
Ćirić et al. Fixed Point Theory and Applications 2013, 2013:317
http://www.fixedpointtheoryandapplications.com/content/2013/1/317

RESEARCH Open Access

Some fixed point results in orderedGp-metric
spaces
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Abstract
In this paper, first we present some coincidence point results for six mappings
satisfying the generalized (ψ ,ϕ)-weakly contractive condition in the framework of
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1 Introduction andmathematical preliminaries
Recently, Zand and Nezhad [] have introduced a new generalized metric space, a Gp-
metric space, as a generalization of both partial metric spaces [] and G-metric spaces
[].
We will use the following definition of a Gp-metric space.

Definition . [] LetX be a nonempty set. Suppose that amappingGp : X×X×X →R
+

satisfies:

(Gp) x = y = z if Gp(x, y, z) =Gp(z, z, z) =Gp(y, y, y) =Gp(x,x,x);
(Gp) Gp(x,x,x)≤Gp(x,x, y)≤Gp(x, y, z) for all x, y, z ∈ X with z �= y;
(Gp) Gp(x, y, z) =Gp(p{x, y, z}), where p is any permutation of x, y, z (symmetry in all three

variables);
(Gp) Gp(x, y, z) ≤Gp(x,a,a)+Gp(a, y, z)–Gp(a,a,a) for all x, y, z,a ∈ X (rectangle inequal-

ity).

Then Gp is called a Gp-metric and (X,Gp) is called a Gp-metric space.
The Gp-metric Gp is called symmetric if

Gp(x,x, y) =Gp(x, y, y) ()

holds for all x, y ∈ X. Otherwise, Gp is an asymmetric Gp-metric.

Remark  In [] (see also []), instead of (Gp), the following condition was used:

(Gp′) Gp(x,x,x)≤Gp(x,x, y)≤Gp(x, y, z) for all x, y, z ∈ X .
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However, with this assumption, it is very easy to obtain that () holds for all x, y ∈ X,
i.e., the respective space is symmetric. On the other hand, there are a lot of examples of
non-symmetricG-metric spaces. Hence, the conclusion stated in [, ] that eachG-metric
space is a Gp-metric space (satisfying (Gp′)) does not hold. With our assumption (Gp),
this conclusion holds true.

The following are some easy examples of Gp-metric spaces.

Example . Let X = [,+∞), and let Gp : X → R
+ be given by Gp(x, y, z) = max{x, y, z}.

Obviously, (X,Gp) is a symmetric Gp-metric space which is not a G-metric space.

Example . Let X = {, , , , . . .}. Define Gp : X → X by

Gp(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y + z + , x �= y �= z,

x + z + , y = z �= x,

y + z + , x = z �= y,

x + z + , x = y �= z,

, x = y = z.

It is easy to see that (X,Gp) is a symmetric Gp-metric space.

Example . [] Let X = {, , , }. Let

A =
{
(, , ), (, , ), (, , ), (, , ), (, , ), (, , ), (, , ), (, , ), (, , ),

(, , ), (, , ), (, , ), (, , ), (, , ), (, , )
}
,

B =
{
(, , ), (, , ), (, , ), (, , ), (, , ), (, , ), (, , ), (, , ), (, , ),

(, , ), (, , ), (, , ), (, , ), (, , ), (, , )
}
.

Define Gp : X →R
+ by

G(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x = y = z �= ,

 if x = y = z = ,

 if (x, y, z) ∈ A,

 if (x, y, z) ∈ B,

 if x �= y �= z.

It is easy to see that (X,Gp) is an asymmetric Gp-metric space.

Proposition . [] Every Gp-metric space (X,Gp) defines a metric space (X,dGp ) where

dGp (x, y) =Gp(x, y, y) +Gp(y,x,x) –Gp(x,x,x) –Gp(y, y, y)

for all x, y ∈ X.
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Proposition . [] Let X be aGp-metric space.Then, for each x, y, z,a ∈ X, it follows that:
() Gp(x, y, z) ≤Gp(x,a,a) +Gp(y,a,a) +Gp(z,a,a) – Gp(a,a,a);
() Gp(x, y, z) ≤Gp(x,x, y) +Gp(x,x, z) –Gp(x,x,x);
() Gp(x, y, y) ≤ Gp(x,x, y) –Gp(x,x,x);
() Gp(x, y, z) ≤Gp(x,a, z) +Gp(a, y, z) –Gp(a,a,a), a �= z.

Definition . [] Let (X,Gp) be aGp-metric space. Let {xn} be a sequence of points of X.
. A point x ∈ X is said to be a limit of the sequence {xn}, denoted by xn → x, if

limn,m→∞ Gp(x,xn,xm) =Gp(x,x,x).
. {xn} is said to be a Gp-Cauchy sequence if limn,m→∞ Gp(xn,xm,xm) exists (and is

finite).
. (X,Gp) is said to be Gp-complete if every Gp-Cauchy sequence in X is Gp-convergent

to x ∈ X .

Using the above definitions, one can easily prove the following proposition.

Proposition . [] Let (X,Gp) be a Gp-metric space. Then, for any sequence {xn} in X and
a point x ∈ X, the following are equivalent:
() {xn} is Gp-convergent to x.
() Gp(xn,xn,x)→Gp(x,x,x) as n → ∞.
() Gp(xn,x,x)→Gp(x,x,x) as n → ∞.

Lemma . [] If Gp is a Gp-metric on X, then the mappings dGp ,d′
Gp : X ×X → R+, given

by

dGp (x, y) =Gp(x, y, y) +Gp(y,x,x) –Gp(x,x,x) –Gp(y, y, y)

and

d′
Gp (x, y) =max

{
Gp(x, y, y) –Gp(x,x,x),Gp(y,x,x) –Gp(y, y, y)

}
,

define equivalent metrics on X.

Proof a+b
 ≤max{a,b} ≤ a + b for all nonnegative real numbers a, b. �

Based on Lemma . of [], Parvaneh et al. have proved the following essential lemma.

Lemma . [] () A sequence {xn} is a Gp-Cauchy sequence in a Gp-metric space (X,Gp)
if and only if it is a Cauchy sequence in the metric space (X,dGp ).
() A Gp-metric space (X,Gp) is Gp-complete if and only if the metric space (X,dGp ) is

complete.Moreover, limn→∞ dGp (x,xn) =  if and only if

lim
n→∞Gp(x,xn,xn) = lim

n→∞Gp(xn,x,x) = lim
n,m→∞Gp(xn,xn,xm)

= lim
n,m→∞Gp(xn,xm,xm) =Gp(x,x,x).

