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Abstract
In this paper, we first give a new notion of generalized �-pseudo-contractive type
mapping, and then we consider some convergence theorems for a fixed point of the
mapping. Our results improve and extend the corresponding results due to (Chidume
and Chidume in J. Math. Anal. Appl. 302:545-554, 2005) and other papers.
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1 Introduction and statement of results
Let E be a real normed linear space and E∗ be its dual space. The normalized duality map-
ping J : E → E∗ is defined by

Jx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ · ‖f ‖,‖x‖ = ‖f ‖},

where 〈·, ·〉 denotes the generalized duality pairing.

Definition . [, ] Let φ : [,∞) → [,∞) be a function for which φ() = , ∀r > ,
lim infr→r φ(r) > . A mapping T :D(T)⊂ E → E is called φ-strongly accretive if for each
x, y ∈D(T), there exists j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≥ φ
(‖x – y‖)‖x – y‖.

We also say that T :D(T)⊂ E → E is φ-strongly pseudo-contractive if I – T is φ-strongly
accretive.

Definition . Let � : [,∞) → [,∞) be a function for which �() = , ∀r > ,
lim infr→r �(r) > . AmappingT :D(T)⊂ E → E is called generalized�-accretive if there
exists j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≥ �
(‖x – y‖), ∀x, y ∈D(T).

We also say that T :D(T) ⊂ E → E is generalized �-pseudo-contractive if I – T is gener-
alized φ-accretive.
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Remark . Definition . and Definition . do not assume that φ(r) (�(r)) is strictly
increasing. Clearly, φ-strongly accretive maps (φ-strongly pseudo-contractive maps) are
generalized by generalized φ-accretive maps (generalized �-pseudo-contractive maps)
with �(r) = rφ(r).

Definition . T :D(T)⊂ E → E is called a generalized�-accretive typemapping if there
exists x∗ ∈ D(T) such that for all x ∈D(T), there exists j(x – x∗) ∈ J(x – x∗) such that

〈
Tx – Tx∗, j

(
x – x∗)〉 ≥ �

(∥∥x – x∗∥∥)
,

where � is as in Definition .. T is called a generalized �-pseudo-contractive type map-
ping if I – T is a generalized �-accretive type mapping.

Recently, Chidume andChidumeproved the following theorems by using the conclusion
that a uniformly continuous mapping on K is bounded.

Theorem CC [] Let E be a real normed linear space, K be a nonempty subset of E and
T : K → E be a uniformly continuous generalized �-hemi-contractive mapping, i.e., there
exist x∗ ∈ K and a strictly increasing function � : [,∞) → [,∞), �() =  such that for
all x ∈ K , there exists j(x – x∗) ∈ J(x – x∗) such that

〈
Tx – Tx∗, j

(
x – x∗)〉 ≤ ∥∥x – x∗∥∥ –�

(∥∥x – x∗∥∥)
.

(a) If y∗ ∈ K is a fixed point of T , then y∗ = x∗ and so T has at most one fixed point in K .
(b) Suppose that there exists x ∈ K such that the sequence {xn} defined by

xn+ = anxn + bnTxn + cnun, ∀n≥ ,

is contained in K , where {an}, {bn} and {cn} are real sequences in [,] satisfying the follow-
ing conditions:

(i) an + bn + cn = ;
(ii)

∑∞
n=(bn + cn) = ∞;

(iii)
∑∞

n=(bn + cn) < ∞;
(iv)

∑∞
n= cn < ∞; and {un} is a bounded sequence in K .

Then {xn} converges strongly to x∗. In particular, if y∗ is a fixed point of T in K , then {xn}
converges strongly to y∗.

Theorem CC [] Let E be a real normed linear space, A : E → E be a uniformly contin-
uous generalized �-quasi-contractive mapping, i.e., there exists x∗ ∈D(A) such that for all
x ∈ E , there exist j(x–x∗) ∈ J(x–x∗) and a strictly increasing function � : [,∞)→ [,∞),
�() =  such that

〈
Ax –Ax∗, j

(
x – x∗)〉 ≥ �

(∥∥x – x∗∥∥)
.

For arbitrary x ∈D(A), define the sequence {xn} iteratively by

xn+ = anxn + bnSxn + cnun, ∀n≥ ,
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where S : E → E is defined by Sx := x–Ax for all x ∈ E; and {an}, {bn}, {cn} are real sequences
in [, ] satisfying the following conditions:

(i) an + bn + cn = ;
(ii)

∑∞
n=(bn + cn) = ∞;

(iii)
∑∞

n=(bn + cn) < ∞;
(iv)

∑∞
n= cn < ∞; and {un} is a bounded sequence in K .

Then {xn} converges strongly to x∗.

