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Abstract
In this paper, we investigate a class of accretive mappings called the H(·, ·)-mixed
mappings in Banach spaces. We prove that the proximal-point mapping associated
with the H(·, ·)-mixed mapping is single-valued and Lipschitz continuous. Some
examples are given to justify the definition of H(·, ·)-mixed mapping. Further, a
concept of graph convergence concerned with the H(·, ·)-mixed mapping is
introduced in Banach spaces and some equivalence theorems between
graph-convergence and proximal-point mapping convergence for the H(·, ·)-mixed
mappings sequence are proved. As an application, we consider a system of
generalized variational inclusions involving H(·, ·)-mixed mappings in real q-uniformly
smooth Banach spaces. Using the proximal-point mapping method, we prove the
existence and uniqueness of solution and suggest an iterative algorithm for the
system of generalized variational inclusions. Furthermore, we discuss the
convergence criteria for the iterative algorithm under some suitable conditions.
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1 Introduction
Variational inclusions, as the generalization of variational inequalities, have been widely
studied in recent years. Someof themost interesting and important problems in the theory
of variational inclusions include variational, quasi-variational, variational-like inequalities
as special cases. For applications of variational inclusions, we refer to []. Various kinds
of iterative methods have been studied to solve the variational inclusions. Among these
methods, the proximal-point mapping technique for the study of variational inclusions
has been widely used by many authors. For details, we refer to [–].
In , Huang and Fang [] were the first to introduce the generalized m-accretive

mapping and give the definition of the proximal-point mapping for the generalized
m-accretive mapping in Banach spaces. Since then a number of researchers have inves-
tigated several classes of generalized m-accretive mappings such as H-accretive, H ,η-
accretive, (P,η)-proximal-point, (P,η)-accretive, A-maximal relaxed accretive, (A,η)-
accretive mappings. For details, we refer to [, , , , , , , ].
Recently, Zou and Huang [, ] introduced and studied H(·, ·)-accretive mappings;

Kazmi et al. [–] introduced and studied generalizedH(·, ·)-accretive mappings,H(·, ·)-
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η-proximal-point mappings. Very recently, Li and Huang [] studied the graph conver-
gence for the H(·, ·)-accretive mapping and showed the equivalence between graph con-
vergence and proximal-point mapping convergence for the H(·, ·)-accretive mapping se-
quence in aBanach space, andVerma [] studied the graph convergence for anA-maximal
relaxedmonotonemapping and gave the equivalence between the graph convergence and
the proximal-point mapping convergence for the A-maximal relaxed monotone mapping
sequence in a Hilbert space. They extended the concept of graph convergence introduced
and considered by Attouch [].
Motivated by the research work going on in this direction, we consider a class of accre-

tive mappings calledH(·, ·)-mixed mappings, a natural generalization of accretive (mono-
tone)mappings in Banach spaces. For related work, we refer to [–, , , , –].We
prove that the proximal-point mapping of the H(·, ·)-mixed mapping is single-valued and
Lipschitz continuous and extends the concept of proximal-pointmappings associatedwith
the H(·, ·)-accretive mappings to the H(·, ·)-mixed mappings. Further, we study the graph
convergence for theH(·, ·)-mixedmappings.We present an equivalence theorem between
graph convergence and proximal-point mapping convergence for the H(·, ·)-mixed map-
ping sequence in Banach spaces. As an application, we consider a system of generalized
variational inclusions involving the H(·, ·)-mixed mappings in real q-uniformly smooth
Banach spaces. Using the proximal-point mapping method, we prove the existence and
uniqueness of solution and suggest an iterative algorithm for the system of generalized
variational inclusions. Furthermore, we discuss the convergence criteria of the iterative
algorithm under some suitable conditions. Our results can be viewed as a generalization
of some known results given in [, , –].

2 Preliminaries
Let X be a real Banach space equipped with the norm ‖ · ‖, and let X∗ be the topological
dual space of X. Let 〈·, ·〉 be the dual pair between X and X∗, and let X be the power set
of X.

Definition . [] For q > , a mapping Jq : X → X∗ is said to be a generalized duality
mapping if it is defined by

Jq(x) =
{
f ∗ ∈ X∗ :

〈
x, f ∗〉 = ‖x‖q,∥∥f ∗∥∥ = ‖x‖q–}, ∀x ∈ X.

In particular, J is the usual normalized duality mapping on X. It is known that, in gen-
eral,

Jq(x) = ‖x‖q–J(x) ∀x(	= ) ∈ X.

If X ≡H a real Hilbert space, then J becomes an identity mapping on H .

Definition . [] A Banach space X is called smooth if, for every x ∈ X with ‖x‖ = ,
there exists a unique f ∈ X∗ such that ‖f ‖ = f (x) = .
Themodulus of smoothness of X is a function ρX : [,∞) → [,∞) defined by

ρX(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ t

}
.
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Definition . [] A Banach space X is called
(i) uniformly smooth if

lim
t→

ρX(t)
t

= ;

(ii) q-uniformly smooth, for q > , if there exists a constant c >  such that

ρX(t) ≤ ctq, t ∈ [,∞).

Note that Jq is single-valued if X is uniformly smooth. Concerned with the characteristic
inequalities in q-uniformly smooth Banach spaces, Xu [] proved the following result.

Lemma. Let X be a real uniformly smooth Banach space.Then X is q-uniformly smooth
if and only if there exists a constant cq >  such that, for all x, y ∈ X,

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q.

From Lemma  of Liu [], it is easy to have the following lemma.

Lemma . Let {an} and {bn} be two nonnegative real sequences satisfying

an+ ≤ kan + bn

with  < k <  and bn → . Then limn→∞ an = .