Lemma . [] Assume that xn → x as n → ∞ in a Gp-metric space (X,Gp) such that
Gp(x,x,x) = . Then, for every y ∈ X,

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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(i) limn→∞ Gp(xn, y, y) =Gp(x, y, y),
(ii) limn→∞ Gp(xn,xn, y) =Gp(x,x, y).

Lemma . [] Assume that {xn}, {yn} and {zn} are three sequences in a Gp-metric space
X such that

lim
n→∞Gp(xn,x,x) = lim

n→∞Gp(xn,xn,xn) =Gp(x,x,x),

lim
n→∞Gp(yn, y, y) = lim

n→∞Gp(yn, yn, yn) =Gp(y, y, y)

and

lim
n→∞Gp(zn, z, z) = lim

n→∞Gp(zn, zn, zn) =Gp(z, z, z).

Then
(i) limn→∞ Gp(xn, yn, zn) =Gp(x, y, z) and
(ii) limn→∞ Gp(xn,xn, y) =Gp(x,x, y)

for every y, z ∈ X.

Lemma . [] Let (X,Gp) be a Gp-metric space. Then
(A) If Gp(x, y, z) = , then x = y = z.
(B) If x �= y, then Gp(x, y, y) > .

Definition . [] Let (X,G) and (X,G) be twoGp-metric spaces, and let f : (X,G) →
(X,G) be a mapping. Then f is said to be Gp-continuous at a point a ∈ X if for a
given ε > , there exists δ >  such that x, y ∈ X and G(a,x, y) < δ +G(a,a,a) imply that
G(f (a), f (x), f (y)) < ε + G(f (a), f (a), f (a)). The mapping f is Gp-continuous on X if it is
Gp-continuous at all a ∈ X.

Proposition . [] Let (X,G) and (X,G) be two Gp-metric spaces. Then a mapping
f : X → X is Gp-continuous at a point x ∈ X if and only if it is Gp-sequentially continuous
at x; that is, whenever {xn} is Gp-convergent to x, {f (xn)} is Gp-convergent to f (x).

The concept of an altering distance functionwas introduced byKhan et al. [] as follows.

Definition . The function ψ : [,∞)→ [,∞) is called an altering distance function if
the following properties are satisfied:
. ψ is continuous and nondecreasing.
. ψ(t) =  if and only if t = .

A self-mapping f onX is called a weak contraction if the following contractive condition
is satisfied:

d(fx, fy) ≤ d(x, y) – ϕ
(
d(x, y)

)
,

for all x, y ∈ X, where ϕ is an altering distance function.
The concept of a weakly contractive mapping was introduced by Alber and Guerre-

Delabrere [] in the setup of Hilbert spaces. Rhoades [] considered this class of mappings

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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in the setup of metric spaces and proved that a weakly contractive mapping defined on a
complete metric space has a unique fixed point.
Zhang and Song [] introduced the concept of a generalized ϕ-weakly contractivemap-

ping as follows.

Definition . Self-mappings f and g on a metric space X are called generalized ϕ-weak
contractions if there exists a lower semicontinuous function ϕ : [,∞) → [,∞) with
ϕ() =  and ϕ(t) >  for all t >  such that for all x, y ∈ X,

d(fx, gy) ≤N(x, y) – ϕ
(
N(x, y)

)
,

where

N(x, y) =max

{
d(x, y),d(x, fx),d(y, gy),



[
d(x, gy) + d(y, fx)

]}
.

Based on the above definition, they proved the following common fixed point result.

Theorem . [] Let (X,d) be a complete metric space. If f , g : X → X are generalized
ϕ-weakly contractivemappings, then there exists a unique point u ∈ X such that u = fu = gu.

So far, many authors extended Theorem . (see [–] and []). Moreover, Ðorić []
generalized it by the definition of generalized (ψ ,ϕ)-weak contractions.

Definition . Two mappings f , g : X → X are called generalized (ψ ,ϕ)-weakly contrac-
tive if there exist two maps ψ ,ϕ : [,∞)→ [,∞) such that

ψ
(
d(fx, gy)

) ≤ ψ
(
N(x, y)

)
– ϕ

(
N(x, y)

)
,

for all x, y ∈ X, whereN and ϕ are as in Definition . andψ : [,∞)→ [,∞) is an altering
distance function.

Theorem. [] Let (X,d) be a completemetric space, and let f , g : X → X be generalized
(ψ ,ϕ)-weakly contractive self-mappings. Then there exists a unique point u ∈ X such that
u = fu = gu.

Recently, many researchers have focused on different contractive conditions in various
metric spaces endowed with a partial order and studied fixed point theory in the so-called
bi-structured spaces. For more details on fixed point results, their applications, compari-
son of different contractive conditions and related results in ordered variousmetric spaces,
we refer the reader to [–] and the references mentioned therein.
Let X be a nonempty set and f : X → X be a given mapping. For every x ∈ X, let f –(x) =

{u ∈ X : fu = x}.

Definition . [] Let (X,�) be a partially ordered set, and let f , g,h : X → X be given
mappings such that fX ⊆ hX and gX ⊆ hX. We say that f and g are weakly increasing with
respect to h if for all x ∈ X, we have

fx � gy for all y ∈ h–(fx)

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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and

gx� fy for all y ∈ h–(gx).

If f = g , we say that f is weakly increasing with respect to h.

If h = I (the identity mapping onX), then the above definition reduces to that of a weakly
increasing mapping [] (see also [, ]).

Definition . A partially ordered Gp-metric space (X,�,Gp) is said to have the sequen-
tial limit comparison property if for every nondecreasing sequence (nonincreasing se-
quence) {xn} in X, xn → x implies that xn � x (x� xn).

The aim of this paper is to prove some coincidence and common fixed point theorems
for weakly (ψ ,ϕ)-contractive mappings in partially ordered Gp-metric spaces.

2 Main results
Let (X,�,Gp) be an ordered Gp-metric space and f , g,h,R,S,T : X → X be six self-
mappings. Throughout this paper, unless otherwise stated, for all x, y, z ∈ X, let

M(x, y, z) = max

{
Gp(Tx,Ry,Sz),

Gp(Tx, fx, fx),Gp(Ry, gy, gy),Gp(Sz,hz,hz),

Gp(Tx,Tx, fx) +Gp(Ry,Ry, gy) +Gp(Sz,Sz,hz)


}
.

Theorem . Let (X,�,Gp) be a partially ordered Gp-metric space with the sequential
limit comparison property. Let f , g,h,R,S,T : X → X be six mappings such that f (X) ⊆
R(X), g(X) ⊆ S(X) and h(X) ⊆ T(X), and RX, SX and TX are Gp-complete subsets of X .
Suppose that for comparable elements Tx,Ry,Sz ∈ X, we have

ψ
(
Gp(fx, gy,hz)

) ≤ ψ
(
M(x, y, z)

)
– ϕ

(
M(x, y, z)

)
, ()

where ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then the pairs (f ,T), (g,R)
and (h,S) have a coincidence point z∗ in X provided that the pairs (f ,T), (g,R) and (h,S)
are weakly compatible and the pairs (f , g), (g,h) and (h, f ) are partially weakly increasing
with respect to R, S and T , respectively.Moreover, if Rz∗, Sz∗ and Tz∗ are comparable, then
z∗ ∈ X is a coincidence point of f , g , h, R, S and T .

