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Abstract
In this paper we investigate the existence of a fixed point of multivalued maps on
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extend and generalize some fixed point theorems on the topic in the literature, such
as the results of Himmelberg, Fan and Glicksberg.
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1 Introduction and preliminaries
In nonlinear analysis, one of the dynamic research areas is investigation of existence of a
fixed point of maps on convex sets and p-convex sets. Recently, a number of fixed point
theorems have appeared on the setting of p-convex sets. For instance, Alimohammady
et al. [] extended the Markov-Kakutani fixed point theorem for compact p-star shaped
subsets in topological vector spaces by using p-convex sets instead of convex sets, see also
[, ]. Further, in [] authors achieved a fixed point theorem due to Park for a compact
mapping on a p-star shaped subset of a topological vector space via Fan-KKMprinciple in
a generalized convex space. In [, ], generalized versions of Brouwer and Kakutani fixed
point theorems were characterized in the context of locally p-convex space.
On the other hand, in  Park and Kim introduced the concept of generalized convex

space, which extends many generalized convex structures on topological vector spaces
[]. This new concept, developed in connection with fixed point theory and KKM theory,
generalizes topological vector spaces.
Maki [] introduced the notion of minimal spaces which is a generalization of the con-

cept of topological spaces (see also []). After these initial papers, many authors have paid
attention to the subject and have published several results in this direction; see, e.g., [–
]. Very recently, Darzi et al. [] introduced the notion of minimal generalized convex
space as to extend the construction of the generalized convex space.
For the sake of completeness, we recall some basic definitions and fundamental results

in the literature. All we need regarding topological vector spaces can be found in [–].
LetU be a subset of a vector space V and x, y ∈U and  < p≤ . Bayoumi [] introduced

the notion of arc segment joining x and y, as follows:

Ay
x =

{
s

p x + t


p y : s + t = 

}
=

{
ux + vy : up + vp = 

}
.
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A set X in a vector spaceV is said to be p-convex ifAy
x ⊆ X for every x, y ∈ X. The p-convex

hull ofX denoted byCp(X) is the smallest p-convex set containingX []. Further, the closed
p-convex hull of X denoted by Cp(X) is the smallest closed p-convex set containing X ⊆ E,
where E is a topological vector space. Notice that if p =  and s + t = , then Ay

x turns out
to be the line segment joining x and y. In this case, Cp(X) and Cp(X) become the convex
hull and the closed convex hull of X, respectively. For more details, we refer to, e.g., [, ,
–] and references therein.
Let X be a nonempty set. Then a familyM⊆P(X) is said to be aminimal structure on

X if ∅,X ∈M. Moreover, the pair (X,M) is called aminimal space. The natural examples
of minimal spaces can be listed as follows []: τ , the collection of all semi-open sets SO(X),
the collection of all pre-open sets PO(X), the collection of all α-open sets αO(X) and the
collection of all β-open sets βO(X), where (X, τ ) is a topological space. In a minimal space
(X,M), a set A ∈ P(X) is said to be an m-open set if A ∈ M. Similarly, a set B ∈ P(X) is
an m-closed set if Bc ∈ M. Furthermore, m-interior and m-closure of a set A are defined
as follows:

m-Int(A) =
⋃

{U :U ⊆ A,U ∈M} and m-Cl(A) =
⋂{

F : A⊆ F ,Fc ∈M
}
.

For more details on minimal structure and minimal space, we refer the reader to, e.g., [,
, –, , ].
The continuity of maps in a minimal space is defined as follows.

Definition . [] Suppose that (X, τ ) is a topological space, and also suppose that (Y ,N )
is a minimal space. A function f : (X, τ ) −→ (Y ,N ) is called (τ ,m)-continuous if f –(U) ∈ τ

for any U ∈N .

Let X and Y be two nonempty sets and P(Y ) be the set of all subsets of Y . A set-valued
map or a set-valued function from X into Y is a function from X to P(Y ) that assigns an
element x of X to a nonempty subset T(x) of Y and is denoted by x �� T(x). The lower
inverse of a point y ∈ Y of a set-valued map T is the set-valued map Tl of Y into X defined
by

Tl(y) =
{
x ∈ X : y ∈ T(x)

}
.

