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1 Introduction
Equilibrium problems have been revealed as a very powerful and important tool in the
study of nonlinear phenomena. They have turned out to be very useful in studying opti-
mization problems, differential equations, and minimax theorems and in certain applica-
tions tomechanics and economic theory; see [–] and the references therein. Important
practical situations motivate the study of a system of equilibrium problems. For instance,
the flow of fluid through a fissured porous medium and certain models of plasticity led to
such problems; see, for instance, []. Because of their importance, they have been exten-
sively analyzed. The aimof this paper is to present an iterativemethod for solving solutions
of an equilibrium problem, which is known as the Ky Fan inequality, and a nonlinear oper-
ator equation involving a finite family of asymptotically quasi-φ-nonexpansive mappings
in the intermediate sense.
The organization of this paper is as follows. In Section , we provide some necessary pre-

liminaries. In Section , an iterative algorithm is presented. A strong convergence theorem
is established in a reflexive Banach space. Some results inHilbert spaces are also discussed.

2 Preliminaries
Let E be a real Banach space. Recall that the normalized duality mapping J from E to E∗

is defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},
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where 〈·, ·〉 denotes the generalized duality pairing. Recall that E is said to be strictly convex
if ‖ x+y

 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =  and x �= y. It is said to be uniformly convex if
limn→∞ ‖xn–yn‖ =  for any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ =  and
limn→∞ ‖ xn+yn

 ‖ = . Let UE = {x ∈ E : ‖x‖ = } be the unit sphere of E. Then the Banach
space E is said to be smooth if limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ UE . It is said to be

uniformly smooth if the above limit is attained uniformly for x, y ∈UE . It is well known that
if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded
subset of E. It is also well known that if E is uniformly smooth if and only if E∗ is uniformly
convex.
Recall that E enjoys the Kadec-Klee property if for any sequence {xn} ⊂ E, and x ∈ E

with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞. It is well known that if E is a
uniformly convex Banach space, then E enjoys the Kadec-Klee property.
Next, we assume that E is a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Observe that in a Hilbert spaceH , the equality is reduced to φ(x, y) = ‖x– y‖, x, y ∈H . As
we all know, if C is a nonempty closed convex subset of a Hilbert spaceH and PC :H → C
is the metric projection of H onto C, then PC is nonexpansive. This fact actually charac-
terizes Hilbert spaces and, consequently, it is not available in more general Banach spaces.
In this connection, Alber [] recently introduced a generalized projection operator �C

in a Banach space E which is an analogue of the metric projection PC in Hilbert spaces.
Recall that the generalized projection �C : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the
solution to the minimization problem

φ(x̄,x) =min
y∈C φ(y,x).

Existence and uniqueness of the operator�C follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J . In Hilbert spaces, �C = PC . It is obvious
from the definition of function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E (.)

and

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E. (.)

Remark . If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) = 
if and only if x = y; for more details, see [] and the reference therein.

Let f be a bifunction from C ×C to R, where R denotes the set of real numbers and let
A : C → E∗ be a mapping. Consider the following equilibrium problem. Find p ∈ C such
that

f (p,q) + 〈Ap,q – p〉 ≥ , ∀q ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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We use EP(f ,A) to denote the solution set of inequality (.). That is,

EP(f ) =
{
p ∈ C : f (p,q) + 〈Ap,q – p〉 ≥ ,∀q ∈ C

}
.

If A = , then problem (.) is reduced to the following Ky Fan inequality. Find p ∈ C
such that

f (p,q) ≥ , ∀q ∈ C. (.)

We use EP(f ) to denote the solution set of inequality (.). That is,

EP(f ) =
{
p ∈ C : f (p,q) ≥ ,∀q ∈ C

}
.

If f = , then problem (.) is reduced to the classical variational inequality. Find p ∈ C
such that

〈Ap,q – p〉 ≥ , ∀q ∈ C. (.)

We use VI(C,A) to denote the solution set of inequality (.). That is,

VI(C,A) =
{
p ∈ C : 〈Ap,q – p〉 ≥ ,∀q ∈ C

}
.