Definition . Let G : X → X be a single-valued mapping. Then
(i) G is said to be accretive if

〈
G(x) –G(y), Jq(x – y)

〉 ≥ , ∀x, y ∈ X;

(ii) G is said to be ξ -strongly accretive if there exists a constant ξ >  such that

〈
G(x) –G(y), Jq(x – y)

〉 ≥ ξ‖x – y‖q, ∀x, y ∈ X;

(iii) G is said to be μ-cocoercive if there exists a constant μ >  such that

〈
G(x) –G(y), Jq(x – y)

〉 ≥ μ
∥∥G(x) –G(y)

∥∥q, ∀x, y ∈ X;

(iv) G is said to be λG-Lipschitz continuous if there exists a constant λG >  such that

∥∥G(x) –G(y)
∥∥ ≤ λG‖x – y‖, ∀x, y ∈ X;

(v) G is said to be α-expansive if there exists a constant α >  such that

∥∥G(x) –G(y)
∥∥ ≥ α‖x – y‖, ∀x, y ∈ X;

if α = , then it is expansive.
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Definition . Let H : X ×X → X and A,B : X → X be three single mappings. Then
(i) H(A, ·) is said to be μ-cocoercive with respect to A if there exists a constant μ > 

such that

〈
H(Ax,u) –H(Ay,u), Jq(x – y)

〉 ≥ μ‖Ax –Ay‖q, ∀x, y,u ∈ X;

(ii) H(·,B) is said to be γ -relaxed accretive with respect to B if there exists a constant
γ >  such that

〈
H(u,Bx) –H(u,By), Jq(x – y)

〉 ≥ (–γ )‖x – y‖q, ∀x, y,u ∈ X;

(iii) H(A, ·) is said to be r-Lipschitz continuous with respect to A if there exists a
constant r >  such that

∥∥H(Ax, ·) –H(Ay, ·)∥∥ ≤ r‖x – y‖, ∀x, y ∈ X;

(iv) H(·,B) is said to be r-Lipschitz continuous with respect to B if there exists a
constant r >  such that

∥∥H(·,Bx) –H(·,By)∥∥ ≤ r‖x – y‖, ∀x, y ∈ X.

Example . Let us consider the -uniformly smooth Banach spaceX =R
 with the usual

inner product. Let A,B :R →R
 be defined by

Ax =

(
mx –mx

–mx + mx

)
, By =

(
–my +my
–my –my

)

for all scalersm ∈ R and for all x = (x,x), y = (y, y) ∈R
.

Suppose that H : R × R
 → R

 is defined by H(Ax,By) = Ax + By, then H(A,B)
is 

m -cocoercive with respect to A and m-relaxed accretive with respect to B, and√
m-Lipschitz continuous with respect toA and

√
m-Lipschitz continuous with respect

to B.

Indeed, let for any u ∈ X,

〈
H(Ax,u) –H(Ay,u),x – y

〉
= 〈Ax –Ay,x – y〉
=

〈
(mx –mx, –mx + mx) – (my –my, –my + my),

(x – y,x – y)
〉

=
〈(
m(x – y) –m(x – y), –m(x – y) + m(x – y)

)
,

(x – y,x – y)
〉

=m(x – y) – m(x – y)(x – y) + m(x – y),

‖Ax –Ay‖ = 〈Ax –Ay,Ax –Ay〉
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=
〈(
(mx –mx, –mx + mx) – (my –my, –my + my)

)
,(

(mx –mx, –mx + mx) – (my –my, –my + my)
)〉

= m(x – y) – m(x – y)(x – y) + m(x – y)

≤ m(x – y) – m(x – y)(x – y) + m(x – y)

= m
{
m(x – y) – m(x – y)(x – y) + m(x – y)

}
= m

{〈
H(Ax,u) –H(Ay,u),x – y

〉}
,

which implies that

〈
H(Ax,u) –H(Ay,u),x – y

〉 ≥ 
m

‖Ax –Ay‖,

that is, H(A,B) is 
m -cocoercive with respect to A.

〈
H(u,Bx) –H(u,By),x – y

〉
= 〈Bx – By,x – y〉
= 〈Bx – By,x – y〉
=

〈
(–mx +mx, –mx –mx) – (–my +my, –my –my),

(x – y,x – y)
〉

=
〈(
–m(x – y) +m(x – y), –m(x – y) –m(x – y)

)
,

(x – y,x – y)
〉

= –m(x – y) –m(x – y)

= –m
{
(x – y) + (x – y)

}
≥ –m‖x – y‖,

which implies that

〈
H(u,Bx) –H(u,By),x – y

〉 ≥ (–m)‖x – y‖,

that is, H(A,B) ism-relaxed accretive with respect to B.

∥∥H(Ax,u) –H(Ay,u)
∥∥ = ‖Ax –Ay‖ = 〈Ax –Ay,Ax –Ay〉

=
〈(
(mx –mx, –mx + mx) – (my –my, –my + my)

)
,(

(mx –mx, –mx + mx) – (my –my, –my + my)
)〉

= m(x – y) – m(x – y)(x – y) + m(x – y)

≤ m(x – y) + m(x – y),

which implies that

∥∥H(Ax,u) –H(Ay,u)
∥∥ ≤ √

m‖x – y‖,
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that is, H(A,B) is
√
m-Lipschitz continuous with respect to A.

∥∥H(u,Bx) –H(u,By)
∥∥ = ‖Bx – By‖ = 〈Bx – By,Bx – By〉

=
〈(
(–mx +mx, –mx –mx) – (–my +my, –my –my)

)
,(

(–mx +mx, –mx –mx) – (–my +my, –my –my)
)〉

= m(x – y) + m(x – y)

which implies that

∥∥H(u,Bx) –H(u,By)
∥∥ ≤ √

m‖x – y‖,

that is, H(A,B) is
√
m-Lipschitz continuous with respect to B.