Analogously, lower inverse of a subset of B⊂ Y is defined as

Tl(B) =
{
x ∈ X : T(x)∩ B 	= ∅}

.

We note that Tl(∅) = ∅. The set {x ∈ X : T(x)⊆ B} is the upper inverse of B and is denoted
by Tu(B). Amap T is lower semicontinuous if Tl(U) is open in X for every open setU ⊆ Y .
Similarly, a map T is upper semicontinuous if for every open set U ⊆ Y , the set Tu(U) is
open in X.
A set-valuedmapT : X � Y is said to be closed if its graph,Graph(T) = {(x, y) : y ∈ T(x)},

is a closed subset of X × Y . Also, T is called compact if its range, T(X), is contained in a
compact subset of Y .
The notion of almost convex was introduced by Himmelberg []. A nonempty subset

B of a topological vector space X is said to be almost convex if for any neighborhood V
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of  and for any finite subset {b, . . . ,bn} of B, there exists a finite subset {x, . . . ,xn} ⊆ B
such that xi – bi ∈ V for each i = , . . . ,n and co({x, . . . ,xn})⊆ B. It is clear that any convex
subset is almost convex.Moreover, if we delete a certain subset of the boundary of a closed
convex set, then we have an almost convex set. Another example of an almost convex set
is the following: Let C([, ]) be the Banach space of all continuous real functions defined
on the unit interval [, ], and let P([, ]) be a dense subset of all polynomials. Then any
subset of C([, ]) containing P([, ]) is almost convex.
Let A be a subset of a topological vector space X. A set-valued map T : A� A is said to

have the (convexly) almost fixed point property if for every (convex) neighborhood U of 
in X, there exists a point aU ∈ A for which aU ∈ T(aU ) +U or T(aU )∩ (aU +U) 	= ∅.
Let 〈D〉 denote the set of all nonempty finite subsets of a set D, and let �n be the

n-simplex with vertices e, e, . . . , en, �J be the face of �n corresponding to J ∈ 〈A〉,
where A ∈ 〈D〉. For instance, if A = {a,a, . . . ,an} and J = {ai ,ai , . . . ,aik } ⊆ A, then
�J = co{ei , ei , . . . , eik }. A minimal generalized convex space (briefly MG-convex space)
(X,D,�) consists of a minimal space (X,M), a nonempty set D and a set-valued map
� : 〈D〉 � X in which for A ∈ 〈D〉 with n +  elements, there exists a (τ ,m)-continuous
function φA : �n −→ �A := �(A) for which J ∈ 〈A〉 implies that φA(�J ) ⊆ �J . If M = τ ,
then the notion of MG-convex space turns into G-convex space (see, e.g., []). On the
other hand, suppose that (X,M) is a minimal vector space which is not a topological
vector space. Consider the set-valued map � : 〈X〉 � X defined by �({a,a, . . . ,an}) =
{∑n

i= λiai :  ≤ λi ≤ ,
∑n

i= λi = }. Then (X,�) is a minimal generalized convex space; of
course, we know that (X,�) is not a generalized convex space [].

Definition . Suppose that (X,D,�) is anMG-convex space. A set-valued map F :D�
X is called a KKM set-valued map if �A ⊆ F(A) for any A ∈ 〈D〉.

We state two useful theorems of Alimohammady et al. [] as follows.

Theorem . [] Suppose that (X,D,�) is an MG-convex space and F : D� X is a set-
valued map satisfying
(a) for all x ∈D, F(x) =m-Cl(Ax) for some Ax ⊆ X ,
(b) F is a KKM map.

Then {F(z) : z ∈D} has the finite intersection property.
Further, if
(c)

⋂
z∈N F(z) is m-compact for some N ∈ 〈D〉,

then
⋂

z∈D F(z) 	= ∅.