Recall that a mapping A : C → E∗ is said to be α-inverse-strongly monotone if there
exists α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖.

For solving problem (.), let us assume that the nonlinear mapping A : C → E∗ is
α-inverse-strongly monotone and the bifunction f : C × C → R satisfies the following
conditions:
(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;
(A)

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y), ∀x, y, z ∈ C;

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.
Let C be a nonempty subset of E and T : C → C be a mapping. In this paper, we use

F(T) to denote the fixed point set of T . T is said to be asymptotically regular on C if for
any bounded subset K of C,

lim sup
n→∞

{∥∥Tn+x – Tnx
∥∥ : x ∈ K

}
= .

T is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x and
limn→∞ Txn = y, then Tx = y. In this paper, we use → and ⇀ to denote the strong con-
vergence and weak convergence, respectively.

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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Recall that a point p in C is said to be an asymptotic fixed point of T iff C contains a
sequence {xn} which converges weakly to p such that limn→∞ ‖xn – Txn‖ = . The set of
asymptotic fixed points of T will be denoted by F̃(T).
A mapping T is said to be relatively nonexpansive iff

F̃(T) = F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

A mapping T is said to be relatively asymptotically nonexpansive iff

F̃(T) = F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.

Remark . The class of relatively asymptotically nonexpansive mappings was first con-
sidered in Agarwal et al. [].

Recall that a mapping T is said to be quasi-φ-nonexpansive iff

F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

Recall that amappingT is said to be asymptotically quasi-φ-nonexpansive iff there exists
a sequence {μn} ⊂ [,∞) with μn →  as n→ ∞ such that

F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are more general than the class of relatively nonexpan-
sive mappings and the class of relatively asymptotically nonexpansive mappings. Quasi-
φ-nonexpansivemappings and asymptotically quasi-φ-nonexpansivemappings do not re-
quire the restriction F(T) = F̃(T); for more details, see [–] the reference therein.

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are generalizations of the class of quasi-nonexpansive
mappings and the class of asymptotically quasi-nonexpansivemappings in Banach spaces.

Recall that T is said to be asymptotically quasi-φ-nonexpansive in the intermediate
sense iff F(T) �= ∅ and the following inequality holds:

lim sup
n→∞

sup
p∈F(T),x∈C

(
φ
(
p,Tnx

)
– φ(p,x)

) ≤ . (.)

Put

ξn =max
{
, sup

p∈F(T),x∈C

(
φ
(
p,Tnx

)
– φ(p,x)

)}
.

It follows that ξn →  as n→ ∞. Then (.) is reduced to the following:

φ
(
p,Tnx

) ≤ φ(p,x) + ξn, ∀p ∈ F(T),∀x ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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Remark . The class of asymptotically quasi-φ-nonexpansive mappings in the interme-
diate sense was first considered by Qin and Wang []; see also [].

Remark . The class of asymptotically quasi-φ-nonexpansive mappings in the interme-
diate sense is a generalization of the class of asymptotically quasi-nonexpansive mappings
in the intermediate sense, which was considered by Kirk [] in the framework of Banach
spaces.

In order to state our main results, we also need the following lemmas.

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then x =�Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma . [] Let E be a smooth, strictly convex, and reflexive Banach space, and let C
be a nonempty closed convex subset of E. Let A : C → E∗ be an α-inverse-strongly mono-
tone mapping and f be a bifunction satisfying conditions (A)-(A). Let r >  be any given
number, and let x ∈ E define a mapping Kr : C → C as follows: for any x ∈ C,

Krx =
{
p ∈ C : f (p,q) + 〈Ap,q – p〉 + 

r
〈q – p, Jp – Jx〉 ≥ 

}
, ∀q ∈ C.

Then the following conclusions hold:
() Kr is single-valued;
() Kr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Krx –Kry, JKrx – JKry〉 ≤ 〈Srx – Sry, Jx – Jy〉;

() F(Kr) = EP(f ,A);
() Kr is quasi-φ-nonexpansive;
()

φ(q,Krx) + φ(Krx,x)≤ φ(q,x), ∀q ∈ F(Kr);

() EP(f ,A) is closed and convex.

