Some fixed point results in ordered G_{p}-metric spaces

Ljubomir Ćirić ${ }^{1 *}$, Saud M Alsulami², Vahid Parvaneh ${ }^{3 *}$ and Jamal Rezaei Roshan ${ }^{4}$

"Correspondence:
Iciric@rcub.bg.ac.rs;
vahid.parvaneh@kiau.ac.ir
${ }^{1}$ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Belgrade, Serbia ${ }^{3}$ Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran Full list of author information is available at the end of the article

Abstract

In this paper, first we present some coincidence point results for six mappings satisfying the generalized (ψ, φ)-weakly contractive condition in the framework of partially ordered G_{p}-metric spaces. Secondly, we consider α-admissible mappings in the setup of G_{p}-metric spaces. An example is also provided to support our results. MSC: Primary 47 H 10 ; secondary 54 H 25 Keywords: coincidence point; common fixed point; generalized weak contraction; generalized metric space; partially weakly increasing mapping; altering distance function

1 Introduction and mathematical preliminaries

Recently, Zand and Nezhad [1] have introduced a new generalized metric space, a $G_{p^{-}}$ metric space, as a generalization of both partial metric spaces [2] and G-metric spaces [3].

We will use the following definition of a G_{p}-metric space.

Definition 1.1 [4] Let X be a nonempty set. Suppose that a mapping $G_{p}: X \times X \times X \rightarrow \mathbb{R}^{+}$ satisfies:
$\left(G_{p} 1\right) x=y=z$ if $G_{p}(x, y, z)=G_{p}(z, z, z)=G_{p}(y, y, y)=G_{p}(x, x, x)$;
$\left(G_{p} 2\right) \quad G_{p}(x, x, x) \leq G_{p}(x, x, y) \leq G_{p}(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$;
$\left(G_{p} 3\right) G_{p}(x, y, z)=G_{p}(p\{x, y, z\})$, where p is any permutation of x, y, z (symmetry in all three variables);
$\left(G_{p} 4\right) G_{p}(x, y, z) \leq G_{p}(x, a, a)+G_{p}(a, y, z)-G_{p}(a, a, a)$ for all $x, y, z, a \in X$ (rectangle inequality).

Then G_{p} is called a G_{p}-metric and $\left(X, G_{p}\right)$ is called a G_{p}-metric space.
The G_{p}-metric G_{p} is called symmetric if

$$
\begin{equation*}
G_{p}(x, x, y)=G_{p}(x, y, y) \tag{1}
\end{equation*}
$$

holds for all $x, y \in X$. Otherwise, G_{p} is an asymmetric G_{p}-metric.

Remark 1 In [1] (see also [5]), instead of ($G_{p} 2$), the following condition was used:
$\left(G_{p} 2^{\prime}\right) G_{p}(x, x, x) \leq G_{p}(x, x, y) \leq G_{p}(x, y, z)$ for all $x, y, z \in X$.

[^0]However, with this assumption, it is very easy to obtain that (1) holds for all $x, y \in X$, i.e., the respective space is symmetric. On the other hand, there are a lot of examples of non-symmetric G-metric spaces. Hence, the conclusion stated in $[1,5]$ that each G-metric space is a G_{p}-metric space (satisfying $\left(G_{p} 2^{\prime}\right)$) does not hold. With our assumption $\left(G_{p} 2\right)$, this conclusion holds true.

The following are some easy examples of G_{p}-metric spaces.

Example 1.1 Let $X=[0,+\infty)$, and let $G_{p}: X^{3} \rightarrow \mathbb{R}^{+}$be given by $G_{p}(x, y, z)=\max \{x, y, z\}$. Obviously, $\left(X, G_{p}\right)$ is a symmetric G_{p}-metric space which is not a G-metric space.

Example 1.2 Let $X=\{0,1,2,3, \ldots\}$. Define $G_{p}: X^{3} \rightarrow X$ by

$$
G_{p}(x, y, z)= \begin{cases}x+y+z+1, & x \neq y \neq z \\ x+z+1, & y=z \neq x \\ y+z+1, & x=z \neq y \\ x+z+1, & x=y \neq z \\ 1, & x=y=z\end{cases}
$$

It is easy to see that $\left(X, G_{p}\right)$ is a symmetric G_{p}-metric space.

Example 1.3 [4] Let $X=\{0,1,2,3\}$. Let

$$
\begin{aligned}
A= & \{(1,0,0),(0,1,0),(0,0,1),(2,0,0),(0,2,0),(0,0,2),(3,0,0),(0,3,0),(0,0,3), \\
& (1,2,2),(2,1,2),(2,2,1),(2,3,3),(3,2,3),(3,3,2)\}, \\
B= & \{(0,1,1),(1,0,1),(1,1,0),(0,2,2),(2,0,2),(2,2,0),(0,3,3),(3,0,3),(3,3,0), \\
& (2,1,1),(1,2,1),(1,1,2),(3,2,2),(2,3,2),(2,2,3)\} .
\end{aligned}
$$

Define $G_{p}: X^{3} \rightarrow \mathbb{R}^{+}$by

$$
G(x, y, z)= \begin{cases}1 & \text { if } x=y=z \neq 2 \\ 0 & \text { if } x=y=z=2 \\ 2 & \text { if }(x, y, z) \in A \\ \frac{5}{2} & \text { if }(x, y, z) \in B \\ 3 & \text { if } x \neq y \neq z\end{cases}
$$

It is easy to see that $\left(X, G_{p}\right)$ is an asymmetric G_{p}-metric space.

Proposition 1.1 [1] Every G_{p}-metric space $\left(X, G_{p}\right)$ defines a metric space $\left(X, d_{G_{p}}\right)$ where

$$
d_{G_{p}}(x, y)=G_{p}(x, y, y)+G_{p}(y, x, x)-G_{p}(x, x, x)-G_{p}(y, y, y)
$$

for all $x, y \in X$.

Proposition 1.2 [1] Let X be a G_{p}-metric space. Then,for each $x, y, z, a \in X$, itfollows that:
(1) $G_{p}(x, y, z) \leq G_{p}(x, a, a)+G_{p}(y, a, a)+G_{p}(z, a, a)-2 G_{p}(a, a, a)$;
(2) $G_{p}(x, y, z) \leq G_{p}(x, x, y)+G_{p}(x, x, z)-G_{p}(x, x, x)$;
(3) $G_{p}(x, y, y) \leq 2 G_{p}(x, x, y)-G_{p}(x, x, x)$;
(4) $G_{p}(x, y, z) \leq G_{p}(x, a, z)+G_{p}(a, y, z)-G_{p}(a, a, a), a \neq z$.

Definition 1.2 [1] Let $\left(X, G_{p}\right)$ be a G_{p}-metric space. Let $\left\{x_{n}\right\}$ be a sequence of points of X.