Theorem . [] Suppose that (X,D,�) is an MG-convex space and F : D� X is a set-
valued map satisfying
(a) for all x ∈D, F(x) =m-Int(Ax) for some Ax ⊆ X ,
(b) F is a KKM map.

Then {F(z) : z ∈D} has the finite intersection property.

In this paper we investigate the existence of a fixed point on the setting of locally p-
convex spaces. In particular, we establish a generalized version of Alexandroff-Pasynkoff
theorem. Furthermore, we present a generalization of the Himmelberg fixed point theo-
rem. We also prove Fan-Glicksberg result for p-convex sets.
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2 Main results
We start this section with the following result which is inspired by Theorem . and The-
orem ..

Theorem. Suppose that A is a subset of a topological vector space X andB is a nonempty
subset of A with Cp(B) ⊆ A. Also suppose that F : B� A is a set-valued map satisfying
(a) F(b) is closed (resp. open) in A for all b ∈ B,
(b) Cp(N)⊆ F(N) for each N ∈ 〈B〉.

Then {F(b) : b ∈ B} has the finite intersection property.

Proof Consider the set-valued map � : 〈B〉� A defined by

�
({b,b, . . . ,bn}) =

{ n∑
i=

λibi :  ≤ λi ≤ ,
n∑
i=

λ
p
i = 

}
.

Since Cp(B) ⊆ A, the set-valued map � is well defined. Condition (b) implies that F is a
KKMmap. For each N = {b,b, . . . ,bn} ⊆ B, let us define

φN : �n −→ �N ,
n∑
i=

tiei �→
n∑
i=

(ti)

p bi.

Now, one can verify that (A,B,�) is a G-convex space. The fact that {F(b) : b ∈ B} has the
finite intersection property follows from Theorem . (resp. Theorem .). �

Theorem . Suppose that A is a subset of an MG-convex space (X,D,�), {A,A, . . . ,An}
is a family of m-closure valued (resp.m-interior valued) subsets of X such that A⊆ ⋃n

i=Ai,
and also suppose that N = {z, z, . . . , zn} is a family of points in D in which �(N) ⊆ A. If
�(N \ {zi})⊆ Ai for each i = , , . . . ,n, then

⋂n
i=Ai 	= ∅.

Proof Set C = �(N \ zn) and for i = , , . . . ,n, let Ci = �(N \ {zi–}). Consider the set-
valued map F : D � X defined by F(z) = An, F(zi) = Ai– for i = , , . . . ,n and F(z) = X
for all z ∈ D \ N . We claim that F is a KKM map. To see this, we note that �(N) ⊆ A ⊆⋃n

i=Ai = F(N) and for any choice of a proper subset {zi , zi , . . . , zik } of N with  ≤ k < n
and  ≤ i < · · · < ik ≤ n, one can see that

�
({zi , zi , . . . , zik }) ⊆ Cij ⊆ Aij– = F(zij )

for some j ∈ {, , . . . ,k}. Notice that ij =  if and only if ij– = n, and so�({zi , zi , . . . , zik }) ⊆⋃k
j= F(zij ). The fact that

⋂n
i=Ai 	= ∅ follows from Theorem . (resp. Theorem .). �

Remark . It should be noted that
(a) Theorem . and Theorem . are extended versions of the corresponding results in

[, ], and hence they are generalizations of Theorem  in [, ] and Ky Fan’s
lemma [],

(b) Theorem . for closed (open) subsets of a topological vector space goes back to
Park [] and it is an extended version of Alexandroff-Pasynkoff theorem [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/312
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Definition . A nonempty subset B of a topological vector space X is said to be al-
most p-convex if for any neighborhood V of  and for any finite subset {b, . . . ,bn} of B,
there exists a finite subset {x, . . . ,xn} ⊆ B such that xi – bi ∈ V for each i = , . . . ,n and
Cp({x, . . . ,xn})⊆ B.

Example . It is easy to see that any p-convex subset of a topological vector space X is
almost p-convex. If we delete a certain subset of the boundary of a closed p-convex set,
then we have an almost p-convex set.