Definition . Let η : X × X → X and H ,A,B : X → X be mappings. Let M : X → X be
a set-valued mapping. Then

(i) η is said to be τ -Lipschitz continuous if there exists a constant τ >  such that

∥∥η(x, y)
∥∥ ≤ τ‖x – y‖, ∀x, y ∈ X;

(ii) M is said to be accretive if

〈
u – v, Jq(x – y)

〉 ≥ , ∀x, y ∈ X,u ∈Mx, v ∈My;

(iii) M is said to be μ′-strongly accretive if there exists a constant μ′ >  such that

〈
u – v, Jq(x – y)

〉 ≥ μ′‖x – y‖q, ∀x, y ∈ X,u ∈Mx, v ∈My;

(iv) M is said to bem-relaxed accretive if there exists a constant m >  such that

〈
u – v, Jq(x – y)

〉 ≥ –m‖x – y‖q, ∀x, y ∈ X,u ∈Mx, v ∈My;

(v) M is said to be η-accretive if

〈
u – v, Jq

(
η(x, y)

)〉 ≥ , ∀x, y ∈ X,u ∈Mx, v ∈My;

(vi) M is said to be strictly η-accretive ifM is η-accretive and equality holds if and only
if x = y;

(vii) M is said to be γ -strongly η-accretive if there exists a constant γ >  such that

〈
u – v, Jq

(
η(x, y)

)〉 ≥ γ ‖x – y‖q, ∀x, y ∈ X,u ∈Mx, v ∈My;

(viii) M is said to be α-relaxed η-accretive if there exists a constant α >  such that

〈
u – v, Jq

(
η(x, y)

)〉 ≥ (–α)‖x – y‖q, ∀x, y ∈ X,u ∈ Mx, v ∈My;

http://www.fixedpointtheoryandapplications.com/content/2013/1/304
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(ix) M is said to bem-accretive ifM is accretive and (I + ρM)(X) = X for all ρ > ,
where I denotes the identity operator on X ;

(x) M is said to be generalized m-accretive ifM is η-accretive and (I + ρM)(X) = X for
all ρ > ;

(xi) M is said to be H-accretive ifM is accretive and (H + ρM)(X) = X for all ρ > ;
(xii) M is said to be (H ,η)-accretive ifM is η-accretive and (H + ρM)(X) = X for all

ρ > ;
(xiii) M is said to be (A,η)-accretive ifM is m-relaxed η-accretive and (A + ρM)(X) = X

for all ρ > .

Definition . [] Let A,B : X → X, H : X × X → X be three single-valued mappings.
LetM : X → X be a set-valuedmapping. ThenM is said to beH(·, ·)-accretivewith respect
to A and B ifM is accretive and (H(·, ·) + ρM)(X) = X for all ρ > .

3 H(·, ·)-mixedmappings
In this section, we introduce the H(·, ·)-mixed mapping and show some of its properties.

Definition . Let H : X × X → X, A,B : X → X be three single-valued mappings. Let
H(A,B) be μ-cocoercive with respect to A, γ -relaxed accretive with respect to B. Then
the set-valued mapping M : X → X is said be H(·, ·)-mixed with respect to mappings A
and B if

(i) M is m-relaxed accretive;
(ii) (H(A,B) + ρM)(X) = X for all ρ > .

Example . Let X, H , A, B be the same as in Example ., and M :R → R
 be defined

byM(x) = (–π , –x), ∀x = (x,x) ∈R
.

We claim that M is a -relaxed accretive mapping. Indeed, for any x = (x,x), y =
(y, y) ∈R



〈Mx –My,x – y〉 = 〈
(–π , –x) – (–π , –y),

(
(x – y), (x – y)

)〉
=

〈(
,–(x – y)

)
,
(
(x – y), (x – y)

)〉
= –(x – y)

≥ –
{
(x – y) + (x – y)

}
≥ –‖x – y‖,

〈Mx –My,x – y〉 ≥ (–)‖x – y‖.

Furthermore, M is also an H(·, ·)-mixed mapping since (H(A,B) + ρM)(R) = R
 for any

ρ > .

Proposition . Let the set-valued mapping M : X → X be an H(·, ·)-mixed mapping
with respect to mappings A and B. If A is α-expansive and μ > γ with r = μαq – γ > m,
then the following inequality holds:

〈
x – y, Jq(u – v)

〉 ≥ , ∀(v, y) ∈ graph(M), implies x ∈ Mu.

http://www.fixedpointtheoryandapplications.com/content/2013/1/304
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Proof Suppose on contrary that there exists (u,x) /∈ graphM such that

〈
x – y, Jq(u – v)

〉 ≥ , ∀(v, y) ∈ graph(M). (.)

SinceM is anH(·, ·)-mixed mapping, we know that (H(A,B) +ρM)(X) = X holds for every
ρ > , and so there exists (u,x) ∈ graph(M) such that

H(Au,Bu) + ρx =H(Au,Bu) + ρx ∈ X. (.)

Now

ρx – ρx =H(Au,Bu) –H(Au,Bu) ∈ X,〈
ρx – ρx, Jq(u – u)

〉
=

〈
H(Au,Bu) –H(Au,Bu), Jq(u – u)

〉
.

Setting (v, y) = (u,x) in (.) and then from the resultant (.) and m-relaxed accretivity
ofM, we obtain

–m‖u – u‖q ≤ ρ
〈
x – x, Jq(u – u)

〉
= –

〈
H(Au,Bu) –H(Au,Bu), Jq(u – u)

〉
= –

〈
H(Au,Bu) –H(Au,Bu), Jq(u – u)

〉
–

〈
H(Au,Bu) –H(Au,Bu), Jq(u – u)

〉
. (.)

SinceH(A,B) is μ-cocoercive with respect to A and γ -relaxed accretive with respect to B,
and A is α-expansive, thus (.) becomes

–m‖u – u‖q ≤ –μ‖Au –Au‖q + γ ‖u – u‖q

≤ –μα‖u – u‖q + γ ‖u – u‖q

≤ –
(
μαq – γ

)‖u – u‖q

= –r‖u – u‖q ≤ , where r = μαq – γ

≤ –(r –m)‖u – u‖q ≤ .