Proof Let x be an arbitrary point ofX. Choose x ∈ X such that fx = Rx, x ∈ X such that
gx = Sx and x ∈ X such that hx = Tx. This can be done as f (X) ⊆ R(X), g(X) ⊆ S(X)
and h(X) ⊆ T(X).
Continuing this way, construct a sequence {zn} defined by zn+ = Rxn+ = fxn, zn+ =

Sxn+ = gxn+ and zn+ = Txn+ = hxn+ for all n ≥ . The sequence {zn} in X is said to
be a Jungck-type iterative sequence with initial guess x.

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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As x ∈ R–(fx), x ∈ S–(gx) and x ∈ T–(hx) and the pairs (f , g), (g,h) and (h, f ) are
partially weakly increasing with respect to R, S and T , respectively, we have

Rx = fx � gx = Sx � hx = Tx � fx = Rx.

Continuing this process, we obtain Rxn+ � Sxn+ � Txn+ for all n ≥ .
We will complete the proof in three steps.
Step I.Wewill prove that {zn} is aGp-Cauchy sequence. First, we show that limk→∞ Gp(zk ,

zk+, zk+) = .
Define Gpk =Gp(zk , zk+, zk+). Suppose Gpk

=  for some k. Then zk = zk+ = zk+. In
the case that k = n, then zn = zn+ = zn+ gives zn+ = zn+ = zn+. Indeed,

ψ
(
Gp(zn+, zn+, zn+)

)
=ψ

(
Gp(fxn, gxn+,hxn+)

)
≤ ψ

(
M(xn,xn+,xn+)

)
– ϕ

(
M(xn,xn+,xn+)

)
,

where

M(xn,xn+,xn+)

=max

{
Gp(Txn,Rxn+,Sxn+),Gp(Txn, fxn, fxn),

Gp(Rxn+, gxn+, gxn+),Gp(Sxn+,hxn+,hxn+),

Gp(Txn,Txn, fxn) +Gp(Rxn+,Rxn+, gxn+) +Gp(Sxn+,Sxn+,hxn+)


}

=max

{
Gp(zn, zn+, zn+),Gp(zn, zn+, zn+),

Gp(zn+, zn+, zn+),Gp(zn+, zn+, zn+),

Gp(zn, zn, zn+) +Gp(zn+, zn+, zn+) +Gp(zn+, zn+, zn+)


}

=max

{
,, ,Gp(zn+, zn+, zn+),

 +  +Gp(zn+, zn+, zn+)


}

=Gp(zn+, zn+, zn+)

≤ Gp(zn+, zn+, zn+)

= Gp(zn+, zn+, zn+).

Thus

ψ
(
Gp(zn+, zn+, zn+)

) ≤ ψ
(
Gp(zn+, zn+, zn+)

)
– ϕ

(
Gp(zn+, zn+, zn+)

)

implies that ϕ(Gp(zn+, zn+, zn+)) = , that is, zn+ = zn+ = zn+. Similarly, if k = n+
, then zn+ = zn+ = zn+ gives zn+ = zn+ = zn+. Also, if k = n + , then zn+ =
zn+ = zn+ implies that zn+ = zn+ = zn+. Consequently, the sequence {zk} becomes
constant for k ≥ k, hence {zk} is Gp-Cauchy.

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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Suppose that

zk �= zk+ �= zk+ ()

for each k. We now claim that the following inequality holds:

Gp(zk+, zk+, zk+) ≤Gp(zk , zk+, zk+) =M(xk ,xk+,xk+) ()

for each k = , , , . . . .
Let k = n and for n≥ , Gp(zn+, zn+, zn+) >Gp(zn, zn+, zn+) > . Then, as Txn �

Rxn+ � Sxn+, using () we obtain that

ψ
(
Gp(zn+, zn+, zn+)

) ≤ ψ
(
Gp(zn+, zn+, zn+)

)
= ψ

(
Gp(fxn, gxn+,hxn+)

)
≤ ψ

(
M(xn,xn+,xn+)

)
– ϕ

(
M(xn,xn+,xn+)

)
, ()

where

M(xn,xn+,xn+)

=max

{
Gp(Txn,Rxn+,Sxn+),

Gp(Txn, fxn, fxn),Gp(Rxn+, gxn+, gxn+),Gp(Sxn+,hxn+,hxn+),

Gp(Txn,Txn, fxn) +Gp(Rxn+,Rxn+, gxn+) +Gp(Sxn+,Sxn+,hxn+)


}

=max

{
Gp(zn, zn+, zn+),

Gp(zn, zn+, zn+),Gp(zn+, zn+, zn+),Gp(zn+, zn+, zn+),

Gp(zn, zn, zn+) +Gp(zn+, zn+, zn+) +Gp(zn+, zn+, zn+)


}

≤max

{
Gp(zn, zn+, zn+),Gp(zn+, zn+, zn+),

Gp(zn, zn+, zn+) +Gp(zn+, zn+, zn+)


}

=Gp(zn+, zn+, zn+).

Hence () implies that

ψ
(
Gp(zn+, zn+, zn+)

) ≤ ψ
(
Gp(zn+, zn+, zn+)

)
– ϕ

(
M(xn,xn+,xn+)

)
,

which is possible only if M(xn,xn+,xn+) = , that is, Gp(zn, zn+, zn+) = . A contra-
diction to (). Hence, Gp(zn+, zn+, zn+) ≤Gp(zn, zn+, zn+) and

M(xn,xn+,xn+) =Gp(zn, zn+, zn+).

Therefore, () is proved for k = n.