Lemma . [] Let E be a smooth and uniformly convex Banach space, and let r > .
Then there exists a strictly increasing, continuous, and convex function g : [, r]→ R such
that g() =  and

∥∥tx + ( – t)y
∥∥ ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g

(‖x – y‖)
for all x, y ∈ Br = {x ∈ E : ‖x‖ ≤ r} and t ∈ [, ].

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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3 Main results
Theorem . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E. Let
f be a bifunction from C ×C to R satisfying (A)-(A), and let N be some positive integer.
Let A : C → E∗ be a κi-inverse-strongly monotone mapping. Let Ti : C → C be an asymp-
totically quasi-φ-nonexpansive mapping in the intermediate sense for every ≤ i ≤N . As-
sume that Ti is closed asymptotically regular on C and

⋂N
i= F(Ti) ∩ EP(f ,A) is nonempty

and bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αn,Jxn +
∑N

i= αn,iJTn
i xn),

un ∈ C such that f (un, y) + 〈Aun + y – un〉 + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Hn = {z ∈ C : φ(z,un) ≤ φ(z,xn) +Nξn},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Hn∩Wnx,

where ξn =max{, supp∈⋂N
i= F(Ti),x∈C(φ(p,T

n
i x)–φ(p,x))}, {αn,i} is a real number sequence in

(, ) for every ≤ i ≤N , {rn} is a real number sequence in [k,∞), where k is some positive
real number. Assume that

∑N
i= αn,i =  and lim infn→∞ αn,αn,i >  for every  ≤ i ≤ N .

Then the sequence {xn} converges strongly to �⋂N
i= F(Ti)∩EP(f ,A)x, where �⋂N

i= F(Ti)∩EP(f ,A) is
the generalized projection from E onto

⋂N
i= F(Ti)∩ EP(f ,A).

Proof Since Fi is closed and convex for every  ≤ i ≤ N , we obtain from Lemma . that
the common element set

⋂N
i= F(Ti) ∩ EP(f ,A) is closed and convex. Next, we show that

both Hn and Wn are closed and convex. From the definition of Hn and Wn, it is obvious
thatHn is closed andWn is closed and convex. We show thatHn is convex since φ(z,un) ≤
φ(z,xn) +Nξn is equivalent to

〈z, Jxn – Jun〉 ≤ ‖xn‖ – ‖un‖ +Nξn.

It follows that Hn is convex. This in turn shows that �Hn∩Wnx is well defined. Putting
un = krnyn, from Lemma . we see that Krn is quasi-φ-nonexpansive. Now, we are in a
position to prove that

⋂N
i= F(Ti)∩ EP(f ,A)⊂Hn ∩Wn. Let w ∈ ⋂N

i= F(Ti)∩ EP(f ,A),

φ(w,un) = φ(w,Krnyn)

≤ φ(w, yn)

= φ

(
w, J–

(
αn,Jxn +

N∑
i=

αn,iJTn
i xn

))

= ‖w‖ – 

〈
w,αh,Jxn +

N∑
i=

αn,iJTn
i xn

〉
+

∥∥∥∥∥αn,Jxn +
N∑
i=

αn,iJTn
i xn

∥∥∥∥∥


≤ ‖w‖ – αn,〈w, Jxn〉 – 
N∑
i=

αn,i
〈
w, JTn

i xn
〉
+ αn,‖xn‖ +

N∑
i=

αn,i
∥∥Tn

i xn
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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= αn,φ(w,xn) +
N∑
i=

αn,iφ
(
w,Tn

i xn
)

≤ αn,φ(w,xn) +
N∑
i=

αn,iφ(w,xn) +
N∑
i=

αn,iξn

= φ(w,xn) +
N∑
i=

αn,iξn

≤ φ(w,xn) +Nξn. (.)