It implies that u = u since r >m. By (.), we have x = x, a contradiction. This completes
the proof. �

Theorem . Let the set-valued mapping M : X → X be an H(·, ·)-mixed mapping with
respect to mappings A and B. If A is α-expansive and μ > γ with r = μαq – γ > ρm, then
(H(A,B) + ρM)– is single-valued.

Proof For any given u ∈ X, let x, y ∈ (H(A,B) + ρM)–(u). It follows that

–H(Ax,Bx) + u ∈ ρMx,

–H(Ay,By) + u ∈ ρMy.

http://www.fixedpointtheoryandapplications.com/content/2013/1/304
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SinceM ism-relaxed accretive, we have

–m‖x – y‖q ≤ 
ρ

〈
–H(Ax,Bx) + u –

(
–H(Ay,By) + u

)
, Jq(x – y)

〉
,

–mρ‖x – y‖q = –
〈
H(Ax,Bx) –H(Ay,Bx), Jq(x – y)

〉
–

〈
H(Ay,Bx) –H(Ay,By), Jq(x – y)

〉
,

which is like (.).Hence it follows that ‖x–y‖ ≤ . This implies that x = y and so (H(A,B)+
ρM)– is single-valued. �

Definition . Let the set-valued mappingM : X → X be anH(·, ·)-mixedmapping with
respect to mappings A and B. If A is α-expansive and μ > γ with r = μαq – γ > ρm, then
the proximal-point mapping RH(·,·)

ρ,M : X → X is defined by

RH(·,·)
ρ,M (u) =

(
H(A,B) + ρM

)–(u), ∀u ∈ X. (.)

Nowwe prove that the proximal-pointmapping defined by (.) is Lipschitz continuous.

Theorem . Let the set-valued mapping M : X → X be an H(·, ·)-mixed mapping with
respect to mappings A and B. If A is α-expansive and μ > γ with r = μαq – γ > ρm, then
the proximal-point mapping RH(·,·)

ρ,M : X → X is 
r–ρm-Lipschitz continuous, that is,

∥∥RH(·,·)
ρ,M (u) – RH(·,·)

ρ,M (v)
∥∥ ≤ 

r – ρm
‖u – v‖, ∀u, v ∈ X.

Proof Let u and v ∈ X be any given points in X. It follows from (.) that

⎧⎨
⎩RH(·,·)

ρ,M (u) = H((A,B) + ρM)) – (u),

RH(·,·)
ρ,M (v) = H((A,B) + ρM)) – (v),


ρ
(u –H

(
A

(
RH(·,·)

ρ,M (u)
)
,B

(
RH(·,·)

ρ,M (u)
)) ∈ M

(
RH(·,·)

ρ,M (u)
)
,


ρ
(v –H

(
A

(
RH(·,·)

ρ,M (v)
)
,B

(
RH(·,·)

ρ,M (v)
)) ∈M

(
RH(·,·)

ρ,M (v)
)
.

Let z = RH(·,·)
ρ,M (u) and z = RH(·,·)

ρ,M (v).
SinceM ism-relaxed accretive, we have


ρ

〈
(u –H

(
A(z),B(z)

)
–

(
v –H

(
A(z),B(z)

))
, Jq(z – z)

〉 ≥ –m‖z – z‖q,
〈
u – v –

(
H

(
A(z),B(z)

)
–H

(
A(z),B(z)

))
, Jq(z – z)

〉 ≥ –ρm‖z – z‖q,

which implies that

‖u – v‖‖z – z‖q– ≥ 〈
u – v, Jq(z – z)

〉
≥ 〈

H
(
A(z),B(z)

)
–H

(
A(z),B(z)

)
, Jq(z – z)

〉
– ρm‖z – z‖q

http://www.fixedpointtheoryandapplications.com/content/2013/1/304
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≥ 〈
H

(
A(z),B(z)

)
–H

(
A(z),B(z)

)
, Jq(z – z)

〉
–

〈
H

(
A(z),B(z)

)
–H

(
A(z),B(z)

)
, Jq(z – z)

〉
– ρm‖z – z‖q

≥ μ
∥∥A(z) –A(z)

∥∥q – γ ‖z – z‖q – ρm‖z – z‖q

≥ μαq‖z – z‖q – γ ‖z – z‖q – ρm‖z – z‖q

=
(
μαq – γ – ρm

)‖z – z‖q,
= (r – ρm)‖z – z‖q, where r = μαq – γ ,

and hence

‖u – v‖‖z – z‖q– ≥ (r – ρm)‖z – z‖q,

that is,

∥∥RH(·,·)
ρ,M (u) – RH(·,·)

ρ,M (v)
∥∥ ≤ 

r – ρm
‖u – v‖, ∀u, v ∈ X.

This completes the proof. �

4 Graph convergence for an H(·, ·)-mixedmapping
LetM : X → X be a set-valued mapping. The graph of the mapM is defined by

graph(M) =
{
(x, y) ∈ X ×X : y ∈M(X)

}
.

In this section we shall introduce the graph convergence for the H(·, ·)-mixed mapping.

Definition . Let Mn,M : X → X be the set-valued mappings such that M, Mn are
H(·, ·)-mixed mappings with respect to the mappings A and B for n = , , , . . . . The se-

quence {Mn} is said to be graph convergent to M, denoted by Mn
G−→ M, if for every

(x, y) ∈ graph(M), there exists a sequence (xn, yn) ∈ graph(Mn) such that

xn → x, yn → y as n → ∞.