1. A point $x \in X$ is said to be a limit of the sequence $\left\{x_{n}\right\}$, denoted by $x_{n} \rightarrow x$, if $\lim _{n, m \rightarrow \infty} G_{p}\left(x, x_{n}, x_{m}\right)=G_{p}(x, x, x)$.
2. $\left\{x_{n}\right\}$ is said to be a G_{p}-Cauchy sequence if $\lim _{n, m \rightarrow \infty} G_{p}\left(x_{n}, x_{m}, x_{m}\right)$ exists (and is finite).
3. $\left(X, G_{p}\right)$ is said to be G_{p}-complete if every G_{p}-Cauchy sequence in X is G_{p}-convergent to $x \in X$.

Using the above definitions, one can easily prove the following proposition.
Proposition 1.3 [1] Let $\left(X, G_{p}\right)$ be a G_{p}-metric space. Then, for any sequence $\left\{x_{n}\right\}$ in X and a point $x \in X$, the following are equivalent:
(1) $\left\{x_{n}\right\}$ is G_{p}-convergent to x.
(2) $G_{p}\left(x_{n}, x_{n}, x\right) \rightarrow G_{p}(x, x, x)$ as $n \rightarrow \infty$.
(3) $G_{p}\left(x_{n}, x, x\right) \rightarrow G_{p}(x, x, x)$ as $n \rightarrow \infty$.

Lemma 1.1 [4] If G_{p} is a G_{p}-metric on X, then the mappings $d_{G_{p}}, d_{G_{p}}^{\prime}: X \times X \rightarrow R^{+}$, given by

$$
d_{G_{p}}(x, y)=G_{p}(x, y, y)+G_{p}(y, x, x)-G_{p}(x, x, x)-G_{p}(y, y, y)
$$

and

$$
d_{G_{p}}^{\prime}(x, y)=\max \left\{G_{p}(x, y, y)-G_{p}(x, x, x), G_{p}(y, x, x)-G_{p}(y, y, y)\right\},
$$

define equivalent metrics on X.
Proof $\frac{a+b}{2} \leq \max \{a, b\} \leq a+b$ for all nonnegative real numbers a, b.
Based on Lemma 2.2 of [6], Parvaneh et al. have proved the following essential lemma.
Lemma 1.2 [4] (1) A sequence $\left\{x_{n}\right\}$ is a G_{p}-Cauchy sequence in a G_{p}-metric space $\left(X, G_{p}\right)$ if and only if it is a Cauchy sequence in the metric space $\left(X, d_{G_{p}}\right)$.
(2) A G_{p}-metric space $\left(X, G_{p}\right)$ is G_{p}-complete if and only if the metric space $\left(X, d_{G_{p}}\right)$ is complete. Moreover, $\lim _{n \rightarrow \infty} d_{G_{p}}\left(x, x_{n}\right)=0$ if and only if

$$
\begin{aligned}
\lim _{n \rightarrow \infty} G_{p}\left(x, x_{n}, x_{n}\right) & =\lim _{n \rightarrow \infty} G_{p}\left(x_{n}, x, x\right)=\lim _{n, m \rightarrow \infty} G_{p}\left(x_{n}, x_{n}, x_{m}\right) \\
& =\lim _{n, m \rightarrow \infty} G_{p}\left(x_{n}, x_{m}, x_{m}\right)=G_{p}(x, x, x) .
\end{aligned}
$$

Lemma 1.3 [4] Assume that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ in a G_{p}-metric space $\left(X, G_{p}\right)$ such that $G_{p}(x, x, x)=0$. Then, for every $y \in X$,
(i) $\lim _{n \rightarrow \infty} G_{p}\left(x_{n}, y, y\right)=G_{p}(x, y, y)$,
(ii) $\lim _{n \rightarrow \infty} G_{p}\left(x_{n}, x_{n}, y\right)=G_{p}(x, x, y)$.

Lemma 1.4 [4] Assume that $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are three sequences in a G_{p}-metric space X such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} G_{p}\left(x_{n}, x, x\right)=\lim _{n \rightarrow \infty} G_{p}\left(x_{n}, x_{n}, x_{n}\right)=G_{p}(x, x, x), \\
& \lim _{n \rightarrow \infty} G_{p}\left(y_{n}, y, y\right)=\lim _{n \rightarrow \infty} G_{p}\left(y_{n}, y_{n}, y_{n}\right)=G_{p}(y, y, y)
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} G_{p}\left(z_{n}, z, z\right)=\lim _{n \rightarrow \infty} G_{p}\left(z_{n}, z_{n}, z_{n}\right)=G_{p}(z, z, z)
$$

Then
(i) $\lim _{n \rightarrow \infty} G_{p}\left(x_{n}, y_{n}, z_{n}\right)=G_{p}(x, y, z)$ and
(ii) $\lim _{n \rightarrow \infty} G_{p}\left(x_{n}, x_{n}, y\right)=G_{p}(x, x, y)$
for every $y, z \in X$.

Lemma 1.5 [5] Let $\left(X, G_{p}\right)$ be a G_{p}-metric space. Then
(A) If $G_{p}(x, y, z)=0$, then $x=y=z$.
(B) If $x \neq y$, then $G_{p}(x, y, y)>0$.

Definition 1.3 [1] Let $\left(X_{1}, G_{1}\right)$ and $\left(X_{2}, G_{2}\right)$ be two G_{p}-metric spaces, and let $f:\left(X_{1}, G_{1}\right) \rightarrow$ $\left(X_{2}, G_{2}\right)$ be a mapping. Then f is said to be G_{p}-continuous at a point $a \in X_{1}$ if for a given $\varepsilon>0$, there exists $\delta>0$ such that $x, y \in X_{1}$ and $G_{1}(a, x, y)<\delta+G_{1}(a, a, a)$ imply that $G_{2}(f(a), f(x), f(y))<\varepsilon+G_{2}(f(a), f(a), f(a))$. The mapping f is G_{p}-continuous on X_{1} if it is G_{p}-continuous at all $a \in X_{1}$.

Proposition 1.4 [1] Let $\left(X_{1}, G_{1}\right)$ and $\left(X_{2}, G_{2}\right)$ be two G_{p}-metric spaces. Then a mapping $f: X_{1} \rightarrow X_{2}$ is G_{p}-continuous at a point $x \in X_{1}$ if and only if it is G_{p}-sequentially continuous at x; that is, whenever $\left\{x_{n}\right\}$ is G_{p}-convergent to $x,\left\{f\left(x_{n}\right)\right\}$ is G_{p}-convergent to $f(x)$.

The concept of an altering distance function was introduced by Khan et al. [7] as follows.
Definition 1.4 The function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:

1. ψ is continuous and nondecreasing.
2. $\psi(t)=0$ if and only if $t=0$.