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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Similarly, it can be shown that

Gp(zn+, zn+, zn+) ≤Gp(zn+, zn+, zn+) =M(xn+,xn+,xn+) ()

and

Gp(zn+, zn+, zn+)≤Gp(zn+, zn+, zn+) =M(xn+,xn+,xn+). ()

Hence, {Gp(zk , zk+, zk+)} is a nonincreasing sequence of nonnegative real numbers.
Therefore, there is r ≥  such that

lim
k→∞

Gp(zk , zk+, zk+) = r. ()

Since

Gp(zk+, zk+, zk+) ≤M(xk ,xk+,xk+) ≤Gp(zk , zk+, zk+), ()

taking the limit as k → ∞ in (), we obtain

lim
k→∞

M(xk ,xk+,xk+) = r. ()

Taking the limit as n→ ∞ in (), using (), () and the continuity of ψ and ϕ, we have
ψ(r)≤ ψ(r) – ϕ(r). Therefore, ϕ(r) = . Hence

lim
k→∞

Gp(zk , zk+, zk+) =  ()

from our assumptions about ϕ. Also, from Definition ., part (Gp), we have

lim
k→∞

Gp(zk , zk+, zk+) = , ()

and since Gp(x, y, y) ≤ Gp(x,x, y) for all x, y ∈ X, we have

lim
k→∞

Gp(zk , zk , zk+) = . ()

Step II. We now show that {zn} is a Gp-Cauchy sequence in X. Therefore, we will show
that

lim
m,n→∞Gp(zm, zn, zn) = .

Because of (), () and (), it is sufficient to show that

lim
m,n→∞Gp(zm, zn, zn) = ,

i.e., we prove that {zn} is Gp-Cauchy.

http://www.fixedpointtheoryandapplications.com/content/2013/1/317
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Suppose the opposite. Then there exists ε >  for which we can find subsequences
{zm(k)} and {zn(k)} of {zn} such that n(k) >m(k)≥ k and

Gp(zm(k), zn(k), zn(k)) ≥ ε, ()

and n(k) is the smallest number such that the above statement holds; i.e.,

Gp(zm(k), zn(k)–, zn(k)–) < ε. ()

From the rectangle inequality and (), we have

Gp(zm(k), zn(k), zn(k))

≤Gp(zm(k), zn(k)–, zn(k)–) +Gp(zn(k)–, zn(k), zn(k))

< ε +Gp(zn(k)–, zn(k), zn(k))

< ε +Gp(zn(k)–, zn(k)–, zn(k)–) +Gp(zn(k)–, zn(k)–, zn(k)–)

+Gp(zn(k)–, zn(k), zn(k)). ()

Taking limit as k → ∞ in (), from () and () we obtain that

lim
k→∞

Gp(zm(k), zn(k), zn(k)) = ε. ()

Using the rectangle inequality and (Gp), we have

Gp(zm(k), zn(k)+, zn(k)+)

≤Gp(zm(k), zn(k), zn(k)) +Gp(zn(k), zn(k)+, zn(k)+)

≤Gp(zm(k), zn(k)+, zn(k)+) +Gp(zn(k)+, zn(k), zn(k))

+Gp(zn(k), zn(k)+, zn(k)+)

≤Gp(zm(k), zn(k)+, zn(k)+) +Gp(zn(k)+, zn(k)+, zn(k)+)

+Gp(zn(k)+, zn(k), zn(k)) +Gp(zn(k), zn(k)+, zn(k)+). ()

Taking limit as k → ∞, we have

lim
k→∞

Gp(zm(k), zn(k)+, zn(k)+) ≤ ε ≤ lim
k→∞

Gp(zm(k), zn(k)+, zn(k)+).

Finally,

Gp(zm(k)+, zn(k)+, zn(k)+)

≤Gp(zm(k)+, zm(k), zm(k)) +Gp(zm(k), zn(k)+, zn(k)+)

≤Gp(zm(k)+, zm(k), zm(k)) +Gp(zm(k), zn(k), zn(k))

+Gp(zn(k), zn(k)+, zn(k)+). ()
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Taking limit as k → ∞ and using (), we have

lim
k→∞

Gp(zm(k)+, zn(k)+, zn(k)+) ≤ ε.

Consider,

Gp(zm(k), zn(k)+, zn(k)+)

≤Gp(zm(k), zm(k)+, zm(k)+) +Gp(zm(k)+, zn(k)+, zn(k)+)

≤Gp(zm(k), zm(k)+, zm(k)+) +Gp(zm(k)+, zn(k)+, zn(k)+)

+Gp(zn(k)+, zn(k)+, zn(k)+)

≤Gp(zm(k), zm(k)+, zm(k)+) +Gp(zm(k)+, zn(k)+, zn(k)+)

+Gp(zn(k)+, zn(k)+, zn(k)+). ()

Taking limit as k → ∞ and using (), () and (), we have

ε ≤ lim
k→∞

Gp(zm(k)+, zn(k)+, zn(k)+).

Therefore,

lim
k→∞

Gp(zm(k)+, zn(k)+, zn(k)+) = ε. ()

As Txm(k) � Rxn(k)+ � Sxn(k)+, so from () we have

ψ
(
Gp(zm(k)+, zn(k)+, zn(k)+)

)
=ψ

(
Gp(fxm(k), gxn(k)+,hxn(k)+)

)
≤ ψ

(
M(xm(k),xn(k)+,xn(k)+)

)
– ϕ

(
M(xm(k),xn(k)+,xn(k)+)

)
, ()

where

M(xm(k),xn(k)+,xn(k)+)

=max

{
Gp(Txm(k),Rxn(k)+,Sxn(k)+),Gp(Txm(k), fxm(k), fxm(k)),

Gp(Rxn(k)+, gxn(k)+, gxn(k)+),Gp(Sxn(k)+,hxn(k)+,hxn(k)+),

Gp(Txm(k),Txm(k), fxm(k)) +Gp(Rxn(k)+,Rxn(k)+, gxn(k)+)
+Gp(Sxn(k)+,Sxn(k)+,hxn(k)+)



}

=max

{
Gp(zm(k), zn(k)+, zn(k)+),Gp(zm(k), zm(k)+, zm(k)+),

Gp(zn(k)+, zn(k)+, zn(k)+),Gp(zn(k)+, zn(k)+, zn(k)+),

Gp(zm(k), zm(k), zm(k)+) +Gp(zn(k)+, zn(k)+, zn(k)+)
+Gp(zn(k)+, zn(k)+, zn(k)+)



}
.
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Taking limit as k → ∞ and using (), (), (), () in (), we have

ψ(ε) ≤ ψ(ε) – ϕ(ε) <ψ(ε),

a contradiction. Hence, {zn} is a Gp-Cauchy sequence.
Step III. We will show that f , g , h, R, S and T have a coincidence point.
Since {zn} is aGp-Cauchy sequence in the completeGp-metric spaceX, fromLemma .,

{zn} is a Cauchy sequence in the metric space (X,dGp ). Completeness of (X,Gp) yields that
(X,dGp ) is also complete. Then there exists z∗ ∈ X such that

lim
n→∞dGp

(
zn, z∗) = . ()

Now, since limm,n→∞ Gp(zm, zn, zn) = , () and part () of Lemma . yield that Gp(z∗, z∗,
z∗) = .
Since R(X) is Gp-complete and {zn+} ⊆ R(X), there exists u ∈ X such that z∗ = Ru and

lim
n→∞Gp(zn+, zn+,Ru)

