dom(x)∩ dom(y) such that x(i + ) �=

 ∨ y(i + ) �= . Denote by k the least such nonnegative integer. Thus k =  simply means
that x() �= ∨ y() �=  and if k ≥ , then for all i ∈N with i≤ k, we must have x(i) = y(i) = .
If x(k + ) �= y(k + ), then p(x, y) = 

k so p(Tx,Ty) ≤ 
k+ =


p(x, y).

If x(k + ) = y(k + ), then p(x,Tx) = 
k (because in this case we must have x(k + ) =

y(k + ) �=  but (Tx)(k + ) = ). Hence p(Tx,Ty) ≤ 
k+ =


p(x,Tx).

Case . x(i) =  for all i ∈ dom(x) and x ⊆ y (meaning dom(x) ⊆ dom(y) and x is the
restriction of y to the set dom(x)).
If x ∈ Xn, then p(Tx,Ty) = 

n+ =

p(x, y).

If x ∈ X∞, then x = y = s∞ = Tx, and so p(Tx,Ty) = .
Case . y(i) =  for all i ∈ dom(y) and y ⊆ x. This reduces to the previous case.
To illustrate the role condition (.) plays in ensuring the uniqueness of the fixed point,

we modify a bit the definition of the operator T to obtain the operator T : X → X deter-
mined by Tx = y if and only if
- dom(y) = dom(x);
- y() =  and i ∈ dom(x) \ {} ⇒ y(i) =min{x(i),x(i – )}.
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T has infinitely many fixed points - these are exactly the sequence s∞ and the restric-
tions sn = (, . . . ,n) of s∞ to the sets {, . . . ,n}. Due to the existence of infinitely many fixed
points, T cannot be a p-quasicontraction. We verify that T is a p-quasicontraction.
Given arbitrary x, y ∈ X, we distinguish three cases exactly as we didwith the operatorT .
Case . There is a nonnegative integer i with i +  ∈ dom(x)∩ dom(y) such that x(i + ) �=

 ∨ y(i + ) �= . This is handled exactly as in the corresponding case with the operator T :
if k is the least such nonnegative integer, then p(Tx,Ty) ≤ 

p(x, y) or p(Tx,Ty) ≤ 
p(x,Tx)

according to whether x(k + ) �= y(k + ) or x(k + ) = y(k + ), respectively.
Case . x(i) =  for all i ∈ dom(x) and x ⊆ y. If x ∈ Xn, then Tx = x, and so p(Tx,Ty) =


n = p(x,x). If x ∈ X∞, then x = y = s∞ = Tx, so p(Tx,Ty) = .
Case . y(i) =  for all i ∈ dom(y) and y ⊆ x. This reduces to the previous case.
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