Theorem. LetMn,M : X → X be the set-valuedmappings such thatM,Mn are H(·, ·)-
mixed mappings with respect to the mappings A and B for n = , , , . . . . Let H(A,B) be
s-Lipschitz continuous with respect to A and t-Lipschitz continuous with respect to B. If A

is α-expansive and μ > γ with r = μαq – γ > ρm, then Mn
G−→ M if and only if

RH(·,·)
ρ,Mn (u) → RH(·,·)

ρ,M (u), ∀u ∈ X,ρ > ,

where

RH(·,·)
ρ,Mn (u) =

(
H(A,B) + ρMn

)–(u), RH(·,·)
ρ,M (u) =

(
H(A,B) + ρM

)–(u).
Proof It follows from Theorem . that RH(·,·)

ρ,Mn and RH(·,·)
ρ,M are both 

r–ρm -Lipschitz continu-
ous.
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If part: Suppose thatMn
G−→M. For any given x ∈ X, let

zn = RH(·,·)
ρ,Mn (x), z = RH(·,·)

ρ,M (x).

Then


ρ

[
x –H(Az,Bz)

] ∈M(z), that is
(
z,


ρ

[
x –H(Az,Bz)

]) ∈ graph(M).

In the light of Definition ., we know that there exists a sequence (z′
n, y′

n) ∈ graph(Mn)
such that

z′
n → z, y′

n → 
ρ

[
x –H(Az,Bz)

]
as n→ ∞. (.)

Since y′
n ∈Mn(z′

n), we have

H
(
Az′

n,Bz
′
n
)
+ ρy′

n ∈ [
H(A,B) + ρMn

](
z′
n
)

and so

z′
n =

[
H

(
Az′

n,Bz
′
n
)
+ ρy′

n
]
.

From the Lipschitz continuity ofMn, we get

‖zn – z‖ ≤ ∥∥zn – z′
n
∥∥ +

∥∥z′
n – z

∥∥
=

∥∥RH(·,·)
ρ,Mn (x) – RH(·,·)

ρ,Mn

[
H

(
Az′

n,Bz
′
n
)
+ ρy′

n
]∥∥ +

∥∥z′
n – z

∥∥
≤ 

r – ρm
∥∥x –H

(
Az′

n,Bz
′
n
)
– ρy′

n
∥∥ +

∥∥z′
n – z

∥∥
≤ 

r – ρm
[∥∥x –H(Az,Bz) – ρy′

n
∥∥

+
∥∥H(Az,Bz) –H

(
Az′

n,Bz
′
n
)∥∥]

+
∥∥z′

n – z
∥∥. (.)

From the Lipschitz continuity of H(A,B), we have

∥∥H(Az,Bz) –H
(
Az′

n,Bz
′
n
)∥∥

≤ ∥∥H(Az,Bz) –H
(
Az,Bz′

n
)∥∥ +

∥∥H(
Az,Bz′

n
)
–H

(
Az′

n,Bz
′
n
)∥∥

≤ (s + t)
∥∥z′

n – z
∥∥. (.)

It follows from (.) and (.) that

‖zn – z‖ ≤ 
r – ρm

∥∥x –H(Az,Bz) – ρy′
n
∥∥ +

[
 +


r – ρm

(s + t)
]∥∥z′

n – z
∥∥.

By (.), we have

∥∥z′
n – z

∥∥ → ,
∥∥∥∥ 
ρ

[
x –H(Az,Bz) – y′

n
]∥∥∥∥ → 
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and so

‖zn – z‖ →  as n→ ∞.

Only if part: Suppose that

RH(·,·)
ρ,Mn → RH(·,·)

ρ,M , ∀u ∈ X,ρ > .

For any given (x, y) ∈ graph(M), we have

H(Ax,Bx) + ρy ∈ [
H(A,B) + ρM

]
(x)

and so

x = RH(·,·)
ρ,M

[
H(Ax,Bx) + ρy

]
.

Let

xn = RH(·,·)
ρ,Mn

[
H(Ax,Bx) + ρy

]
.

Then


ρ

[
H(Ax,Bx) –H(Axn,Bxn) + ρy

] ∈Mn(xn).

Let

yn =

ρ

[
H(Ax,Bx) –H(Axn,Bxn) + ρy

]
.

It follows from (.) that

‖yn – y‖ ≤
∥∥∥∥ 
ρ

[
H(Ax,Bx) –H(Axn,Bxn) + ρy

]
– y

∥∥∥∥ =

ρ

∥∥H(Ax,Bx) –H(Axn,Bxn)
∥∥

≤ 
ρ
(s + t)‖xn – x‖. (.)

Since RH(·,·)
ρ,Mn → RH(·,·)

ρ,M for any u ∈ X, we know that ‖xn – x‖ → . Now (.) implies that

yn → y as n → ∞,

and soMn
G−→ M. This completes the proof. �

5 An application of the H(·, ·)-mixedmapping for solving the system of
generalized variational inclusions

Throughout the rest of the paper, unless otherwise stated, we assume that for each i = , ,
Ei is a qi-uniformly smooth Banach space with the norm ‖ · ‖i.

http://www.fixedpointtheoryandapplications.com/content/2013/1/304
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Let A,B : X → X, A,B : X → X, N,H : X ×X → X and N,H : X ×X → X

be nonlinear mappings. LetM : X → X beH(·, ·)-mixed andM : X → X beH(·, ·)-
mixedmappings, respectively.We consider the following system of generalized variational
inclusions (SGVI): Find (x, y) ∈ X ×X such that

⎧⎨
⎩θ ∈N(x, y) +M(x);

θ ∈ N(x, y) +M(y),
(.)

where θ, θ are zero vectors of X and X, respectively. The problem of type (.) was
studied by Zou and Huang [].