Remark . InTheoremCC andTheoremCC, the condition thatK is convex is needed.
Since K ⊂ E is a nonempty subset without assuming that K is convex, then a uniformly
continuous mapping T on K is not necessarily bounded. See the following example.

Let {en} be an orthonormal set of l, K = {x ∈ l | x = ten + ( – t)en+, t ∈ [, ]}. Let
T : K → l be a mapping defined by

Tx = (n + t)en + (n +  – t)en+, where x = ten + ( – t)en+ ∈ K .

ThenT is uniformly continuous on a bounded andnonconvex setK . ButT is not bounded.

Proof Clearly K is bounded and nonconvex. Let xm, ym ∈ K such that ‖xm – ym‖ → 
(m→ ∞). Then this implies that there exist n ∈ N and tm, t′m ∈ [, ] such that

xm = tmen + ( – tm)en+,

ym = t′men +
(
 – t′m

)
en+,∥∥tm – t′m

∥∥ → .

So,

‖Txm – Tym‖ =
∥∥(n + tm)en + (n +  – tm)en+ –

(
n + t′m

)
en –

(
n +  – t′m

)
en+

∥∥
=

∣∣tm – t′m
∣∣‖en + en+‖

=
√

∣∣tm – t′m

∣∣ →  (m→ ∞).

Hence T is uniformly continuous.
Let x ∈ K , then

‖Tx‖ =
∥∥(n + t)en + (n +  – t)en+

∥∥
=

(
(n + t) + (n +  – t)

) 
 → ∞ (n→ ∞).

This says that T is unbounded and completes the proof. �

In , Morales and Chidume proved the following theorem.

Theorem MC [] Let E be a uniformly smooth Banach space, and let A : E → E be a
bounded demicontinuous φ-strongly accretive mapping for some x ∈ E, lim infr→∞ φ(r) >
‖Ax‖. Let {cn} be a real sequence in [, ] satisfying the following conditions: (i)

∑∞
n= cn =

http://www.fixedpointtheoryandapplications.com/content/2013/1/311
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∞; (ii)
∑∞

n= cnb(cn) <∞. Let {xn} be a sequence generated by

xn+ = xn – cnAxn, ∀n≥ .

Then there exists a constant r >  such that when cn < r (∀n ≥ ), the sequence {xn} con-
verges strongly to the unique zero of A.

Inspired and motivated by these facts, we will give convergence theorems for a fixed
point of the generalized �-pseudo-contractive type mapping. Our result generalizes the
corresponding results in [–].

2 Main results
Let F(T) = {x ∈ K : Tx = x}, N(A) = {x ∈D(A) : Ax = }.
We shall make use of the following well-known inequality.

Lemma . Let E be a real normed linear space. Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ E,∀j(x + y) ∈ J(x + y).

Theorem . Let E be a real normed linear space, K be a nonempty subset of E and T :
K → E be a uniformly continuous generalized �-pseudo-contractive type mapping, i.e.,
there exist x∗ ∈ K and a function � : [,∞) → [,∞), �() =  such that for all x ∈ K ,
there exists j(x – x∗) ∈ J(x – x∗) such that

〈
Tx – Tx∗, j

(
x – x∗)〉 ≤ ∥∥x – x∗∥∥ –�

(∥∥x – x∗∥∥)
. (.)

(a) If y∗ ∈ K is a fixed point of T , then y∗ = x∗ and so T has at most one fixed point in K.
(b) Let the above x� ∈ F(T), x ∈ K , Tx �= x, x �= x∗. Suppose that the sequence {xn}

defined by

xn+ = anxn + bnTxn + cnun, ∀n≥ , (.)

is contained in K , where {un} is a bounded sequence in K and {an}, {bn}, {cn} are real
sequences in [, ] satisfying the following conditions:

(i) an + bn + cn = ;
(ii)

∑∞
n=(bn + cn) = ∞;

(iii) bn + cn →  as n→ ∞;
(iv) cn ≤ bn.

If lim infr→∞ �(r)
+r > ‖x –Tx‖ and {xn–Txn} is bounded, then there exists a constant d > 

such that when  < bn + cn ≤ d, the sequence {xn} converges strongly to x∗.

Proof The proof of (a) is the same as the proof of Theorem CC [].
(b) Define a = sup{r ∈ R+ : �(r)

+r ≤ ‖x – Tx‖}. Then, by �() =  and ‖x – Tx‖ > ,
we have a > . We show that a �= ∞. If a = ∞, then there exists {rn} ⊂ [,∞), rn → ∞
as n → ∞, �(rn)

+rn ≤ ‖x – Tx‖, and hence ‖x – Tx‖ < lim infr→∞ �(r)
+r ≤ ‖x – Tx‖, a

contradiction. Therefore, a < ∞.
Let N∗ = supn ‖un – x∗‖ andM = supn ‖xn –Txn‖ +N∗. Since T is uniformly continuous

on K , for ε = ‖x–Tx‖
a , there exists δ >  such that x, y ∈ K implies ‖Tx – Ty‖ < ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/311


Wang and Liu Fixed Point Theory and Applications 2013, 2013:311 Page 5 of 9
http://www.fixedpointtheoryandapplications.com/content/2013/1/311

Let

d =


(a +M)
min

{
δ,a,

‖x – Tx‖
a

}
. (.)