Definition . Let A be a subset of a topological vector space X. A set-valued map T :
A � A is said to have the p-convexly almost fixed point property if for every p-convex
neighborhoodU of  inX, there exists a point aU ∈ A for which aU ∈ T(aU )+U orT(aU )∩
(aU +U) 	= ∅.

Theorem . Let A be a subset of a topological vector space X and B be an almost p-
convex dense subset of A. Suppose that T : A� X is a lower (resp. upper) semicontinuous
set-valued map such that T(b) is p-convex for all b ∈ B, and also suppose that there is a
precompact subset K of A such that T(b) ∩ K 	= ∅ for all b ∈ B. Then T has the p-convexly
almost fixed point property.

Proof Suppose thatU is a p-convex neighborhood of  and suppose that T is lower semi-
continuous. There is a symmetric open neighborhood V of  for which V +V ⊆U . Since
K is precompact, so there are x,x, . . . ,xn in K for which K ⊆ ⋃n

i=(xi + V ). By using the
fact that B is almost p-convex and dense in A, we find D = {b,b, . . . ,bn} ⊆ B for which
bi – xi ∈ V for all i ∈ {, , . . . ,n} and also C = Cp(D) ⊆ B. Since T is lower semicontinuous,
the set F(bi) := {c ∈ C : T(c)∩ (xi +V ) = ∅} is closed in C for each i ∈ {, . . . ,n}. Regarding
∅ 	= T(c) ∩ K ⊆ T(c) ∩ ⋃n

i=(xi + V ), we have
⋂n

i= F(bi) = ∅. Now, Theorem . implies
that there is N = {bi ,bi , . . . ,bik } ∈ 〈D〉 and xU ∈ Cp(N) ⊆ B for which xU /∈ F(N), and so
T(xu) ∩ (xij + V ) 	= ∅ for all j ∈ {, , . . . ,k}. Both bi – xi ∈ V and V + V ⊆ U imply that
xij +V ⊆ bij +U , which implies that T(xU )∩ (bij +U) 	= ∅. Therefore

N ⊆M :=
{
c ∈ C : T(xU )∩ (c +U) 	= ∅}

.

C, T(xU ) and U are p-convex and hence M is p-convex. Consequently, xU ∈ M, which
implies that T(xU ) ∩ (xU +U) 	= ∅; i.e., T has the p-convexly almost fixed point property.
Finally, for the case that T is upper semicontinuous, we note that F(bi) := {c ∈ C : T(c) ∩
(xi +V ) = ∅} is open in C for each i ∈ {, . . . ,n}. The rest of the proof is similar to the proof
of the case that T is l.s.c. Regarding the analogy, we skip the proof. �

Corollary . Let A be a p-convex subset of a topological vector space X, and let T : A� X
be a lower (resp. upper) semicontinuous set-valued map such that T(a) is p-convex for all
a ∈ A. Suppose that there is a precompact subset K of A such that T(a)∩K 	= ∅ for all a ∈ A.
Then T has the p-convexly almost fixed point property.

Proof It is sufficient to take A = B in Theorem .. �

Corollary . Let A be a subset of a topological vector space X, and let B be an almost
p-convex dense subset of A. Suppose that T : A� X is a set-valued map satisfying

http://www.fixedpointtheoryandapplications.com/content/2013/1/312
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(a) Tl(x) (resp. Tu(x)) is open for all x ∈ X ,
(b) T(b) is p-convex for all b ∈ B,
(c) there is a precompact subset K of A such that T(b)∩K 	= ∅ for all b ∈ B.

Then T has the p-convexly almost fixed point property.

Proof It is clear that (a) implies that T is a lower (resp. upper) semicontinuous set-valued
map and hence T has the p-convexly almost fixed point property by Theorem .. �

Corollary . Let A be a p-convex subset of a topological vector space X, and let T : A�
X be a compact set-valued map satisfying the following conditions:
(a) Tl(x) (resp. Tu(x)) is open for all x ∈ X ,
(b) T(a) is nonempty and p-convex for all a ∈ A.