A self-mapping f on X is called a weak contraction if the following contractive condition is satisfied:

$$
d(f x, f y) \leq d(x, y)-\varphi(d(x, y)),
$$

for all $x, y \in X$, where φ is an altering distance function.
The concept of a weakly contractive mapping was introduced by Alber and GuerreDelabrere [8] in the setup of Hilbert spaces. Rhoades [9] considered this class of mappings
in the setup of metric spaces and proved that a weakly contractive mapping defined on a complete metric space has a unique fixed point.
Zhang and Song [10] introduced the concept of a generalized φ-weakly contractive mapping as follows.

Definition 1.5 Self-mappings f and g on a metric space X are called generalized φ-weak contractions if there exists a lower semicontinuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)>0$ for all $t>0$ such that for all $x, y \in X$,

$$
d(f x, g y) \leq N(x, y)-\varphi(N(x, y)),
$$

where

$$
N(x, y)=\max \left\{d(x, y), d(x, f x), d(y, g y), \frac{1}{2}[d(x, g y)+d(y, f x)]\right\} .
$$

Based on the above definition, they proved the following common fixed point result.

Theorem 1.1 [10] Let (X, d) be a complete metric space. If $f, g: X \rightarrow X$ are generalized φ-weakly contractive mappings, then there exists a unique point $u \in X$ such that $u=f u=g u$.

So far, many authors extended Theorem 1.1 (see [11-13] and [14]). Moreover, Đorić [12] generalized it by the definition of generalized (ψ, φ)-weak contractions.

Definition 1.6 Two mappings $f, g: X \rightarrow X$ are called generalized (ψ, φ)-weakly contractive if there exist two maps $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\psi(d(f x, g y)) \leq \psi(N(x, y))-\varphi(N(x, y))
$$

for all $x, y \in X$, where N and φ are as in Definition 1.5 and $\psi:[0, \infty) \rightarrow[0, \infty)$ is an altering distance function.

Theorem 1.2 [12] Let (X, d) be a complete metric space, and letf, $g: X \rightarrow X$ be generalized (ψ, φ)-weakly contractive self-mappings. Then there exists a unique point $u \in X$ such that $u=f u=g u$.

Recently, many researchers have focused on different contractive conditions in various metric spaces endowed with a partial order and studied fixed point theory in the so-called bi-structured spaces. For more details on fixed point results, their applications, comparison of different contractive conditions and related results in ordered various metric spaces, we refer the reader to [15-29] and the references mentioned therein.
Let X be a nonempty set and $f: X \rightarrow X$ be a given mapping. For every $x \in X$, let $f^{-1}(x)=$ $\{u \in X: f u=x\}$.

Definition 1.7 [24] Let (X, \preceq) be a partially ordered set, and let $f, g, h: X \rightarrow X$ be given mappings such that $f X \subseteq h X$ and $g X \subseteq h X$. We say that f and g are weakly increasing with respect to h if for all $x \in X$, we have

$$
f x \leq g y \quad \text { for all } y \in h^{-1}(f x)
$$

and

$$
g x \leq f y \quad \text { for all } y \in h^{-1}(g x) .
$$

If $f=g$, we say that f is weakly increasing with respect to h.

If $h=I$ (the identity mapping on X), then the above definition reduces to that of a weakly increasing mapping [30] (see also [24, 31]).

Definition 1.8 A partially ordered G_{p}-metric space (X, \preceq, G_{p}) is said to have the sequential limit comparison property if for every nondecreasing sequence (nonincreasing sequence) $\left\{x_{n}\right\}$ in $X, x_{n} \rightarrow x$ implies that $x_{n} \leq x\left(x \leq x_{n}\right)$.

The aim of this paper is to prove some coincidence and common fixed point theorems for weakly (ψ, φ)-contractive mappings in partially ordered G_{p}-metric spaces.

2 Main results

Let $\left(X, \preceq, G_{p}\right)$ be an ordered G_{p}-metric space and $f, g, h, R, S, T: X \rightarrow X$ be six selfmappings. Throughout this paper, unless otherwise stated, for all $x, y, z \in X$, let

$$
\begin{aligned}
M(x, y, z)= & \max \left\{G_{p}(T x, R y, S z),\right. \\
& G_{p}(T x, f x, f x), G_{p}(R y, g y, g y), G_{p}(S z, h z, h z), \\
& \left.\frac{G_{p}(T x, T x, f x)+G_{p}(R y, R y, g y)+G_{p}(S z, S z, h z)}{3}\right\} .
\end{aligned}
$$

Theorem 2.1 Let $\left(X, \preceq, G_{p}\right)$ be a partially ordered G_{p}-metric space with the sequential limit comparison property. Let $f, g, h, R, S, T: X \rightarrow X$ be six mappings such that $f(X) \subseteq$ $R(X), g(X) \subseteq S(X)$ and $h(X) \subseteq T(X)$, and $R X, S X$ and $T X$ are G_{p}-complete subsets of X. Suppose that for comparable elements $T x, R y, S z \in X$, we have

$$
\begin{equation*}
\psi\left(2 G_{p}(f x, g y, h z)\right) \leq \psi(M(x, y, z))-\varphi(M(x, y, z)) \tag{2}
\end{equation*}
$$

where $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions. Then the pairs $(f, T),(g, R)$ and (h, S) have a coincidence point z^{*} in X provided that the pairs $(f, T),(g, R)$ and (h, S) are weakly compatible and the pairs $(f, g),(g, h)$ and (h, f) are partially weakly increasing with respect to R, S and T, respectively. Moreover, if $R z^{*}, S z^{*}$ and $T z^{*}$ are comparable, then $z^{*} \in X$ is a coincidence point of f, g, h, R, S and T.

Proof Let x_{0} be an arbitrary point of X. Choose $x_{1} \in X$ such that $f x_{0}=R x_{1}, x_{2} \in X$ such that $g x_{1}=S x_{2}$ and $x_{3} \in X$ such that $h x_{2}=T x_{3}$. This can be done as $f(X) \subseteq R(X), g(X) \subseteq S(X)$ and $h(X) \subseteq T(X)$.

Continuing this way, construct a sequence $\left\{z_{n}\right\}$ defined by $z_{3 n+1}=R x_{3 n+1}=f x_{3 n}, z_{3 n+2}=$ $S x_{3 n+2}=g x_{3 n+1}$ and $z_{3 n+3}=T x_{3 n+3}=h x_{3 n+2}$ for all $n \geq 0$. The sequence $\left\{z_{n}\right\}$ in X is said to be a Jungck-type iterative sequence with initial guess x_{0}.