Definition . Let A : X → X. A mapping N : X ×X → X is said to be:
(i) κ-strongly accretive in the first argument with respect to A if there exists a constant

κ >  such that

〈
N(x, y) –N(x, y), Jq

(
A(x) –A(x)

)〉
 ≥ κ‖x – y‖q , ∀x,x ∈ X, y ∈ X;

(ii) LN -Lipschitz continuous in the first argument if there exists a constant LN >  such
that

∥∥N(x, y) –N(x, y)
∥∥
 ≤ LN‖x – x‖q , ∀x,x ∈ X, y ∈ X;

(iii) lN -Lipschitz continuous in the second argument if there exists a constant lN >  such
that

∥∥N(x, y) –N(x, y)
∥∥
 ≤ lN‖y – y‖q , ∀x ∈ X, y, y ∈ X.

The following lemma, which will be used in the sequel, is an immediate consequence of
the definitions of RH(·,·)

ρ,M
, RH(·,·)

ρ,M
.

Lemma . For any given (x, y) ∈ X × X, (x, y) is a solution of (SGVI) (.) if and only if
(x, y) satisfies

x = RH(·,·)
ρ,M

[
H(A,B)(x) – ρN(x, y)

]
, (.)

y = RH(·,·)
ρ,M

[
H(A,B)(y) – ρN(x, y)

]
, (.)

where RH(·,·)
ρ,M

= (H(A,B) + ρM)– and RH(·,·)
ρ,M

= (H(A,B) + ρM)–, and ρ,ρ >  are
constants.

Proof Consider first that an element (x, y) ∈ X × X is a solution to (.). Then it follows
that

θ ∈N(x, y) +M(x)

⇒ H(Ax,Bx) ∈H(Ax,Bx) + ρN(x, y) + ρM(x)

⇒ H(Ax,Bx) – ρN(x, y) ∈H(Ax,Bx) + ρM(x)

⇒ x = RH(·,·)
ρ,M

[
H(Ax,Bx) – ρN(x, y)

]
.
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In a similar way, we can show that

y = RH(·,·)
ρ,M

[
H(Ay,By) – ρN(x, y)

]
. �

A similar proof follows for the converse part:

x = RH(·,·)
ρ,M

[
H(A,B)(x) – ρN(x, y)

]
⇒ x =

(
H(A,B) + ρM

)–[H(A,B)(x) – ρN(x, y)
]

⇒ (
H(A,B) + ρM

)
(x) � (

H(Ax,Bx)
)
– ρN(x, y)

⇒ θ ∈N(x, y) +M(x).

In a similar way, we can show that

θ ∈N(x, y) +M(y).

Theorem . For each i = , , let Xi be qi-uniformly smooth Banach spaces, let Ai,Bi :
Xi → Xi be single-valuedmappings. Let the set-valuedmappingsMi : Xi → Xi be such that
Mi are Hi(·, ·)-mixedmappings with respect tomappings Ai and Bi, and Ai are αi-expansive
andμi > γi with ri = μiα

qi
i –γi > ρimi. Let Hi : X ×X → Xi be si-Lipschitz continuous with

respect to Ai and ti-Lipschitz continuous with respect to Bi, and let Ni : X × X → Xi be
a κi-strongly accretive mapping in the ith argument, LNi -Lipschitz continuous in the first
argument and lNi -Lipschitz continuous in the second argument. Suppose that there are two
constants ρ,ρ >  satisfying the following conditions:

⎧⎨
⎩τ = a + ρLLN < ;

τ = a + ρLlN < ,
(.)

where

a = L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

]
;

a = L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

]
;

L =


r – ρm
;

L =


r – ρm
.

Then SGVI (.) has a unique solution (x, y) ∈ X ×X.

Proof For i = , , it follows that for (x, y) ∈ X × X, the proximal-point mappings RH(·,·)
ρ,M

and RH(·,·)
ρ,M

are 
r–ρm

-Lipschitz continuous and 
r–ρm

-Lipschitz continuous, respec-
tively.
Let R : X ×X → X ×X be defined as follows:

R(x, y) =
(
P(x, y),Q(x, y)

)
, ∀(x, y) ∈ X ×X, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/304
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where P : X ×X → X and Q : X ×X → X are defined by

P(x, y) = RH(·,·)
ρ,M

[
H(A,B)(x) – ρN(x, y)

]
(.)

and

Q(x, y) = RH(·,·)
ρ,M

[
H(A,B)(x) – ρN(x, y)

]
(.)

for ρ,ρ > , respectively.
For any (x, y), (x, y) ∈ X ×X, it follows from (.) and (.) and the Lipschitz conti-

nuity of RH(·,·)
ρ,M

and RH(·,·)
ρ,M

that

∥∥P(x, y) – P(x, y)
∥∥


=
∥∥RH(·,·)

ρ,M

[
H(A,B)(x) – ρN(x, y)

]
– RH(·,·)

ρ,M

[
H(A,B)(x) – ρN(x, y)

]∥∥


≤ Ł
[∥∥H(A,B)(x) –H(A,B)(x) – ρ

(
N(x, y) –N(x, y)

)∥∥


+ ρ
∥∥N(x, y) –N(x, y)

∥∥


]
(.)

and

∥∥Q(x, y) –Q(x, y)
∥∥


≤ Ł
[∥∥H(A,B)(y) –H(A,B)(y) – ρ

(
N(x, y) –N(x, y)

)∥∥


+ ρ
∥∥N(x, y) –N(x, y)

∥∥


]
. (.)

Now

∥∥H(A,B)(x) –H(A,B)(x) – ρ
(
N(x, y) –N(x, y)

)∥∥


=
∥∥H(A,B)(x) –H(A,B)(x) – (x – x)

∥∥


+
∥∥x – x – ρ

(
N(x, y) –N(x, y)

)∥∥
. (.)

Also,

∥∥H(A,B)(y) –H(A,B)(y) – (y – y)
∥∥


=
∥∥H(A,B)(y) –H(A,B)(y) – (y – y)

∥∥


+
∥∥y – y – ρ

(
N(x, y) –N(x, y)

)∥∥
. (.)