= lim
n→∞Gp(Rxn+,Rxn+,Ru) = lim

n→∞Gp(fxn, fxn,Ru) =G(Ru,Ru,Ru) = . ()

By similar arguments, there exist v,w ∈ X such that z∗ = Sv = Tw and

lim
n→∞Gp

(
zn+, zn+, z∗)

= lim
n→∞Gp

(
Sxn+,Sxn+, z∗) = lim

n→∞Gp
(
gxn+, gxn+, z∗) =G

(
z∗, z∗, z∗) =  ()

and

lim
n→∞Gp

(
zn+, zn+, z∗)

= lim
n→∞Gp

(
Txn+,Txn+, z∗) = lim

n→∞Gp
(
hxn+,hxn+, z∗) =G

(
z∗, z∗, z∗) = . ()

Now, we prove that w is a coincidence point of f and T .
Since Sxn+ → z∗ = Tw = Ru as n→ ∞, so Sxn+ � Tw = Ru. Therefore, from (), we

have

ψ
(
Gp(fw, gu,hxn+)

) ≤ ψ
(
M(w,u,xn+)

)
– ϕ

(
M(w,u,xn+)

)
, ()

where

M(w,u,xn+)

=max

{
Gp(Tw,Ru,Sxn+),G(Tw, fw, fw),

Gp(Ru, gu, gu),G(Sxn+,hxn+,hxn+),

Gp(Tw,Tw, fw) +G(Ru,Ru, gu) +Gp(Sxn+,Sxn+,hxn+)


}
.
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Taking limit as n→ ∞ in (), as G(z∗, z∗, z∗) = , from Lemma ., we obtain that

ψ
(
Gp

(
fw, gu, z∗))

≤ ψ
(
Gp

(
fw, gu, z∗))

– ϕ

(
max

{
Gp

(
z∗, fw, fw

)
,Gp

(
z∗, gu, gu

)
,
Gp(z∗, z∗, fw) +Gp(z∗, z∗, gu)



})
,

which implies that gu = fw = z∗ = Tw = Ru.
As f and T are weakly compatible, we have fz∗ = fTw = Tfw = Tz∗. Thus z∗ is a coinci-

dence point of f and T .
Similarly it can be shown that z∗ is a coincidence point of the pairs (g,R) and (h,S).
Now, let Rz∗, Sz∗ and Tz∗ be comparable. By () we have

ψ
(
Gp

(
fz∗, gz∗,hz∗)) ≤ ψ

(
M

(
z∗, z∗, z∗)) – ϕ

(
M

(
z∗, z∗, z∗)), ()

where

M
(
z∗, z∗, z∗) = max

{
Gp

(
Tz∗,Rz∗,Sz∗),

Gp
(
Tz∗, fz∗, fz∗),Gp

(
Rz∗, gz∗, gz∗),Gp

(
Sz∗,hz∗,hz∗),

Gp(Tz∗,Tz∗, fz∗) +Gp(Rz∗,Rz∗, gz∗) +Gp(Sz∗,Sz∗,hz∗)


}

=Gp
(
Tz∗,Rz∗,Sz∗) =Gp

(
fz∗, gz∗,hz∗).

Hence () gives

ψ
(
Gp

(
fz∗, gz∗,hz∗)) ≤ ψ

(
Gp

(
fz∗, gz∗,hz∗)) – ϕ

(
Gp

(
fz∗, gz∗,hz∗)) = .

Therefore fz∗ = gz∗ = hz∗ = Tz∗ = Rz∗ = Sz∗. �

Theorem . Let (X,�,Gp) be a partially ordered complete Gp-metric space. Let f , g,h :
X → X be three mappings. Suppose that for every three comparable elements x, y, z ∈ X, we
have

ψ
(
Gp(fx, gy,hz)

) ≤ ψ
(
M(x, y, z)

)
– ϕ

(
M(x, y, z)

)
, ()

where

M(x, y, z) = max

{
Gp(x, y, z),

Gp(x, fx, fx),Gp(y, gy, gy),Gp(z,hz,hz),

Gp(x,x, fx) +Gp(y, y, gy) +Gp(z, z,hz)


}

andψ ,ϕ : [,∞) → [,∞) are altering distance functions. Let f , g , h be continuous and the
pairs (f , g), (g,h) and (h, f ) be partially weakly increasing. Then f , g and h have a common
fixed point z∗ in X.
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Proof Let x be an arbitrary point and xn+ = fxn, xn+ = gxn+ and xn+ = hxn+ for all
n≥ .
Following the proof of the previous theorem, we can show that there exists z∗ ∈ X such

that

Gp
(
z∗, z∗, z∗) =  ()

and

lim
n→∞Gp

(
xn,xn, z∗) = . ()

Continuity of f yields that

lim
n→∞Gp

(
fxn, fxn, fz∗) =Gp

(
fz∗, fz∗, fz∗). ()

By the rectangle inequality, we have

Gp
(
fz∗, z∗, z∗) ≤Gp

(
fz∗, fxn, fxn

)
+Gp

(
xn+, z∗, z∗) ()

and

Gp
(
fz∗, fz∗, z∗) ≤Gp

(
z∗, fxn, fxn

)
+Gp

(
fxn, fz∗, fz∗). ()

Taking limit as n→ ∞ in () and (), from () we obtain

Gp
(
fz∗, z∗, z∗) ≤Gp

(
fz∗, fz∗, fz∗)

and

Gp
(
fz∗, fz∗, z∗) ≤Gp

(
fz∗, fz∗, fz∗).

Similar inequalities are obtained for g and h.
On the other hand, as z∗ � z∗ � z∗, using () we obtain that

ψ
(
Gp

(
fz∗, gz∗,hz∗)) ≤ ψ

(
Gp

(
fz∗, gz∗,hz∗))

≤ ψ
(
M

(
z∗, z∗, z∗)) – ϕ

(
M

(
z∗, z∗, z∗)), ()

where

M
(
z∗, z∗, z∗) = max

{
Gp

(
z∗, z∗, z∗),

Gp
(
z∗, fz∗, fz∗),Gp

(
z∗, gz∗, gz∗),Gp

(
z∗,hz∗,hz∗),

Gp(z∗, z∗, fz∗) +Gp(z∗, z∗, gz∗) +Gp(z∗, z∗,hz∗)


}

≤ max
{
Gp

(
fz∗, fz∗, fz∗),Gp

(
gz∗, gz∗, gz∗),Gp

(
hz∗,hz∗,hz∗)}. ()