As $x_{1} \in R^{-1}\left(f x_{0}\right), x_{2} \in S^{-1}\left(g x_{1}\right)$ and $x_{3} \in T^{-1}\left(h x_{2}\right)$ and the pairs $(f, g),(g, h)$ and (h, f) are partially weakly increasing with respect to R, S and T, respectively, we have

$$
R x_{1}=f x_{0} \preceq g x_{1}=S x_{2} \preceq h x_{2}=T x_{3} \preceq f x_{3}=R x_{4} .
$$

Continuing this process, we obtain $R x_{3 n+1} \preceq S x_{3 n+2} \preceq T x_{3 n+3}$ for all $n \geq 0$.
We will complete the proof in three steps.
Step I. We will prove that $\left\{z_{n}\right\}$ is a G_{p}-Cauchy sequence. First, we show that $\lim _{k \rightarrow \infty} G_{p}\left(z_{k}\right.$, $\left.z_{k+1}, z_{k+2}\right)=0$.
Define $G_{p_{k}}=G_{p}\left(z_{k}, z_{k+1}, z_{k+2}\right)$. Suppose $G_{p_{k_{0}}}=0$ for some k_{0}. Then $z_{k_{0}}=z_{k_{0}+1}=z_{k_{0}+2}$. In the case that $k_{0}=3 n$, then $z_{3 n}=z_{3 n+1}=z_{3 n+2}$ gives $z_{3 n+1}=z_{3 n+2}=z_{3 n+3}$. Indeed,

$$
\begin{aligned}
\psi\left(2 G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right) & =\psi\left(2 G_{p}\left(x_{3 n}, g x_{3 n+1}, h x_{3 n+2}\right)\right) \\
& \leq \psi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)-\varphi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
M(& \left.x_{3 n}, x_{3 n+1}, x_{3 n+2}\right) \\
= & \max \left\{G_{p}\left(T x_{3 n}, R x_{3 n+1}, S x_{3 n+2}\right), G_{p}\left(T x_{3 n}, f x_{3 n}, f x_{3 n}\right),\right. \\
& G_{p}\left(R x_{3 n+1}, g x_{3 n+1}, g x_{3 n+1}\right), G_{p}\left(S x_{3 n+2}, h x_{3 n+2}, h x_{3 n+2}\right), \\
& \left.\frac{G_{p}\left(T x_{3 n}, T x_{3 n}, f x_{3 n}\right)+G_{p}\left(R x_{3 n+1}, R x_{3 n+1}, g x_{3 n+1}\right)+G_{p}\left(S x_{3 n+2}, S x_{3 n+2}, h x_{3 n+2}\right)}{3}\right\} \\
= & \max \left\{G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right), G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+1}\right),\right. \\
& G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+2}\right), G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+3}\right), \\
& \left.\frac{G_{p}\left(z_{3 n}, z_{3 n}, z_{3 n+1}\right)+G_{p}\left(z_{3 n+1}, z_{3 n+1}, z_{3 n+2}\right)+G_{p}\left(z_{3 n+2}, z_{3 n+2}, z_{3 n+3}\right)}{3}\right\} \\
= & \max \left\{0,0,0, G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+3}\right), \frac{0+0+G_{p}\left(z_{3 n+2}, z_{3 n+2}, z_{3 n+3}\right)}{3}\right\} \\
= & G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+3}\right) \\
\leq & 2 G_{p}\left(z_{3 n+2}, z_{3 n+2}, z_{3 n+3}\right) \\
= & 2 G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right) .
\end{aligned}
$$

Thus

$$
\psi\left(2 G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right) \leq \psi\left(2 G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right)-\varphi\left(G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+3}\right)\right)
$$

implies that $\varphi\left(G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+3}\right)\right)=0$, that is, $z_{3 n+1}=z_{3 n+2}=z_{3 n+3}$. Similarly, if $k_{0}=3 n+$ 1 , then $z_{3 n+1}=z_{3 n+2}=z_{3 n+3}$ gives $z_{3 n+2}=z_{3 n+3}=z_{3 n+4}$. Also, if $k_{0}=3 n+2$, then $z_{3 n+2}=$ $z_{3 n+3}=z_{3 n+4}$ implies that $z_{3 n+3}=z_{3 n+4}=z_{3 n+5}$. Consequently, the sequence $\left\{z_{k}\right\}$ becomes constant for $k \geq k_{0}$, hence $\left\{z_{k}\right\}$ is G_{p}-Cauchy.

Suppose that

$$
\begin{equation*}
z_{k} \neq z_{k+1} \neq z_{k+2} \tag{3}
\end{equation*}
$$

for each k. We now claim that the following inequality holds:

$$
\begin{equation*}
G_{p}\left(z_{k+1}, z_{k+2}, z_{k+3}\right) \leq G_{p}\left(z_{k}, z_{k+1}, z_{k+2}\right)=M\left(x_{k}, x_{k+1}, x_{k+2}\right) \tag{4}
\end{equation*}
$$

for each $k=1,2,3, \ldots$.
Let $k=3 n$ and for $n \geq 0, G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)>G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right)>0$. Then, as $T x_{3 n} \preceq$ $R x_{3 n+1} \preceq S x_{3 n+2}$, using (2) we obtain that

$$
\begin{align*}
\psi\left(G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right) & \leq \psi\left(2 G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right) \\
& =\psi\left(2 G_{p}\left(f_{3 n}, g x_{3 n+1}, h x_{3 n+2}\right)\right) \\
& \leq \psi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)-\varphi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right) \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
& M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right) \\
& =\max \left\{G_{p}\left(T x_{3 n}, R x_{3 n+1}, S x_{3 n+2}\right),\right. \\
& \quad G_{p}\left(T x_{3 n}, f x_{3 n}, f x_{3 n}\right), G_{p}\left(R x_{3 n+1}, g x_{3 n+1}, g x_{3 n+1}\right), G_{p}\left(S x_{3 n+2}, h x_{3 n+2}, h x_{3 n+2}\right), \\
& \\
& \left.\quad \frac{G_{p}\left(T x_{3 n}, T x_{3 n}, f x_{3 n}\right)+G_{p}\left(R x_{3 n+1}, R x_{3 n+1}, g x_{3 n+1}\right)+G_{p}\left(S x_{3 n+2}, S x_{3 n+2}, h x_{3 n+2}\right)}{3}\right\} \\
& = \\
& \max \left\{G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right),\right. \\
& \\
& \quad G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+1}\right), G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+2}\right), G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+3}\right), \\
& \\
& \left.\frac{G_{p}\left(z_{3 n}, z_{3 n}, z_{3 n+1}\right)+G_{p}\left(z_{3 n+1}, z_{3 n+1}, z_{3 n+2}\right)+G_{p}\left(z_{3 n+2}, z_{3 n+2}, z_{3 n+3}\right)}{3}\right\} \\
& \leq \\
& \max \left\{G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right), G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right),\right. \\
& \left.\quad \frac{2 G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right)+G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)}{3}\right\} \\
& = \\
& G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right) .
\end{aligned}
$$

Hence (5) implies that

$$
\psi\left(G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right) \leq \psi\left(G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)\right)-\varphi\left(M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right),
$$

which is possible only if $M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)=0$, that is, $G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right)=0$. A contradiction to (3). Hence, $G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right) \leq G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right)$ and

$$
M\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)=G_{p}\left(z_{3 n}, z_{3 n+1}, z_{3 n+2}\right) .
$$

Therefore, (4) is proved for $k=3 n$.