We have w ∈ Hn. This implies that
⋂N

i= F(Ti)∩ EP(f ,A) ⊂ Hn. On the other hand, we see
that

⋂N
i= F(Ti) ∩ EP(f ,A) ⊂ H ∩W. Suppose that

⋂N
i= F(Ti) ∩ EP(f ,A) ⊂ Hm ∩Wm for

somem. There exists an element xm+ ∈Hm ∩Wm such that xm+ =�Hm∩Wmx. In view of
Lemma ., we find that

〈xm+ –w, Jx – Jxm+〉 ≥ , w ∈ Hm ∩Wm.

Since
⋂N

i= F(Ti)∩ EP(f ,A)⊂Hm ∩Wm, we arrive at

〈xm+ –w, Jx – Jxm+〉 ≥  (.)

for every w ∈ ⋂N
i= F(Ti) ∩ EP(f ,A). We therefore find that

⋂N
i= F(Ti) ∩ EP(f ,A) ⊂ Wm+.

It follows that
⋂N

i= F(Ti) ∩ EP(f ,A) ⊂ Hm+ ∩Wm+. This shows that the sequence {xn} is
well defined.
Next, we prove that the sequence {xn} is bounded. It follows from the definition of Wn

and Lemma . that xn =�Wnx. In view of Lemma ., we find that

φ(xn,x) = φ(�Wnx,x) ≤ φ(w,x) – φ(w,xn) ≤ φ(w,x)

for eachw ∈ ⋂N
i= F(Ti)∩EP(f ,A)⊂Wn. This implies that {φ(xn,x)} is bounded. It follows

from (.) that {xn} is also bounded. Since xn+ =�Hn∩Wnx ∈Wn, we find fromLemma .
that φ(xn,x) ≤ φ(xn+,x). Therefore, we obtain that {φ(xn,x)} is nondecreasing. So there
exists the limit of φ(xn,x). It follows from Lemma . that

φ(xn+,xn) = φ(xn+,�Wnx)

≤ φ(xn+,x) – φ(�Wnx,x)

= φ(xn+,x) – φ(xn,x).

This shows that limn→∞ φ(xn+,xn) = . Since xn+ = �Hn∩Wnx ∈ Hn, we find that
limn→∞ φ(xn+,un) = . Since the space is reflexive, we may assume, without loss of gener-
ality, that xn ⇀ x̄. Since Wn is closed and convex, we find that x̄ ∈ Wn. This implies from
xn = �Wnx that φ(xn,x) ≤ φ(x̄,x). On the other hand, we see from the weakly lower
semicontinuity of ‖ · ‖ that

φ(x̄,x) = ‖x̄‖ – 〈x̄, Jx〉 + ‖x‖

≤ lim inf
n→∞

(‖xn‖ – 〈xn, Jx〉 + ‖x‖
)

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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= lim inf
n→∞ φ(xn,x)

≤ lim sup
n→∞

φ(xn,x)

≤ φ(x̄,x),

which implies that limn→∞ φ(xn,x) = φ(x̄,x). Hence, we have limn→∞ ‖xn‖ = ‖x̄‖. In view
of the Kadec-Klee property of E, we find that xn → x̄ as n → ∞. In view of (.), we see
that limn→∞(‖xn+‖ – ‖un‖) = . This implies that limn→∞ ‖un‖ = ‖x̄‖. That is,

lim
n→∞‖Jun‖ = lim

n→∞‖un‖ = ‖Jx̄‖. (.)

This implies that {Jun} is bounded. Note that both E and E∗ are reflexive. Wemay assume,
without loss of generality, that Jun ⇀ u∗ ∈ E∗. In view of the reflexivity of E, we see that
J(E) = E∗. This shows that there exists an element u ∈ E such that Ju = u∗. It follows that

φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖

= ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖.

Taking lim infn→∞ on the both sides of the equality above yields that

 ≥ ‖x̄‖ – 
〈
x̄,u∗〉 + ∥∥u∗∥∥

= ‖x̄‖ – 〈x̄, Ju〉 + ‖Ju‖

= ‖x̄‖ – 〈x̄, Ju〉 + ‖u‖

= φ(x̄,u).