We consider three cases as follows:
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. fz∗ = gz∗ = hz∗.
. fz∗ �= gz∗ �= hz∗.
. a. fz∗ = gz∗ �= hz∗, or b. fz∗ �= gz∗ = hz∗.
For case , by (),M(z∗, z∗, z∗) ≤Gp(fz∗, gz∗,hz∗).
For case , by (Gp),M(z∗, z∗, z∗) ≤Gp(fz∗, gz∗,hz∗).
Now, from (),

ψ
(
Gp

(
fz∗, gz∗,hz∗)) ≤ ψ

(
Gp

(
fz∗, gz∗,hz∗)) – ϕ

(
M

(
z∗, z∗, z∗)), ()

henceM(z∗, z∗, z∗) = . Therefore, z∗ = fz∗ = gz∗ = hz∗.
On the other hand, for case , part a, by (Gp),M(z∗, z∗, z∗) ≤ Gp(fz∗, gz∗,hz∗) and hence

from (), we have

ψ
(
Gp

(
fz∗, gz∗,hz∗)) ≤ ψ

(
Gp

(
fz∗, gz∗,hz∗)) – ϕ

(
M

(
z∗, z∗, z∗)), ()

henceM(z∗, z∗, z∗) = . Therefore, z∗ = fz∗ = gz∗ = hz∗.
Now, let x∗ and y∗ as two fixed points of f , g and h be comparable. So, from () we have

ψ
(
Gp

(
x∗,x∗, y∗)) =ψ

(
Gp

(
fx∗, gx∗,hy∗))

≤ ψ
(
M

(
x∗,x∗, y∗)) – ϕ

(
M

(
x∗,x∗, y∗)), ()

where

M
(
x∗,x∗, y∗) = max

{
Gp

(
x∗,x∗, y∗),

Gp
(
x∗, fx∗, fx∗),Gp

(
x∗, gx∗, gx∗),Gp

(
y∗,hy∗,hy∗),

Gp(x∗,x∗, fx∗) +Gp(x∗,x∗, gx∗) +Gp(y∗, y∗,hy∗)


}

≤ Gp
(
x∗,x∗, y∗).

Hence () gives

ψ
(
Gp

(
x∗,x∗, y∗)) ≤ ψ

(
Gp

(
x∗,x∗, y∗)) – ϕ

(
M

(
x∗,x∗, y∗)).

Therefore, ϕ(M(x∗,x∗, y∗)) =  and hence x∗ = y∗. �

The following corollaries are special cases of the above results.

Corollary . Let (X,�,Gp) be a partially ordered complete Gp-metric space. Let f : X →
X be a mapping such that for every three comparable elements x, y, z ∈ X, we have

ψ
(
Gp(fx, fy, fz)

) ≤ ψ
(
M(x, y, z)

)
– ϕ

(
M(x, y, z)

)
, ()
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where

M(x, y, z) = max

{
Gp(x, y, z),

Gp(x, fx, fx),Gp(y, fy, fy),Gp(z, fz, fz),

Gp(x,x, fx) +Gp(y, y, fy) +Gp(z, z, fz)


}

and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then f has a fixed point in X
provided that fx� f (fx) for all x ∈ X and either
a. f is continuous, or
b. X has the sequential limit comparison property.
Moreover, f has a unique fixed point provided that the fixed points of f are comparable.

Taking y = z in Corollary ., we obtain the following common fixed point result.

Corollary . Let (X,�,Gp) be a partially ordered complete Gp-metric space, and let f be
a self-mapping on X such that for every comparable elements x, y ∈ X,

ψ
(
Gp(fx, fy, fy)

) ≤ ψ
(
M(x, y, y)

)
– ϕ

(
M(x, y, y)

)
, ()

where

M(x, y, y) =max

{
Gp(x, y, y),G(x, fx, fx),Gp(y, fy, fy),

Gp(x,x, fx) + Gp(y, y, fy)


}
,

and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then f has a fixed point in X
provided that fx� f (fx) for all x ∈ X and either
a. f is continuous, or
b. X has the sequential limit comparison property.

3 Fixed point results via an α-admissible mapping with respect to η in
Gp-metric spaces

Samet et al. [] defined the notion of α-admissible mappings and proved the following
result.

Definition . Let T be a self-mapping on X and α : X ×X → [, +∞) be a function. We
say that T is an α-admissible mapping if

x, y ∈ X, α(x, y)≥  �⇒ α(Tx,Ty)≥ .

Denote with � the family of all nondecreasing functions ψ : [, +∞) → [, +∞) such
that

∑∞
n= ψ

n(t) < +∞ for all t > , where ψn is the nth iterate of ψ .

Theorem . Let (X,d) be a complete metric space and T be an α-admissible mapping.
Assume that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
, ()

where ψ ∈ � . Also suppose that the following assertions hold:
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(i) there exists x ∈ X such that α(x,Tx) ≥ ;
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥  for all

n ∈N∪ {} and xn → x as n→ +∞, we have α(xn,x) ≥  for all n ∈N∪ {}.
Then T has a fixed point.

For more details on α-admissible mappings, we refer the reader to [–].
Very recently, Salimi et al. [] modified and generalized the notions of α-ψ-contractive

mappings and α-admissible mappings as follows.

Definition . [] Let T be a self-mapping on X and α,η : X × X → [, +∞) be two
functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X, α(x, y)≥ η(x, y) �⇒ α(Tx,Ty) ≥ η(Tx,Ty).

Note that if we take η(x, y) = , then this definition reduces to Definition .. Also, if we
take α(x, y) = , then we say that T is an η-subadmissible mapping.
The following result properly contains Theorem . and Theorems . and . of [].

Theorem . [] Let (X,d) be a complete metric space and T be an α-admissible map-
ping with respect to η. Assume that

x, y ∈ X, α(x, y)≥ η(x, y) �⇒ d(Tx,Ty) ≤ ψ
(
M(x, y)

)
, ()

where ψ ∈ � and

M(x, y) =max

{
d(x, y),

d(x,Tx) + d(y,Ty)


,
d(x,Ty) + d(y,Tx)



}
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x,Tx) ≥ η(x,Tx);
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥ η(xn,xn+) for

all n ∈N∪ {} and xn → x as n→ +∞, we have α(xn,x) ≥ η(xn,x) for all
n ∈N∪ {}.

Then T has a fixed point.

In fact, the Banach contraction principle and Theorem . hold for the following exam-
ple, but Theorem . does not hold.

Example . [] Let X = [,∞) be endowed with the usual metric d(x, y) = |x – y| for
all x, y ∈ X, and let T : X → X be defined by Tx = 

x. Also, define α : X → [,∞) by
α(x, y) =  and ψ : [,∞) → [,∞) by ψ(t) = 

 t.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous α-admis-
sible mapping with respect to η on X, there exists x ∈ X such that α(x, fx) ≥ η(x, fx)
and if any sequence {xn} in X converges to a point x, then we have α(x,x)≥ η(x,x). Assume
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that

α(x, y)≥ η(x, y)

�⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r < . Then f has a fixed point.