Similarly, it can be shown that

$$
\begin{equation*}
G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+4}\right) \leq G_{p}\left(z_{3 n+1}, z_{3 n+2}, z_{3 n+3}\right)=M\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{p}\left(z_{3 n+3}, z_{3 n+4}, z_{3 n+5}\right) \leq G_{p}\left(z_{3 n+2}, z_{3 n+3}, z_{3 n+4}\right)=M\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right) . \tag{7}
\end{equation*}
$$

Hence, $\left\{G_{p}\left(z_{k}, z_{k+1}, z_{k+2}\right)\right\}$ is a nonincreasing sequence of nonnegative real numbers. Therefore, there is $r \geq 0$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{p}\left(z_{k}, z_{k+1}, z_{k+2}\right)=r . \tag{8}
\end{equation*}
$$

Since

$$
\begin{equation*}
G_{p}\left(z_{k+1}, z_{k+2}, z_{k+3}\right) \leq M\left(x_{k}, x_{k+1}, x_{k+2}\right) \leq G_{p}\left(z_{k}, z_{k+1}, z_{k+2}\right), \tag{9}
\end{equation*}
$$

taking the limit as $k \rightarrow \infty$ in (9), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M\left(x_{k}, x_{k+1}, x_{k+2}\right)=r . \tag{10}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$ in (5), using (8), (10) and the continuity of ψ and φ, we have $\psi(r) \leq \psi(r)-\varphi(r)$. Therefore, $\varphi(r)=0$. Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{p}\left(z_{k}, z_{k+1}, z_{k+2}\right)=0 \tag{11}
\end{equation*}
$$

from our assumptions about φ. Also, from Definition 1.1, part $\left(G_{p} 2\right)$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{p}\left(z_{k}, z_{k+1}, z_{k+1}\right)=0, \tag{12}
\end{equation*}
$$

and since $G_{p}(x, y, y) \leq 2 G_{p}(x, x, y)$ for all $x, y \in X$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{p}\left(z_{k}, z_{k}, z_{k+1}\right)=0 . \tag{13}
\end{equation*}
$$

Step II. We now show that $\left\{z_{n}\right\}$ is a G_{p}-Cauchy sequence in X. Therefore, we will show that

$$
\lim _{m \rightarrow \infty} G_{p}\left(z_{m}, z_{n}, z_{n}\right)=0 .
$$

Because of (11), (12) and (13), it is sufficient to show that

$$
\lim _{m, n \rightarrow \infty} G_{p}\left(z_{3 m}, z_{3 n}, z_{3 n}\right)=0,
$$

i.e., we prove that $\left\{z_{3 n}\right\}$ is G_{p}-Cauchy.

Suppose the opposite. Then there exists $\varepsilon>0$ for which we can find subsequences $\left\{z_{3 m(k)}\right\}$ and $\left\{z_{3 n(k)}\right\}$ of $\left\{z_{3 n}\right\}$ such that $n(k)>m(k) \geq k$ and

$$
\begin{equation*}
G_{p}\left(z_{3 m(k)}, z_{3 n(k)}, z_{3 n(k)}\right) \geq \varepsilon, \tag{14}
\end{equation*}
$$

and $n(k)$ is the smallest number such that the above statement holds; i.e.,

$$
\begin{equation*}
G_{p}\left(z_{3 m(k)}, z_{3 n(k)-3}, z_{3 n(k)-3}\right)<\varepsilon \tag{15}
\end{equation*}
$$

From the rectangle inequality and (15), we have

$$
\begin{align*}
& G_{p}\left(z_{3 m(k)}, z_{3 n(k)}, z_{3 n(k)}\right) \\
& \quad \leq G_{p}\left(z_{3 m(k)}, z_{3 n(k)-3}, z_{3 n(k)-3}\right)+G_{p}\left(z_{3 n(k)-3}, z_{3 n(k)}, z_{3 n(k)}\right) \\
& \quad<\varepsilon+G_{p}\left(z_{3 n(k)-3}, z_{3 n(k)}, z_{3 n(k)}\right) \\
& \quad<\varepsilon+G_{p}\left(z_{3 n(k)-3}, z_{3 n(k)-2}, z_{3 n(k)-2}\right)+G_{p}\left(z_{3 n(k)-2}, z_{3 n(k)-1}, z_{3 n(k)-1}\right) \\
& \quad+G_{p}\left(z_{3 n(k)-1}, z_{3 n(k)}, z_{3 n(k)}\right) . \tag{16}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ in (16), from (12) and (14) we obtain that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{p}\left(z_{3 m(k)}, z_{3 n(k)}, z_{3 n(k)}\right)=\varepsilon \tag{17}
\end{equation*}
$$

Using the rectangle inequality and $\left(G_{p} 2\right)$, we have

$$
\begin{align*}
& G_{p}\left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
& \quad \leq G_{p}\left(z_{3 m(k)}, z_{3 n(k)}, z_{3 n(k)}\right)+G_{p}\left(z_{3 n(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
& \leq G_{p}\left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+1}\right)+G_{p}\left(z_{3 n(k)+1}, z_{3 n(k)}, z_{3 n(k)}\right) \\
& \quad+G_{p}\left(z_{3 n(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
& \leq G_{p}\left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right)+G_{p}\left(z_{3 n(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+2}\right) \\
& \quad+G_{p}\left(z_{3 n(k)+1}, z_{3 n(k)}, z_{3 n(k)}\right)+G_{p}\left(z_{3 n(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) . \tag{18}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$, we have

$$
\lim _{k \rightarrow \infty} G_{p}\left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \leq \varepsilon \leq \lim _{k \rightarrow \infty} G_{p}\left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right)
$$

Finally,

$$
\begin{align*}
& G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right) \\
& \quad \leq \\
& \quad G_{p}\left(z_{3 m(k)+1}, z_{3 m(k)}, z_{3 m(k)}\right)+G_{p}\left(z_{3 m(k)}, z_{3 n(k)+2}, z_{3 n(k)+3}\right) \\
& \quad \tag{19}\\
& \quad G_{p}\left(z_{3 m(k)+1}, z_{3 m(k)}, z_{3 m(k)}\right)+G_{p}\left(z_{3 m(k)}, z_{3 n(k)}, z_{3 n(k)}\right) \\
& \quad+G_{p}\left(z_{3 n(k)}, z_{3 n(k)+2}, z_{3 n(k)+3}\right) .
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ and using (17), we have

$$
\lim _{k \rightarrow \infty} G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right) \leq \varepsilon .
$$