That is, x̄ = u, which in turn implies that u∗ = Jx̄. It follows that Jun ⇀ Jx̄ ∈ E∗. Since
E∗ enjoys the Kadec-Klee property, we obtain from (.) that limn→∞ Jun = Jx̄. Since J– :
E∗ → E is demi-continuous and E enjoys the Kadec-Klee property, we obtain that un → x̄,
as n→ ∞. Note that ‖xn – un‖ ≤ ‖xn – x̄‖ + ‖x̄ – un‖. It follows that

lim
n→∞‖xn – un‖ = . (.)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞‖Jxn – Jun‖ = . (.)

On the other hand, we have

φ(w,xn) – φ(w,un) = ‖xn‖ – ‖un‖ – 〈w, Jxn – Jun〉
≤ ‖xn – un‖

(‖xn‖ + ‖un‖
)
+ ‖w‖‖Jxn – Jun‖.

We, therefore, find that

lim
n→∞

(
φ(w,xn) – φ(w,un)

)
= . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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Since E is uniformly smooth, we know that E∗ is uniformly convex. In view of Lemma .,
we find that

φ(w,un) = φ(w,Krnyn)

≤ φ(w, yn)

= φ

(
w, J–

(
αn,Jxn +

N∑
i=

αn,iJTn
i xn

))

= ‖w‖ – 

〈
w,αn,Jxn +

N∑
i=

αn,iJTn
i xn

〉
+

∥∥∥∥∥αn,Jxn +
N∑
i=

αn,iJTn
i xn

∥∥∥∥∥


≤ ‖w‖ – αn,〈w, Jxn〉 – 
N∑
i=

αn,i
〈
w, JTn

i xn
〉
+ αn,‖xn‖

+
N∑
i=

αn,i
∥∥Tn

i xn
∥∥ – αn,αn,g

(∥∥Jxn – JTn
 xn

∥∥)

= αn,φ(w,xn) +
N∑
i=

αn,iφ
(
w,Tn

i xn
)
– αn,αn,g

(∥∥Jxn – JTn
 xn

∥∥)

≤ αn,φ(w,xn) +
N∑
i=

αn,iφ(w,xn) +
N∑
i=

αn,iξh

– αn,αn,g
(∥∥Jxn – JTn

 xn
∥∥)

= φ(w,xn) +
N∑
i=

αn,iξn – αn,αn,g
(∥∥Jxn – JTn

 xn
∥∥)

≤ φ(w,xn) +Nξn – αn,αn,g
(∥∥Jxn – JTn

 xn
∥∥)
.

It follows that αn,αn,g(‖Jxn – JTn
 xn‖) ≤ φ(w,xn) – φ(w,un) + ξn. In view of the restric-

tion on the sequences, we find from (.) that limn→∞ g(‖Jxn – JTn
 xn‖) = . It follows

that limn→∞ ‖Jxn – JTn
 xn‖ = . In the same way, we obtain that limn→∞ ‖Jxn – JTn

i xn‖ =
, ∀ ≤ i ≤ N . Notice that ‖JTn

i xn – Jx̄‖ ≤ ‖JTn
i xn – Jxn‖ + ‖Jxn – Jx̄‖. It follows that

limn→∞ ‖JTn
i xn – Jx̄‖ = . The demicontinuity of J– : E∗ → E implies that Tn

i xn ⇀ x̄. Note
that

∣∣∥∥Tn
i xn

∥∥ – ‖x̄‖∣∣ = ∣∣∥∥JTn
i xn

∥∥ – ‖Jx̄‖∣∣ ≤ ∥∥JTn
i xn – Jx̄

∥∥.
This implies that limn→∞ ‖Tn

i xn‖ = ‖x̄‖. Since E has the Kadec-Klee property, we obtain
that limn→∞ ‖Tn

i xn – x̄‖ = . On the other hand, we have

∥∥Tn+
i xn – x̄

∥∥ ≤ ∥∥Tn+
i xn – Tn

i xn
∥∥ +

∥∥Tn
i xn – x̄

∥∥.
It follows from the asymptotic regularity of Ti that limn→∞ ‖Tn+

i xn – x̄‖ = . That is,
TiTn

i xn → x̄. From the closedness of Ti, we find x̄ = Tix̄ for every  ≤ i ≤ N . This proves
x̄ ∈ ⋂N