Proof Let x ∈ X and define a sequence {xn} by xn = f nx for all n ∈ N. Since f is an
α-admissible mapping with respect to η and α(x,x) = α(x, fx) ≥ η(x, fx) = η(x,x),
we deduce that α(x,x) = α(fx, fx) ≥ η(fx, fx) = η(x,x). Continuing this process, we
get α(xn,xn+) ≥ η(xn,xn+) for all n ∈N∪ {}. Now, from () we have

Gp
(
ff nx, f f nx, f f nx

)
≤ rmax

{
Gp

(
f nx,ff nx,ff nx

)
,Gp

(
ff nx, f f nx, f f nx

)}
,

which implies

Gp
(
f n+x, f n+x, f n+x

) ≤ rGp
(
f nx, f n+x, f n+x

)
. ()

Continuing the above process, we can obtain

Gp
(
f nx, f n+x, f n+x

) ≤ rGp
(
f n–x, f nx, f nx

) ≤ · · · ≤ rnGp(x, fx, fx). ()

Then, for anym > n, by () we get

Gp
(
f nx, f mx, f mx

) ≤Gp
(
f nx, f n+x, f n+x

)
+Gp

(
f n+x, f mx, f mx

)
≤Gp

(
f nx, f n+x, f n+x

)
+Gp

(
f n+x, f n+x, f n+x

)
+Gp

(
f n+x, f mx, f mx

)
≤G

(
f nx, f n+x, f n+x

)
+Gp

(
f n+x, f n+x, f n+x

)
+Gp

(
f n+x, f n+x, f n+x

)
+ · · · +Gp

(
f m–x, f mx, f mx

)

≤ rn

 – r
Gp(x, fx, fx).

This implies that limm,n→+∞ Gp(f nx, f mx, f mx) = , that is, {xn} is a Gp-Cauchy se-
quence.
Since {xn} is aGp-Cauchy sequence in the completeGp-metric spaceX, fromLemma .,

{xn} is a Cauchy sequence in the metric space (X,dGp ). Completeness of (X,Gp) yields that
(X,dGp ) is also complete. Then there exists z ∈ X such that

lim
n→∞dGp (xn, z) = . ()

Since limm,n→+∞ Gp(xn,xm,xm) = , from Lemma . we get

lim
n→+∞Gp(xn, z, z) = lim

n→+∞Gp(xn,xn, z) =Gp(z, z, z) = . ()
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From the continuity of f , we have

lim
n→+∞Gp(xn+, fz, fz) =Gp(fz, fz, fz),

and hence we get

Gp(z, fz, fz) ≤ lim
n→+∞G(z,xn+,xn+) + lim

n→+∞G(xn+, fz, fz) =Gp(fz, fz, fz).

So, we get that Gp(z, fz, fz) ≤ Gp(fz, fz, fz). Since the opposite inequality always holds, we
get that

Gp(z, fz, fz) =Gp(fz, fz, fz).

As α(z, z) ≥ η(z, z) we have

Gp(z, fz, fz) =Gp(fz, fz, fz) ≤ rmax
{
Gp(z, z, z),Gp(z, fz, fz),Gp(z, fz, fz)

}
, ()

where  ≤ r < . Hence, Gp(z, fz, fz) ≤ rGp(z, fz, fz). Thus, Gp(z, fz, fz) = , that is, z = fz. �

If in Theorem . we take η(x, y) = , then we deduce the following corollary.

Corollary . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous α-admis-
sible mapping on X , and there exists x ∈ X such that α(x, fx) ≥ . Assume that

α(x, y)≥  �⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}

for all x, y ∈ X, where  ≤ r < , and if any sequence {xn} in X converges to a point x, then
we have α(x,x)≥ . Then f has a fixed point.

If in Theorem . we take α(x, y) = , then we deduce the following corollary.

Corollary . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous η-subad-
missible mapping on X , and there exists x ∈ X such that η(x, fx) ≤ . Assume that

η(x, y)≤  �⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r < , and if any sequence {xn} in X converges to a point x, then
we have ≥ η(x,x). Then f has a fixed point.

In the following theorem, we omit the continuity of the mapping f .

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space and f be an α-admissible
mapping with respect to η on X such that

α(x, y)≥ η(x, y)

�⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r < . Assume that the following conditions hold:
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(i) there exists x ∈ X such that α(x, fx) ≥ η(x, fx);
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥ η(xn,xn+) for all n and xn → x as

n→ +∞, then α(xn,x) ≥ η(xn,x) for all n ∈N∪ {}.
Then f has a fixed point.

Proof Let x ∈ X be such that α(x, fx) ≥ η(x, fx) and define a sequence {xn} in X by
xn = f nx = fxn– for all n ∈ N. Following the proof of Theorem ., we have α(xn,xn+) ≥
η(xn,xn+) for all n ∈ N ∪ {} and there exists x ∈ X such that xn → x as n → +∞. Hence,
from (ii) we deduce that α(xn,x) ≥ η(xn,x) for all n ∈N∪ {}.
Hence, by (), it follows that for all n,

Gp(xn+, fx, fx) ≤ rmax
{
Gp(xn,x,x),Gp(xn,xn+,xn+),Gp(x, fx, fx)

}
.

Taking the limit as n → +∞ in the above inequality, from Lemma . we obtain ( –
r)G(x, fx, fx) ≤ , which implies that x = fx. �

Corollary . Let (X,Gp) be a Gp-complete Gp-metric space and f be an α-admissible
mapping on X such that

α(x, y)≥  �⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r < . Assume that the following conditions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;
(ii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x as n→ +∞,

then α(xn,x)≥  for all n ∈ N∪ {}.
Then f has a fixed point.

Example . Let X = [,+∞) and Gp(x, y, z) = max{x, y, z} be a Gp-metric on X. Define
f : X → X by

fx =

⎧⎪⎪⎨
⎪⎪⎩

x
 if x ∈ [, ]∪ {} =U ,

/ if x = ,

( + x)x if x ∈ [, +∞) \ ([, ]∪ {, }) = V ,

and α : X ×X → [, +∞) by

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
 if x, y ∈ [, ],

/ if x =  and y = ,

 otherwise.