Now

∥∥H(A,B)(x) –H(A,B)(x) – (x – x)
∥∥q


≤ ‖x – x‖q – q
〈
H(A,B)(x) –H(A,B)(x) – Jq (x – x)

〉


+ cq
∥∥H(A,B)(x) –H(A,B)(x)

∥∥q
 . (.)
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SinceM is an H(·, ·)-mixed mapping, then H(A,B) is μ-cocoercive with respect to A

and γ-relaxed accretive with respect to B, and from the fact that A is α-expansive, we
can obtain

〈
H(A,B)(x) –H(A,B)(x) – Jq (x – x)

〉


=
〈
H(A,B)(x) –H(A,B)(x) – Jq (x – x)

〉


+
〈
H(A,B)(x) –H(A,B)(x) – Jq (x – x)

〉


≤ μ
∥∥A(x) –A(x)

∥∥q – γ‖x – x‖q

≤ μα
q
 ‖x – x‖q – γ‖x – x‖q

=
(
μα

q
 – γ

)‖x – x‖q . (.)

SinceH(A,B) is s-Lipschitz continuous with respect to A and t-Lipschitz continuous
with respect to B, we have

∥∥H(A,B)(x) –H(A,B)(x) – (x – x)
∥∥


≤ ∥∥H(A,B)(x) –H(A,B)(x)
∥∥
 +

∥∥H(A,B)(x) –H(A,B)(x)
∥∥


≤ (s + t)‖x – x‖. (.)

Using (.), (.) and (.), we have

∥∥H(A,B)(x) –H(A,B)(x) – (x – x)
∥∥q


≤ ‖x – x‖q – q
〈
H(A,B)(x) –H(A,B)(x) – Jq (x – x)

〉


≤ [
 – qr + cq (s + t)q

]‖x – x‖q ,

which implies that

∥∥H(A,B)(x) –H(A,B)(x) – (x – x)
∥∥


≤ [
 – qr + cq (s + t)q

] 
q ‖x – x‖, where r = μα

q
 – γ. (.)

In the light of (.), we can obtain

∥∥H(A,B)(y) –H(A,B)(y) – (y – y)
∥∥


≤ [
 – qr + cq (s + t)q

] 
q ‖y – y‖, where r = μα

q
 – γ. (.)

Again, sinceNi is κi-strongly accretive in the first argument and LNi -Lipschitz continuous
in the first argument and lNi-Lipschitz continuous in the second argument, then using
Lemma ., we have

∥∥x – x – ρ
(
N(x, y) –N(x, y)

)∥∥q


≤ ‖x – x‖q – ρq
〈
N(x, y) –N(x, y), Jq (x – x)

〉
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+ ρ
q
 cq

∥∥N(x, y) –N(x, y)
∥∥q


≤ (
 – ρqκ + cqρ

q
 Lq

)‖x – x‖q ,

which implies that

∥∥x – x – ρ
(
N(x, y) –N(x, y)

)∥∥
 ≤ (

 – ρqκ + cqρ
q
 Lq

) 
q ‖x – x‖. (.)

In the light of (.), we have

∥∥y – y – ρ
(
N(x, y) –N(x, y)

)∥∥
 ≤ (

 – ρqκ + cqρ
q
 Lq

) 
q ‖y – y‖. (.)

Using (.), (.) and (.), we have

∥∥P(x, y) – P(x, y)
∥∥


≤ (
L

[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

])‖x – x‖
+ LρlN‖y – y‖. (.)

Using (.), (.) and (.), we have

∥∥Q(x, y) –Q(x, y)
∥∥


≤ (
L

[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

])‖y – y‖
+ LρlN‖x – x‖. (.)

From (.) and (.), we have

∥∥P(x, y) – P(x, y)
∥∥
 +

∥∥Q(x, y) –Q(x, y)
∥∥


≤ τ‖x – x‖ + τ‖y – y‖
≤ max{τ, τ}

(‖x – x‖ + ‖y – y‖
)
, (.)

where
⎧⎨
⎩τ = a + ρLLN ;

τ = a + ρLlN ,
(.)

and

a = L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

]
;

a = L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

]
;

L =


r – ρm
;

L =


r – ρm
.
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Now define the norm ‖ · ‖� on X ×X by

∥∥(x, y)∥∥
�
= ‖x‖ + ‖y‖, ∀(x, y) ∈ X ×X. (.)

We observe that (X ×X,‖ · ‖�) is a Banach space. Hence it follows from (.), (.) and
(.) that

∥∥R(x, y) – R(x, y)
∥∥

�
= max{τ, τ}

∥∥(x, y) – (x, y)
∥∥

�
. (.)

Since max{τ, τ} <  by (.), it follows from (.) that R is a contractionmapping. Hence,
by the Banach contraction principle, there exists a unique point (x, y) ∈ X ×X such that

R(x, y) = (x, y),

which implies that

x = RH(·,·)
ρ,M

[
H(A,B)(x) – ρN(x, y)

]
,

y = RH(·,·)
ρ,M

[
H(A,B)(y) – ρN(x, y)

]
.

It follows from Lemma . that (x, y) is a unique solution of SGVI (.). This completes the
proof. �

6 Convergence of an iterative algorithm for SGVI (5.1)
Based on Lemma ., we suggest and analyze the following iterative algorithm for finding
an approximate solution for SGVI (.).

Algorithm . For any given (x, y) ∈ X ×X, (xn, yn) ∈ X ×X by an iterative scheme

xn+ = RH(·,·)
ρ,M

[
H(A,B)(xn) – ρN(xn, yn)

]
, (.)

yn+ = RH(·,·)
ρ,M

[
H(A,B)(yn) – ρN(xn, yn)

]
, (.)

where n = , , , . . . and ρ,ρ >  are constants.