i= F(Ti). Now, we state that x̄ ∈ EP(f ,A). In view of Lemma ., we find that

φ(un, yn)≤ φ(w, yn) – φ(w,un) ≤ φ(w,xn) +Nξn – φ(w,un).
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It follows from (.) that limn→∞ φ(un, yn) = . This implies that limn→∞(‖un‖– ‖yn‖) = .
It follows from (.) that limn→∞ ‖yn‖ = ‖x̄‖. It follows that

lim
n→∞‖Jyn‖ = lim

n→∞‖yn‖ = ‖x̄‖ = ‖Jx̄‖.

This shows that {Jyn} is bounded. Since E∗ is reflexive, we may assume that Jyn ⇀ y∗ ∈ E∗.
In viewof J(E) = E∗, we see that there exists y ∈ E such that Jy = y∗. It follows thatφ(un, yn) =
‖un‖ –〈un, Jyn〉+‖Jyn‖. Taking lim infn→∞ on the both sides of the equality above yields
that

 ≥ ‖x̄‖ – 
〈
x̄, y∗〉 + ∥∥y∗∥∥

= ‖x̄‖ – 〈x̄, Jy〉 + ‖Jy‖

= ‖x̄‖ – 〈x̄, Jy〉 + ‖y‖

= φ(x̄, y).

That is, x̄ = y, which in turn implies that y∗ = Jx̄. It follows that Jyn ⇀ Jx̄ ∈ E∗. Since E∗

enjoys the Kadec-Klee property, we obtain that Jyn – Jx̄ →  as n → ∞. Note that J– :
E∗ → E is demi-continuous. It follows that yn ⇀ x̄. SinceE enjoys theKadec-Klee property,
we obtain that yn → x̄ as n → ∞. Note that ‖un – yn‖ ≤ ‖un – x̄‖ + ‖x̄ – yn‖. This implies
that limn→∞ ‖un–yn‖ = . Since J is uniformly norm-to-norm continuous on any bounded
sets, we have limn→∞ ‖Jun – Jyn‖ = . In view of the assumption rn ≥ k, we see that

lim
n→∞

‖Jun – Jyn‖
rn

= . (.)

Since un = Krnyn, we find that

F(un, y) +

rn

〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

where F(un, y) = f (un, y) + 〈Aun + y – un〉 for every y ∈ C. It follows from (A) that

‖y – un‖‖Jun – Jyn‖
rn

≥ 
rn

〈y – un, Jun – Jyn〉 ≥ F(y,un), ∀y ∈ C.

It follows from (.) that

F(y, x̄)≤ , ∀y ∈ C.

For  < t <  and y ∈ C, define yt = ty + ( – t)x̄. It follows that yt ∈ C, which yields that
F(yt , x̄) ≤ . It follows from (A) and (A) that

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt , x̄) ≤ tF(yt , y).

That is,

F(yt , y) ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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Letting t ↓ , we obtain from (A) that F(x̄, y) ≥ , ∀y ∈ C. That is, f (un, y) + 〈Aun + y –
un〉 ≥  for every y ∈ C. This implies that x̄ ∈ EP(f ,A). This completes the proof that x̄ ∈⋂N

i= F(Ti)∩ EP(f ,A). Since xn+ =�Hn∩Wnx. In view of Lemma ., we find that

〈xn+ –w, Jx – Jxn+〉 ≥ , w ∈Hn ∩Wn.

Since
⋂N

i= F(Ti)∩ EP(f ,A)⊂Hn ∩Wn, we arrive at

〈xn+ –w, Jx – Jxn+〉 ≥ .

Letting n → ∞ in the above inequality, we obtain that

〈x̄ –w, Jx – Jx̄〉 ≥ , ∀w ∈
N⋂
i=

F(Ti)∩ EP(f ,A).