Consider,

$$
\begin{align*}
G_{p} & \left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
\leq & G_{p}\left(z_{3 m(k)}, z_{3 m(k)+1}, z_{3 m(k)+1}\right)+G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
\leq & G_{p}\left(z_{3 m(k)}, z_{3 m(k)+1}, z_{3 m(k)+1}\right)+G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+3}, z_{3 n(k)+3}\right) \\
& +G_{p}\left(z_{3 n(k)+3}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
\leq & G_{p}\left(z_{3 m(k)}, z_{3 m(k)+1}, z_{3 m(k)+1}\right)+G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right) \\
& +G_{p}\left(z_{3 n(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right) . \tag{20}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ and using (11), (12) and (13), we have

$$
\varepsilon \leq \lim _{k \rightarrow \infty} G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right)
$$

Therefore,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right)=\varepsilon \tag{21}
\end{equation*}
$$

As $T x_{m(k)} \preceq R x_{n(k)+1} \preceq S x_{n(k)+2}$, so from (2) we have

$$
\begin{align*}
\psi & \left(G_{p}\left(z_{3 m(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+3}\right)\right) \\
& =\psi\left(G_{p}\left(f x_{3 m(k)}, g x_{3 n(k)+1}, h x_{3 n(k)+2}\right)\right) \\
& \leq \psi\left(M\left(x_{3 m(k)}, x_{3 n(k)+1}, x_{3 n(k)+2}\right)\right)-\varphi\left(M\left(x_{3 m(k)}, x_{3 n(k)+1}, x_{3 n(k)+2}\right)\right), \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
& M\left(x_{3 m(k)}, x_{3 n(k)+1}, x_{3 n(k)+2}\right) \\
& =\max \left\{G_{p}\left(T x_{3 m(k)}, R x_{3 n(k)+1}, S x_{3 n(k)+2}\right), G_{p}\left(T x_{3 m(k)}, f x_{3 m(k)}, f x_{3 m(k)}\right),\right. \\
& G_{p}\left(R x_{3 n(k)+1}, g x_{3 n(k)+1}, g x_{3 n(k)+1}\right), G_{p}\left(S x_{3 n(k)+2}, h x_{3 n(k)+2}, h x_{3 n(k)+2}\right), \\
& G_{p}\left(T x_{3 m(k)}, T x_{3 m(k)}, f x_{3 m(k)}\right)+G_{p}\left(R x_{3 n(k)+1}, R x_{3 n(k)+1}, g x_{3 n(k)+1}\right) \\
& \left.\frac{+G_{p}\left(S x_{3 n(k)+2}, S x_{3 n(k)+2}, h x_{3 n(k)+2}\right)}{3}\right\} \\
& =\max \left\{G_{p}\left(z_{3 m(k)}, z_{3 n(k)+1}, z_{3 n(k)+2}\right), G_{p}\left(z_{3 m(k)}, z_{3 m(k)+1}, z_{3 m(k)+1}\right)\right. \text {, } \\
& G_{p}\left(z_{3 n(k)+1}, z_{3 n(k)+2}, z_{3 n(k)+2}\right), G_{p}\left(z_{3 n(k)+2}, z_{3 n(k)+3}, z_{3 n(k)+3)}\right), \\
& G_{p}\left(z_{3 m(k)}, z_{3 m(k)}, z_{3 m(k)+1}\right)+G_{p}\left(z_{3 n(k)+1}, z_{3 n(k)+1}, z_{3 n(k)+2}\right) \\
& \left.\frac{+G_{p}\left(z_{3 n(k)+2}, z_{3 n(k)+2}, z_{3 n(k)+3}\right)}{3}\right\} .
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$ and using (12), (13), (17), (21) in (22), we have

$$
\psi(\varepsilon) \leq \psi(\varepsilon)-\varphi(\varepsilon)<\psi(\varepsilon)
$$

a contradiction. Hence, $\left\{z_{n}\right\}$ is a G_{p}-Cauchy sequence.
Step III. We will show that f, g, h, R, S and T have a coincidence point.
Since $\left\{z_{n}\right\}$ is a G_{p}-Cauchy sequence in the complete G_{p}-metric space X, from Lemma 1.2, $\left\{z_{n}\right\}$ is a Cauchy sequence in the metric space $\left(X, d_{G_{p}}\right)$. Completeness of $\left(X, G_{p}\right)$ yields that $\left(X, d_{G_{p}}\right)$ is also complete. Then there exists $z^{*} \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{G_{p}}\left(z_{n}, z^{*}\right)=0 \tag{23}
\end{equation*}
$$

Now, since $\lim _{m, n \rightarrow \infty} G_{p}\left(z_{m}, z_{n}, z_{n}\right)=0$, (23) and part (2) of Lemma 1.2 yield that $G_{p}\left(z^{*}, z^{*}\right.$, $\left.z^{*}\right)=0$.
Since $R(X)$ is G_{p}-complete and $\left\{z_{3 n+1}\right\} \subseteq R(X)$, there exists $u \in X$ such that $z^{*}=R u$ and

$$
\begin{align*}
& \lim _{n \rightarrow \infty} G_{p}\left(z_{3 n+1}, z_{3 n+1}, R u\right) \\
& \quad=\lim _{n \rightarrow \infty} G_{p}\left(R x_{3 n+1}, R x_{3 n+1}, R u\right)=\lim _{n \rightarrow \infty} G_{p}\left(f x_{3 n}, f x_{3 n}, R u\right)=G(R u, R u, R u)=0 \tag{24}
\end{align*}
$$

By similar arguments, there exist $v, w \in X$ such that $z^{*}=S v=T w$ and

$$
\begin{align*}
& \lim _{n \rightarrow \infty} G_{p}\left(z_{3 n+2}, z_{3 n+2}, z^{*}\right) \\
& \quad=\lim _{n \rightarrow \infty} G_{p}\left(S x_{3 n+2}, S x_{3 n+2}, z^{*}\right)=\lim _{n \rightarrow \infty} G_{p}\left(g x_{3 n+1}, g x_{3 n+1}, z^{*}\right)=G\left(z^{*}, z^{*}, z^{*}\right)=0 \tag{25}
\end{align*}
$$

and

$$
\begin{align*}
& \lim _{n \rightarrow \infty} G_{p}\left(z_{3 n+3}, z_{3 n+3}, z^{*}\right) \\
& \quad=\lim _{n \rightarrow \infty} G_{p}\left(T x_{3 n+3}, T x_{3 n+3}, z^{*}\right)=\lim _{n \rightarrow \infty} G_{p}\left(h x_{3 n+2}, h x_{3 n+2}, z^{*}\right)=G\left(z^{*}, z^{*}, z^{*}\right)=0 . \tag{26}
\end{align*}
$$