Theorem . For each i = , , let Xi be qi-uniformly smooth Banach spaces, let Ai,Bi :
Xi → Xi be single-valued mappings. Let the set-valued mappings Mni ,Mi : Xi → Xi be
such thatMni ,Mi are Hi(·, ·)-mixedmappings with respect to mappings Ai and Bi such that

Mni
G−→ Mi for n = , , , . . . , and Ai is αi-expansive and μi > γi with ri = μiα

qi
i – γi > ρimi.

Let Hi : X × X → Xi be si-Lipschitz continuous with respect to Ai and ti-Lipschitz con-
tinuous with respect to Bi, and let Ni : X × X → Xi be a κi-strongly accretive mapping in
the ith argument, LNi -Lipschitz continuous in the first argument and lNi -Lipschitz contin-
uous in the second argument. Suppose that there are two constants ρ,ρ >  satisfying the
following conditions:

⎧⎨
⎩τ = a + ρLLN < ;

τ = a + ρLlN < ,
(.)
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where

a = L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

]
;

a = L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

]
;

L =


r – ρm
;

L =


r – ρm
.

Then the approximate solution (xn, yn) generated by Algorithm . converges strongly to the
unique solution (x, y) of SGVI (.).

Proof By Theorem ., there exists a unique solution (x, y) ∈ X × X of SGVI (.). It
follows from Algorithm . and Theorem . that

‖xn+ – x‖ =
∥∥RH(·,·)

ρ,Mn

[
H(A,B)(xn) – ρN(xn, yn)

]
– RH(·,·)

ρ,M

[
H(A,B)(x) – ρN(x, y)

]∥∥


≤ ∥∥RH(·,·)
ρ,Mn

[
H(A,B)(xn) – ρN(xn, yn)

]
– RH(·,·)

ρ,Mn

[
H(A,B)(x) – ρN(x, y)

]∥∥


+
∥∥RH(·,·)

ρ,Mn

[
H(A,B)(x) – ρN(x, y)

]
– RH(·,·)

ρ,M

[
H(A,B)(x) – ρN(x, y)

]∥∥
 (.)

and

‖yn+ – y‖ ≤ ∥∥RH(·,·)
ρ,Mn

[
H(A,B)(yn) – ρN(xn, yn)

]
– RH(·,·)

ρ,Mn

[
H(A,B)(y) – ρN(x, y)

]∥∥


+
∥∥RH(·,·)

ρ,Mn

[
H(A,B)(y) – ρN(x, y)

]
– RH(·,·)

ρ,Mn

[
H(A,B)(y) – ρN(x, y)

]∥∥
. (.)

By (.) and (.), we have

∥∥RH(·,·)
ρ,Mn

[
H(A,B)(xn) – ρN(xn, yn)

]
– RH(·,·)

ρ,Mn

[
H(A,B)(x) – ρN(x, y)

]∥∥


≤ Ł
[∥∥H(A,B)(xn) –H(A,B)(x) – ρ

(
N(xn, yn) –N(x, yn)

)∥∥


+ ρ
∥∥N(x, yn) –N(x, y)

∥∥


]
≤ (

L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

])
× ‖xn – x‖ + LρlN‖yn – y‖ (.)
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and

∥∥RH(·,·)
ρ,Mn

[
H(A,B)(yn) – ρN(xn, yn)

]
– RH(·,·)

ρ,Mn

[
H(A,B)(y) – ρN(x, y)

]∥∥


≤ Ł
[∥∥H(A,B)(yn) –H(A,B)(y) – ρ

(
N(xn, yn) –N(xn, y)

)∥∥


+ ρ
∥∥N(xn, y) –N(x, y)

∥∥


]
≤ (

L
[(
 – qr + cq (s + t)q

) 
q +

(
 – ρqκ + cqρ

q
 Lq

) 
q

])
× ‖yn – y‖ + LρlN‖xn – x‖. (.)

By Theorem ., we have

RH(·,·)
ρ,Mn

[
H(A,B)(x) – ρN(x, y)

] → RH(·,·)
ρ,M

[
H(A,B)(x) – ρN(x, y)

]
, (.)

RH(·,·)
ρ,Mn

[
H(A,B)(y) – ρN(x, y)

] → RH(·,·)
ρ,M

[
H(A,B)(y) – ρN(x, y)

]
. (.)

Let

bn =
∥∥RH(·,·)

ρ,Mn

[
H(A,B)(x) – ρN(x, y)

]
– RH(·,·)

ρ,M

[
H(A,B)(x) – ρN(x, y)

]∥∥
, (.)

bn =
∥∥RH(·,·)

ρ,Mn

[
H(A,B)(y) – ρN(x, y)

]
– RH(·,·)

ρ,M

[
H(A,B)(y) – ρN(x, y)

]∥∥
. (.)

From (.)-(.), we have

‖xn+ – x‖ ≤ τ‖xn – x‖ + bn , (.)

‖yn+ – y‖ ≤ τ‖yn – y‖ + bn . (.)

From (.) and (.), we have

‖xn+ – x‖ + ‖yn+ – y‖ ≤ max{τ, τ}
{‖xn – x‖ + ‖yn – y‖

}
+ {bn + bn}. (.)

Since (X × X,‖ · ‖�) is a Banach space with the norm ‖ · ‖� defined by (.), it follows
from (.), (.) and (.) that

∥∥(xn+, yn+) – (x, y)
∥∥

�
= ‖xn+ – x‖ + ‖yn+ – y‖
≤ max{τ, τ}

∥∥(xn, yn) – (x, y)
∥∥ + {bn + bn}. (.)

By condition (.), it follows that max{τ, τ} <  and Lemma . implies that ‖(xn+, yn+) –
(x, y)‖� →  as n → ∞.
Thus {(xn, yn)} converges strongly to the unique solution (x, y) of SGVI (.). This com-

pletes the proof. �
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