Then T has the p-convexly almost fixed point property.

Proof Consider A = B, it is easy to see that all the conditions of Corollary . are satis-
fied. �

Remark . It should be noted that
(a) Corollary . for a lower semicontinuous set-valued map on a locally convex

Hausdorff topological vector space goes back to Ky Fan []. Corollary . for a
single-valued map might be regarded as a generalization of the Thychonoff fixed
point theorem to a noncompact (or precompact) convex set []. Also, Lassonde
obtained Corollary . for a compact upper semicontinuous set-valued map with
nonempty convex values [].

(b) Convex versions of Theorem ., Corollary . and Corollary . are due to
Park [].

Theorem . Suppose that A is a subset of a locally p-convex space X and B is an almost
p-convex dense subset of A. Suppose that T : A� A satisfies the following:
(a) T is compact upper semicontinuous,
(b) T(a) is closed for all a ∈ A,
(c) T(b) is nonempty p-convex for all b ∈ B.

Then T has a fixed point.

Proof Since all the conditions of Theorem. are satisfied and sinceX is a locally p-convex
space, T has the almost fixed point property. Then, for an arbitrary neighborhood U of
, there exist aU and bU in A for which bU ∈ T(aU ) ∩ (aU + U). Since T is compact, we
conclude that there is a ∈ T(A) ⊆ A in which the net bU −→ a. Because X is Haus-
dorff, aU −→ a. Since T is an upper semicontinuous set-valued map with closed values,
Graph(T) is closed. Consequently, a is a fixed point of T . �

Corollary . Suppose that A is a p-convex subset of a locally p-convex space X. Suppose
that T : A� A satisfies the following:
(a) T is compact upper semicontinuous,
(b) T(a) is closed for all a ∈ A,
(c) T(a) is nonempty p-convex for all a ∈ A.

Then T has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/312
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Theorem . Suppose that A is a p-convex subset of a locally p-convex space X. Suppose
that T : A� A satisfies the following:
(a) T is compact and closed,
(b) T has the almost fixed point property.

Then T has a fixed point.

Proof Suppose that U is the family of neighborhoods of  in X. For any element U of U ,
sinceT has the almost fixed point property, so there exist aU ,bU ∈ A for which bU ∈ T(aU )
and bU ∈ aU +U . Now, consider the nets {aU} and {bU}. By (a) we have T(A) is compact
and hence {bU} has a subnet converging to b. We may assume that bU −→ b. Since X is
Hausdorff, there is a subnet of aU converging to b. The fact that b ∈ T(b) follows from
(aU ,bU ) ∈ Graph(T) and the fact that Graph(T) is closed. �

Corollary . Suppose that A is a p-convex subset of a locally p-convex space X and that
T : A� A satisfies the following:
(a) T is compact and closed,
(b) Tl(x) (resp. Tu(x)) is open for all x ∈ X ,
(c) T(a) is nonempty and p-convex for all a ∈ A.

Then T has a fixed point.

Proof It is an immediate consequence of Corollary . and Theorem .. �

Remark . Corollary . is a generalization of the main results of Himmelberg [].
Theorem . for p =  goes back to Park []. Further, Theorem . for p =  is an exten-
sion of Himmelberg’s theorem (see, e.g., []).

For a set-valued map T : X � Y , set TB = {x ∈ X : x ∈ T(x) + B} for B ⊆ Y .

Lemma . Suppose that A is a p-convex subset of a topological vector space X, and also
suppose that U is a fundamental system of open neighborhoods of . Then, for a set-valued
map T : A� X, the following are equivalent:
(a) If a ∈ A satisfies a /∈ T(a) +U for some U ∈ U , then

a /∈ Cl
({
a ∈ A : a ∈ T(a) +Cp(V )

})
for some V ∈ U ,

(b)
⋂

U∈U TU =
⋂

U∈U TCp(U).

Proof It is straightforward. �

Remark . The conditions (a) and (b) considered in Lemma . for p =  are due to
Kim [].