Now, we prove that w is a coincidence point of f and T.
Since $S x_{3 n+2} \rightarrow z^{*}=T w=R u$ as $n \rightarrow \infty$, so $S x_{3 n+2} \preceq T w=R u$. Therefore, from (2), we have

$$
\begin{equation*}
\psi\left(G_{p}\left(f w, g u, h x_{3 n+2}\right)\right) \leq \psi\left(M\left(w, u, x_{3 n+2}\right)\right)-\varphi\left(M\left(w, u, x_{3 n+2}\right)\right), \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
& M\left(w, u, x_{3 n+2}\right) \\
& \quad=\max \left\{G_{p}\left(T w, R u, S x_{3 n+2}\right), G(T w, f w, f w),\right. \\
& \\
& \quad G_{p}(R u, g u, g u), G\left(S x_{3 n+2}, h x_{3 n+2}, h x_{3 n+2}\right), \\
& \\
& \left.\quad \frac{G_{p}(T w, T w, f w)+G(R u, R u, g u)+G_{p}\left(S x_{3 n+2}, S x_{3 n+2}, h x_{3 n+2}\right)}{3}\right\} .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in (27), as $G\left(z^{*}, z^{*}, z^{*}\right)=0$, from Lemma 1.3, we obtain that

$$
\begin{aligned}
& \psi\left(G_{p}\left(f w, g u, z^{*}\right)\right) \\
& \quad \leq \psi\left(G_{p}\left(f w, g u, z^{*}\right)\right) \\
& \quad-\varphi\left(\max \left\{G_{p}\left(z^{*}, f w, f w\right), G_{p}\left(z^{*}, g u, g u\right), \frac{G_{p}\left(z^{*}, z^{*}, f w\right)+G_{p}\left(z^{*}, z^{*}, g u\right)}{3}\right\}\right)
\end{aligned}
$$

which implies that $g u=f w=z^{*}=T w=R u$.
As f and T are weakly compatible, we have $f z^{*}=f T w=T f w=T z^{*}$. Thus z^{*} is a coincidence point of f and T.

Similarly it can be shown that z^{*} is a coincidence point of the pairs (g, R) and (h, S).
Now, let $R z^{*}, S z^{*}$ and $T z^{*}$ be comparable. By (2) we have

$$
\begin{equation*}
\psi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right) \leq \psi\left(M\left(z^{*}, z^{*}, z^{*}\right)\right)-\varphi\left(M\left(z^{*}, z^{*}, z^{*}\right)\right) \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
M\left(z^{*}, z^{*}, z^{*}\right)= & \max \left\{G_{p}\left(T z^{*}, R z^{*}, S z^{*}\right),\right. \\
& G_{p}\left(T z^{*}, f z^{*}, f z^{*}\right), G_{p}\left(R z^{*}, g z^{*}, g z^{*}\right), G_{p}\left(S z^{*}, h z^{*}, h z^{*}\right) \\
& \left.\frac{G_{p}\left(T z^{*}, T z^{*}, f z^{*}\right)+G_{p}\left(R z^{*}, R z^{*}, g z^{*}\right)+G_{p}\left(S z^{*}, S z^{*}, h z^{*}\right)}{3}\right\} \\
= & G_{p}\left(T z^{*}, R z^{*}, S z^{*}\right)=G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right) .
\end{aligned}
$$

Hence (28) gives

$$
\psi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right) \leq \psi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right)-\varphi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right)=0 .
$$

Therefore $f z^{*}=g z^{*}=h z^{*}=T z^{*}=R z^{*}=S z^{*}$.
Theorem 2.2 Let $\left(X, \preceq, G_{p}\right)$ be a partially ordered complete G_{p}-metric space. Let f, g, h : $X \rightarrow X$ be three mappings. Suppose that for every three comparable elements $x, y, z \in X$, we have

$$
\begin{equation*}
\psi\left(2 G_{p}(f x, g y, h z)\right) \leq \psi(M(x, y, z))-\varphi(M(x, y, z)) \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
M(x, y, z)= & \max \left\{G_{p}(x, y, z)\right. \\
& G_{p}(x, f x, f x), G_{p}(y, g y, g y), G_{p}(z, h z, h z) \\
& \left.\frac{G_{p}(x, x, f x)+G_{p}(y, y, g y)+G_{p}(z, z, h z)}{3}\right\}
\end{aligned}
$$

and $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions. Letf, g, h be continuous and the pairs $(f, g),(g, h)$ and (h, f) be partially weakly increasing. Then f, g and h have a common fixed point z^{*} in X.

Proof Let x_{0} be an arbitrary point and $x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}$ and $x_{3 n+3}=h x_{3 n+2}$ for all $n \geq 0$.

Following the proof of the previous theorem, we can show that there exists $z^{*} \in X$ such that

$$
\begin{equation*}
G_{p}\left(z^{*}, z^{*}, z^{*}\right)=0 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{p}\left(x_{3 n}, x_{3 n}, z^{*}\right)=0 \tag{31}
\end{equation*}
$$

Continuity of f yields that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{p}\left(f x_{3 n}, f x_{3 n}, f z^{*}\right)=G_{p}\left(f z^{*}, f z^{*}, f z^{*}\right) . \tag{32}
\end{equation*}
$$

By the rectangle inequality, we have

$$
\begin{equation*}
G_{p}\left(f z^{*}, z^{*}, z^{*}\right) \leq G_{p}\left(f z^{*}, f x_{3 n}, f x_{3 n}\right)+G_{p}\left(x_{3 n+1}, z^{*}, z^{*}\right) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{p}\left(f z^{*}, f z^{*}, z^{*}\right) \leq G_{p}\left(z^{*}, f x_{3 n}, f x_{3 n}\right)+G_{p}\left(f x_{3 n}, f z^{*}, f z^{*}\right) . \tag{34}
\end{equation*}
$$

Taking limit as $n \rightarrow \infty$ in (33) and (34), from (30) we obtain

$$
G_{p}\left(f z^{*}, z^{*}, z^{*}\right) \leq G_{p}\left(f z^{*}, f z^{*}, f z^{*}\right)
$$

and

$$
G_{p}\left(f z^{*}, f z^{*}, z^{*}\right) \leq G_{p}\left(f z^{*}, f z^{*}, f z^{*}\right) .
$$

Similar inequalities are obtained for g and h.
On the other hand, as $z^{*} \preceq z^{*} \preceq z^{*}$, using (29) we obtain that

$$
\begin{align*}
\psi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right) & \leq \psi\left(2 G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right) \\
& \leq \psi\left(M\left(z^{*}, z^{*}, z^{*}\right)\right)-\varphi\left(M\left(z^{*}, z^{*}, z^{*}\right)\right) \tag{35}
\end{align*}
$$

where

$$
\begin{align*}
M\left(z^{*}, z^{*}, z^{*}\right)= & \max \left\{G_{p}\left(z^{*}, z^{*}, z^{*}\right),\right. \\
& G_{p}\left(z^{*}, f z^{*}, f z^{*}\right), G_{p}\left(z^{*}, g z^{*}, g z^{*}\right), G_{p}\left(z^{*}, h z^{*}, h z^{*}\right), \\
& \left.\frac{G_{p}\left(z^{*}, z^{*}, f z^{*}\right)+G_{p}\left(z^{*}, z^{*}, g z^{*}\right)+G_{p}\left(z^{*}, z^{*}, h z^{*}\right)}{3}\right\} \\
\leq & \max \left\{G_{p}\left(f z^{*}, f z^{*}, f z^{*}\right), G_{p}\left(g z^{*}, g z^{*}, g z^{*}\right), G_{p}\left(h z^{*}, h z^{*}, h z^{*}\right)\right\} . \tag{36}
\end{align*}
$$

We consider three cases as follows:

1. $f z^{*}=g z^{*}=h z^{*}$.
2. $f z^{*} \neq g z^{*} \neq h z^{*}$.
3. a. $f z^{*}=g z^{*} \neq h z^{*}$, or b. $f z^{*} \neq g z^{*}=h z^{*}$.