Claim  {xn} is bounded, i.e.,
∥∥xn – x∗∥∥ ≤ a, ∀n≥ . (.)

We show this by induction. By (.),

�(‖x – x∗‖)
 + ‖x – x∗‖ ≤ ‖x – Tx‖.

Therefore,‖x – x∗‖ ≤ a < a. Suppose ‖xn – x∗‖ ≤ a, we show that ‖xn+ – x∗‖ ≤ a.
Suppose not, then ‖xn+ – x∗‖ > a > a and from the definition of a, we have

�(‖xn+ – x∗‖)
 + ‖xn+ – x∗‖ > ‖x – Tx‖,

and hence

�
(∥∥xn+ – x∗∥∥)

> ‖x – Tx‖. (.)

Set αn = bn + cn. Then Eq. (.) becomes

xn+ = ( – αn)xn + αnTxn + cnUn, (.)

where Un = un – Txn. Observe that

‖Un‖ ≤ ∥∥un – x∗∥∥ +
∥∥xn – x∗∥∥ + ‖xn – Txn‖ ≤ a +M. (.)

Furthermore,

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + αn‖xn – Txn‖ + cn‖Un‖
≤ a + d(a + M) ≤ a. (.)

Also,

‖xn+ – xn‖ ≤ αn
{‖xn – Txn‖ + ‖Un‖

}
≤ αn(a + M) < d(a + M) ≤ δ, (.)

so that ‖Txn+ – Txn‖ < ε. Using Lemma ., (.), (.), (.), (.)-(.) and recursion
formula (.), we now obtain the following estimates:

∥∥xn+ – x∗∥∥ =
∥∥xn – x∗ – αn(xn – Txn) + cnUn

∥∥

≤ ∥∥xn – x∗∥∥ – αn
〈
xn – Txn, j

(
xn+ – x∗)〉 + cn‖Un‖ · ∥∥xn+ – x∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/311
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≤ ∥∥xn – x∗∥∥ – αn
〈
xn+ – Txn+ – xn+ + Txn+ + xn – Txn, j

(
xn+ – x∗)〉

+ cn(a +M)a

≤ ∥∥xn – x∗∥∥ – αn�
(∥∥xn+ – x∗∥∥)

+ αn‖xn+ – xn‖ · ∥∥xn+ – x∗∥∥
+ αn‖Txn+ – Txn‖ · ∥∥xn+ – x∗∥∥ + α

n(a +M)a

≤ ∥∥xn – x∗∥∥ – αn‖x – Tx‖ + α
n(a + M) · a + αn · a‖x – Tx‖

a

+ α
n(a +M)a

≤ ∥∥xn – x∗∥∥ –
αn


‖x – Tx‖ <

∥∥xn – x∗∥∥,

and hence ‖xn+ – x∗‖ < a, a contraction. Hence {xn} is bounded.

Claim  lim infn→∞ ‖xn – x∗‖ = .

Suppose this is not true. Let lim infn→∞ ‖xn – x∗‖ = σ > . Then there exists an integer
N such that

∥∥xn – x∗∥∥ ≥ σ


, ∀n≥N. (.)

Since, for any r > , lim infr→r �(r) > , then lim infn→∞ �(‖xn – x∗‖) � β > . Hence
there exists an integer N >N such that

�
(∥∥xn – x∗∥∥) ≥ β


, ∀n≥N. (.)

Since {xn – Txn}, {un} and {xn} are bounded,

‖xn+ – xn‖ ≤ αn‖xn – Txn‖ + cn‖un – Txn‖ →  as n→ ∞.

Therefore, there exists an integer N >N such that

‖xn+ – xn‖ < β

a
, ∀n >N. (.)

Since T is uniformly continuous, then there exists an integer N >N such that

‖Txn+ – Txn‖ < β

a
, ∀n >N. (.)

Also, since αn →  as n→ ∞, there exists an integer N >N such that

αn <
β

a(a +M)
, ∀n >N. (.)