Theorem . Let A be a p-convex compact subset of a topological vector space X, and let
T : A� X be a mapping satisfying the following conditions:
(a) T has the p-convexly almost fixed point property,
(b)

⋂
U∈U TU =

⋂
U∈U TCp(U).

Then T has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/312
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Proof Suppose that U is a fundamental system of open neighborhoods of . Since T has
the p-convexly almost fixed point property, for any U ∈ U , there is an aU ∈ A such that
aU ∈ T(aU ) + Cp(U). Hence, TCp(U) 	= ∅ for each U ∈ U . Now, since U is a fundamental
system of open neighborhoods of , we deduce that for anyU ,V ∈ U , there isW ∈ U such
that

TCp(U) ∩ TCp(V ) ⊇ TCp(U∩V ) ⊇ TCp(W ) 	= ∅.

Therefore {TCp(U) : U ∈ U} has the finite intersection property. It follows from the com-
pactness of A that

⋂
U∈U TCp(U) 	= ∅. Therefore, by the condition (b) there is an a ∈ A for

which a ∈ ⋂
U∈U TU , that is, a ∈ T(a) +U for all U ∈ U . Regarding

⋂
U∈U (T(a) +U) =

T(a), we derive that T has a fixed point. �

Corollary . Let A be a p-convex compact subset of a topological vector space X, and
let T : A� X be a mapping such that
(a) T has the p-convexly almost fixed point property,
(b)

⋂
U∈U TU =

⋂
U∈U TCp(U),

(c) T has closed values.
Then T has a fixed point.

Corollary . Let A be a p-convex compact subset of a topological vector space X, and
let T : A� A be a mapping such that
(a) T is lower (resp. upper) semicontinuous,
(b) T has p-convex values,
(c)

⋂
U∈U TU =

⋂
U∈U TCp(U).

Then T has a fixed point.

Proof Since A is a p-convex and compact, by (a) and (b) one can see that all the conditions
of Corollary . hold. Then T has the p-convexly almost fixed point property. The fact
that T has a fixed point follows from Theorem .. �

Corollary . Let A be a p-convex compact subset of a topological vector space X, and
let T : A� A be a mapping satisfying the following conditions:
(a) T is lower (resp. upper) semicontinuous,
(b) T has closed p-convex values,
(c)

⋂
U∈U TU =

⋂
U∈U TCp(U).

Then T has a fixed point.

Remark . Corollary . for p =  and lower semicontinuous set-valued maps goes
back to Kim [] and Park [], and also this result for p =  and upper semicontinuous
set-valued maps is due to Huang and Jeng [].

Theorem . Let A be a compact p-convex subset of a locally p-convex space X , and let
the set-valued map T : A� A be a mapping such that
(a) T has the p-convexly almost fixed point property,
(b) T is a closed set-valued map.

Then T has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/312
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Proof Suppose that U is a fundamental system of p-convex open neighborhoods of .
Then, for anyU ∈ U , there isV ∈ U for whichV ⊆ V ⊆U . Now, we claim that TCp(V ) = TV

is closed. To see this, let a ∈ TV . There is a net {ai : i ∈ I} ⊆ TV for which ai −→ a. Then,
for each i ∈ I , there exists bi ∈ T(ai) in which ai – bi ∈ V . Since T is compact and since
bi ∈ T(A), so one can assume that bi −→ b for some b ∈ T(A), and so a – b ∈ V . b ∈ T(a),
because T is closed. Therefore,

a ∈ (b +V )∩A⊆ (
T(a) +V

) ∩A;

i.e., a ∈ TV . Finally, since TV is closed, and V ⊆ V ⊆U , so

⋂
U∈U

TCp(U) =
⋂
U∈U

TU =
⋂
V∈U

TV =
⋂
V∈U

TV =
⋂
U∈U

TU =
⋂
U∈U

TCp(U).

Consequently, all the conditions of Corollary . hold and hence T has a fixed point. �

Remark . Theorem . is a generalization of the Fan-Glicksberg theorem [, ]
and its convex version can be found in []. Notice also that Theorem . can be derived
from Theorem ..
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