Now, we prove that all the hypotheses of Corollary . are satisfied and hence f has a fixed
point.
Let x, y ∈ X, if α(x, y) ≥ , then x, y ∈ [, ]. On the other hand, for all x ∈ [, ], we have

fx ≤  and hence α(fx, fy) ≥ . This implies that f is an α-admissible mapping on X. Obvi-
ously, α(, f )≥ .
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Now, if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n ∈ N ∪ {} and xn → x
as n → +∞, then {xn} ⊆ [, ] and hence x ∈ [, ]. This implies that α(xn,x) ≥  for all
n ∈N∪ {}.
If α(x, y)≥ , then x, y ∈ [, ]. Hence,

Gp(fx, fy, fy) =max{fx, fy} =max

{
x


,
y


}

≤ 


max{x, y}

≤ 


max
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
.

Thus, all the conditions of Corollary . are satisfied and therefore f has a fixed point
(x = ).

Corollary . Let (X,Gp) be a Gp-complete Gp-metric space and f be an η-subadmissible
mapping on X such that

η(x, y)≤  �⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}

for all x, y ∈ X, where  ≤ r < . Assume that the following conditions hold:
(i) there exists x ∈ X such that η(x, fx) ≤ ;
(ii) if {xn} is a sequence in X such that η(xn,xn+) ≤  for all n and xn → x as n → +∞,

then η(xn,x) ≤  for all n ∈N∪ {}.
Then f has a fixed point.

4 Consequences
Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous α-admis-
sible mapping on X , and there exists x ∈ X such that α(x, fx) ≥ . Assume that

α(x, y)Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r <  and if any sequence {xn} in X converges to a point x, then we
have α(x,x)≥ η(x,x). Then f has a fixed point.

Proof Assume that α(x, y)≥ , then from () we get

Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
.

That is,

α(x, y)≥  �⇒ Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
.

Hence all the conditions of Corollary . hold and f has a fixed point. �

Similarly, we can deduce the following results.
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Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous α-
admissible mapping on X, and there exists x ∈ X such that α(x, fx) ≥ . Assume that

(
Gp(fx, fy, fy) + 	

)α(x,y) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
+ 	

for all x, y ∈ X, where  ≤ r <  and 	 ≥ , and if any sequence {xn} in X converges to a point
x, then we have α(x,x)≥ . Then f has a fixed point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous α-
admissible mapping on X, and there exists x ∈ X such that α(x, fx) ≥ . Assume that

(
α(x, y) + 	

)Gp(fx,fy,fy) ≤ ( + 	)rmax{Gp(x,y,y),Gp(x,fx,fx),Gp(y,fy,fy)} ()

for all x, y ∈ X, where  ≤ r <  and 	 > , and if any sequence {xn} in X converges to a point
x, then we have α(x,x)≥ . Then f has a fixed point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous η-subad-
missible mapping on X , and there exists x ∈ X such that η(x, fx) ≤ . Assume that

Gp(fx, fy, fy) ≤ rη(x, y)max
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r < , and if any sequence {xn} in X converges to a point x, then
we have ≥ η(x,x). Then f has a fixed point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous η-subad-
missible mapping on X , and there exists x ∈ X such that η(x, fx) ≤ . Assume that

Gp(fx, fy, fy) + 	 ≤ (
rmax

{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
+ 	

)η(x,y)

for all x, y ∈ X, where  ≤ r <  and 	 ≥ , and if any sequence {xn} in X converges to a point
x, then we have ≥ η(x,x). Then f has a fixed point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be a continuous η-subad-
missible mapping on X , and there exists x ∈ X such that η(x, fx) ≤ . Assume that

( + 	)Gp(fx,fy,fy) ≤ (
η(x, y) + 	

)rmax{Gp(x,y,y),Gp(x,fx,fx),Gp(y,fy,fy)} ()

for all x, y ∈ X, where  ≤ r <  and 	 > , and if any sequence {xn} in X converges to a point
x, then we have ≥ η(x,x). Then f has a fixed point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be an α-admissible map-
ping on X, and there exists x ∈ X such that α(x, fx) ≥ . Assume that

α(x, y)Gp(fx, fy, fy) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}

for all x, y ∈ X, where  ≤ r < . If {xn} is a sequence in X such that α(xn,xn+) ≥  for all n
and xn → x as n → +∞, then α(xn,x)≥  for all n ∈N∪ {}, then f has a fixed point.
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Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be an α-admissible map-
ping on X, and there exists x ∈ X such that α(x, fx) ≥ . Assume that

(
Gp(fx, fy, fy) + 	

)α(x,y) ≤ rmax
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
+ 	

for all x, y ∈ X, where  ≤ r <  and 	 ≥ . If {xn} is a sequence in X such that α(xn,xn+) ≥ 
for all n and xn → x as n → +∞, then α(xn,x) ≥  for all n ∈ N ∪ {}, then f has a fixed
point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be an α-admissible map-
ping on X, and there exists x ∈ X such that α(x, fx) ≥ . Assume that

(
α(x, y) + 	

)Gp(fx,fy,fy) ≤ ( + 	)rmax{Gp(x,y,y),Gp(x,fx,fx),Gp(y,fy,fy)} ()

for all x, y ∈ X, where ≤ r <  and 	 > . If {xn} is a sequence in X such that α(xn,xn+) ≥ 
for all n and xn → x as n → +∞, then α(xn,x) ≥  for all n ∈ N ∪ {}, then f has a fixed
point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be an η-subadmissible
mapping on X, and there exists x ∈ X such that η(x, fx) ≤ . Assume that

Gp(fx, fy, fy) ≤ rη(x, y)max
{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
()

for all x, y ∈ X, where  ≤ r < . If {xn} is a sequence in X such that η(xn,xn+) ≤  for all n
and xn → x as n → +∞, we have η(xn,x)≤  for all n ∈N∪ {}, then f has a fixed point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be an η-subadmissible
mapping on X and there exists x ∈ X such that η(x, fx) ≤ . Assume that

Gp(fx, fy, fy) + 	 ≤ (
rmax

{
Gp(x, y, y),Gp(x, fx, fx),Gp(y, fy, fy)

}
+ 	

)η(x,y)

for all x, y ∈ X, where  ≤ r <  and 	 ≥ . If {xn} is a sequence in X such that η(xn,xn+) ≤ 
for all n and xn → x as n→ +∞, we have η(xn,x)≤  for all n ∈N∪ {}, then f has a fixed
point.

Theorem . Let (X,Gp) be a Gp-complete Gp-metric space, f be an η-subadmissible
mapping on X, and there exists x ∈ X such that η(x, fx) ≤ . Assume that

( + 	)Gp(fx,fy,fy) ≤ (
η(x, y) + 	

)rmax{Gp(x,y,y),Gp(x,fx,fx),Gp(y,fy,fy)} ()

for all x, y ∈ X, where  ≤ r <  and 	 > . If {xn} is a sequence in X such that η(xn,xn+) ≤ 
for all n and xn → x as n → +∞, then η(xn,x) ≤  for all n ∈ N ∪ {}, then f has a fixed
point.
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