By Lemma and (.)-(.), we obtain the following estimates:

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – αn
〈
xn – Txn, j

(
xn+ – x∗)〉 + cn

〈
Un, j

(
xn+ – x∗)〉

≤ ∥∥xn – x∗∥∥ – αn�
(∥∥xn+ – x∗∥∥)

+ αn‖xn+ – xn‖ · ∥∥xn+ – x∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/311
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+ αn‖Txn+ – Txn‖ · ∥∥xn+ – x∗∥∥ + α
n(a +M)

∥∥xn+ – x∗∥∥
≤ ∥∥xn – x∗∥∥ – αn · β


+ αn · β

a
· a + αn · β

a
· a

+ αn · β

a(a +M)
· (a +M) · a

=
∥∥xn – x∗∥∥ –




αnβ (.)

for all n≥N, and this implies
∑∞

n= αn <∞, a contraction to condition (ii) of Theorem..
Hence Claim  holds.
Thus, there exists a subsequence {xnj} such that xnj → x∗ as n → ∞, i.e., for any ε > ,

there exists some integer nj such that ‖xnj – x∗‖ < ε.

Claim  ‖xnj+m – x∗‖ < ε,m = , , . . . .

Let r = inf{�(r) : r ≥ ε}, then r > .
Since ‖xn+ – xn‖ → , ‖Txn+ – Txn‖ →  and αn →  as n → ∞, then there exists an

integer N >  such that for all n≥N , the following inequalities hold:

‖xn+ – xn‖ ≤ r
a

,

‖Txn+ – Txn‖ ≤ r
a

,

αn <
r

a(a +M)
.

If ‖xnj+ – x∗‖ ≥ ε, then �(‖xnj+ – x∗‖) ≥ r. Using recursion formula (.), we obtain
the following estimate:

∥∥xnj+ – x∗∥∥ ≤ ∥∥xnj – x∗∥∥ – αnr + αn · r
a

· a + αn · r
a

· a

+ αn · r
a(a +M)

· (a +M) · a

=
∥∥xnj – x∗∥∥ – αnr +



αnr

=
∥∥xnj – x∗∥∥ –



αnr <

∥∥xnj – x∗∥∥ < ε,

a contradiction. Hence Claim  holds form = . Assume now that it holds form = k. From
the above argument, one easily proves that it holds for m = k + . Hence, Claim  holds.
This shows that {xn} converges strongly to x∗ as n → ∞, completing the proof of Theo-
rem .. �

Theorem. Let E be a real normed linear space, and let A :D(A)⊂ E → E be a uniformly
continuous generalized �-accretive type mapping, i.e., there exists x∗ ∈ N(A) such that for
all x ∈ E , there exist j(x– x∗) ∈ J(x– x∗) and a function � : [,∞)→ [,∞), �() =  such
that

〈
Ax –Ax∗, j

(
x – x∗)〉 ≥ �

(∥∥x – x∗∥∥)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/311


Wang and Liu Fixed Point Theory and Applications 2013, 2013:311 Page 8 of 9
http://www.fixedpointtheoryandapplications.com/content/2013/1/311

For arbitrary x ∈D(A), define the sequence {xn} iteratively by

xn+ = anxn + bnSxn + cnun, ∀n≥ ,

where S : E → E is defined by Sx := x–Ax for all x ∈ D(A); and {un} is a bounded sequence
in E, {an}, {bn}, {cn} are real sequences in [, ] satisfying the following conditions:

(i) an + bn + cn = ;
(ii)

∑∞
n=(bn + cn) = ∞;

(iii) bn + cn →  as n→ ∞;
(iv) cn ≤ bn.

If lim infr→∞ �(r)
+r > ‖Ax‖ and {Axn} is bounded, then there exists a constant d >  such

that when  < bn + cn ≤ d, the sequence {xn} converges strongly to x∗.

Proof We simply observe that S is a uniformly continuous and generalized �-pseudo-
contractive type mapping of D(A) into E. The result can follow from Theorem .. �

Remark . () Our theorems extend and improve Theorem CC and Theorem CC in
the following ways:

(i) Our theorems do not assume that �(t) is a strictly increasing function.
(ii) The conditions

∑∞
n=(bn + cn) < ∞,

∑∞
n= cn < ∞ are replaced by bn + cn →  as

n→ ∞, cn ≤ bn, respectively. Our theorems enlarge the range of bn and cn values.
(iii) We do not need the condition that K is convex. We added the condition that

{xn – Txn} is bounded. It is readily seen that {xn} converges strongly to x∗ if and
only if {xn – Txn}({Axn}) is bounded under the assumptions of Theorem .
(Theorem .).

() Since the class of generalized �-accretive maps (generalized �-pseudo-contractive
maps) includes the class of φ-strongly accretive maps (φ-strongly pseudo-contractive
maps), our results unify and extend many known results. In particular, since
lim infr→∞ φ(r) > ‖Ax‖ in Theorem MC implies lim infr→∞ �(r)

+r = lim infr→∞ φ(r)r
+r =

lim infr→∞ φ(r) > ‖Ax‖, our Theorem . extends Theorem MC from uniformly smooth
Banach spaces to arbitrary normed linear spaces.
() Our results also improve and extend the corresponding results in [, –].
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