It follows from Lemma . that x̄ =�⋂N
i= F(Ti)∩EP(f ,A)x. This completes the proof. �

Remark . Theorem . includes the corresponding results in the literature as special
cases. Since every uniformly convex Banach space enjoys the Kadec-Klee property, the
framework of the space can be applicable to Lp, p≥ .

Next, we state a result on Ky Fan inequality (.) and a single asymptotically quasi-φ-
nonexpansive mapping in the intermediate sense.

Corollary . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E. Let
f be a bifunction from C×C toR satisfying (A)-(A). Let T : C → C be an asymptotically
quasi-φ-nonexpansive mapping in the intermediate sense. Assume that T is closed asymp-
totically regular on C and F(T)∩ EP(f ) is nonempty and bounded. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJxn + ( – αn)JTnxn),

un ∈ C such that f (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Hn = {z ∈ C : φ(z,un) ≤ φ(z,xn) +Nξn},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Hn∩Wnx,

where ξn =max{, supp∈F(T),x∈C(φ(p,Tnx)–φ(p,x))}, {αn} is a real number sequence in (, ),
{rn} is a real number sequence in [k,∞),where k is some positive real number.Assume that
lim infn→∞ αn( –αn) > . Then the sequence {xn} converges strongly to �F(T)∩EP(f )x, where
�F(T)∩EP(f ) is the generalized projection from E onto F(T)∩ EP(f ).

If the mapping T is quasi-φ-nonexpansive, we find from Corollary . the following.

http://www.fixedpointtheoryandapplications.com/content/2013/1/305
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Corollary . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E.
Let f be a bifunction from C × C to R satisfying (A)-(A). Let T : C → C be a quasi-
φ-nonexpansive mapping. Assume that F(T) ∩ EP(f ) is nonempty. Let {xn} be a sequence
generated in the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = J–(αnJxn + ( – αn)JTxn),

un ∈ C such that f (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Hn = {z ∈ C : φ(z,un) ≤ φ(z,xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Hn∩Wnx,

where {αn} is a real number sequence in (, ), {rn} is a real number sequence in [k,∞),
where k is some positive real number. Assume that lim infn→∞ αn( – αn) > . Then the
sequence {xn} converges strongly to �F(T)∩EP(f )x, where �F(T)∩EP(f ) is the generalized pro-
jection from E onto F(T)∩ EP(f ).

Finally, we give a result in the framework of Hilbert spaces based on Theorem ..

Corollary . Let E be a Hilbert space, and let C be a nonempty closed and convex subset
of E. Let f be a bifunction from C ×C to R satisfying (A)-(A), and let N be some positive
integer. Let A : C → E be a κi-inverse-strongly monotone mapping. Let Ti : C → C be an
asymptotically quasi-nonexpansive mapping in the intermediate sense for every ≤ i≤N .
Assume that Ti is closed asymptotically regular on C and

⋂N
i= F(Ti)∩EP(f ,A) is nonempty

and bounded. Let {xn} be a sequence generated in the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αn,xn +
∑N

i= αn,iTn
i xn,

un ∈ C such that f (un, y) + 〈Aun + y – un〉 + 
rn 〈y – un,un – yn〉 ≥ , ∀y ∈ C,

Hn = {z ∈ C : ‖z – un‖ ≤ ‖z – xn‖ +Nξn},
Wn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = ProjHn∩Wn x,

where ξn =max{, supp∈⋂N
i= F(Ti),x∈C(‖p–T

n
i x‖ –‖p–x‖)}, {αn,i} is a real number sequence

in (, ) for every ≤ i≤N , {rn} is a real number sequence in [k,∞),where k is some positive
real number.Assume that

∑N
i= αn,i =  and lim infn→∞ αn,αn,i >  for every ≤ i≤N .Then

the sequence {xn} converges strongly to Proj⋂N
i= F(Ti)∩EP(f ,A) x, where Proj

⋂N
i= F(Ti)∩EP(f ,A) is

the metric projection from E onto
⋂N

i= F(Ti)∩ EP(f ,A).

Proof Since φ(x, y) = ‖x – y‖ and J = I in the framework of Hilbert spaces, we draw the
desired conclusion immediately. �
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