For case 1 , by (36), $M\left(z^{*}, z^{*}, z^{*}\right) \leq G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)$.
For case 2 , by $\left(G_{p} 2\right), M\left(z^{*}, z^{*}, z^{*}\right) \leq G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)$.
Now, from (35),

$$
\begin{equation*}
\psi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right) \leq \psi\left(G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right)-\varphi\left(M\left(z^{*}, z^{*}, z^{*}\right)\right), \tag{37}
\end{equation*}
$$

hence $M\left(z^{*}, z^{*}, z^{*}\right)=0$. Therefore, $z^{*}=f z^{*}=g z^{*}=h z^{*}$.
On the other hand, for case 3, part a, by $\left(G_{p} 2\right), M\left(z^{*}, z^{*}, z^{*}\right) \leq 2 G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)$ and hence from (35), we have

$$
\begin{equation*}
\psi\left(2 G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right) \leq \psi\left(2 G_{p}\left(f z^{*}, g z^{*}, h z^{*}\right)\right)-\varphi\left(M\left(z^{*}, z^{*}, z^{*}\right)\right) \tag{38}
\end{equation*}
$$

hence $M\left(z^{*}, z^{*}, z^{*}\right)=0$. Therefore, $z^{*}=f z^{*}=g z^{*}=h z^{*}$.
Now, let x^{*} and y^{*} as two fixed points of f, g and h be comparable. So, from (29) we have

$$
\begin{align*}
\psi\left(2 G_{p}\left(x^{*}, x^{*}, y^{*}\right)\right) & =\psi\left(2 G_{p}\left(f x^{*}, g x^{*}, h y^{*}\right)\right) \\
& \leq \psi\left(M\left(x^{*}, x^{*}, y^{*}\right)\right)-\varphi\left(M\left(x^{*}, x^{*}, y^{*}\right)\right) \tag{39}
\end{align*}
$$

where

$$
\begin{aligned}
M\left(x^{*}, x^{*}, y^{*}\right)= & \max \left\{G_{p}\left(x^{*}, x^{*}, y^{*}\right)\right. \\
& G_{p}\left(x^{*}, f x^{*}, f x^{*}\right), G_{p}\left(x^{*}, g x^{*}, g x^{*}\right), G_{p}\left(y^{*}, h y^{*}, h y^{*}\right), \\
& \left.\frac{G_{p}\left(x^{*}, x^{*}, f x^{*}\right)+G_{p}\left(x^{*}, x^{*}, g x^{*}\right)+G_{p}\left(y^{*}, y^{*}, h y^{*}\right)}{3}\right\} \\
\leq & 2 G_{p}\left(x^{*}, x^{*}, y^{*}\right) .
\end{aligned}
$$

Hence (39) gives

$$
\psi\left(2 G_{p}\left(x^{*}, x^{*}, y^{*}\right)\right) \leq \psi\left(2 G_{p}\left(x^{*}, x^{*}, y^{*}\right)\right)-\varphi\left(M\left(x^{*}, x^{*}, y^{*}\right)\right) .
$$

Therefore, $\varphi\left(M\left(x^{*}, x^{*}, y^{*}\right)\right)=0$ and hence $x^{*}=y^{*}$.

The following corollaries are special cases of the above results.

Corollary 2.1 Let $\left(X, \preceq, G_{p}\right)$ be a partially ordered complete G_{p}-metric space. Let $f: X \rightarrow$ X be a mapping such that for every three comparable elements $x, y, z \in X$, we have

$$
\begin{equation*}
\psi\left(2 G_{p}(f x, f y, f z)\right) \leq \psi(M(x, y, z))-\varphi(M(x, y, z)) \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
M(x, y, z)= & \max \left\{G_{p}(x, y, z),\right. \\
& G_{p}(x, f x, f x), G_{p}(y, f y, f y), G_{p}(z, f z, f z), \\
& \left.\frac{G_{p}(x, x, f x)+G_{p}(y, y, f y)+G_{p}(z, z, f z)}{3}\right\}
\end{aligned}
$$

and $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions. Then f has a fixed point in X provided that $f x \leq f(f x)$ for all $x \in X$ and either
a. f is continuous, or
b. X has the sequential limit comparison property.

Moreover, f has a unique fixed point provided that the fixed points off are comparable.

Taking $y=z$ in Corollary 2.1, we obtain the following common fixed point result.
Corollary 2.2 Let $\left(X, \preceq, G_{p}\right)$ be a partially ordered complete G_{p}-metric space, and letf be a self-mapping on X such that for every comparable elements $x, y \in X$,

$$
\begin{equation*}
\psi\left(2 G_{p}(f x, f y, f y)\right) \leq \psi(M(x, y, y))-\varphi(M(x, y, y)) \tag{41}
\end{equation*}
$$

where

$$
M(x, y, y)=\max \left\{G_{p}(x, y, y), G(x, f x, f x), G_{p}(y, f y, f y), \frac{G_{p}(x, x, f x)+2 G_{p}(y, y, f y)}{3}\right\},
$$

and $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions. Then f has a fixed point in X provided that $f x \leq f(f x)$ for all $x \in X$ and either
a. f is continuous, or
b. X has the sequential limit comparison property.

3 Fixed point results via an α-admissible mapping with respect to η in G_{p}-metric spaces

Samet et al. [32] defined the notion of α-admissible mappings and proved the following result.

Definition 3.1 Let T be a self-mapping on X and $\alpha: X \times X \rightarrow[0,+\infty)$ be a function. We say that T is an α-admissible mapping if

$$
x, y \in X, \quad \alpha(x, y) \geq 1 \quad \Longrightarrow \quad \alpha(T x, T y) \geq 1 .
$$

Denote with Ψ the family of all nondecreasing functions $\psi:[0,+\infty) \rightarrow[0,+\infty)$ such that $\sum_{n=1}^{\infty} \psi^{n}(t)<+\infty$ for all $t>0$, where ψ^{n} is the nth iterate of ψ.

Theorem 3.1 Let (X, d) be a complete metric space and T be an α-admissible mapping. Assume that

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \leq \psi(d(x, y)) \tag{42}
\end{equation*}
$$

where $\psi \in \Psi$. Also suppose that the following assertions hold:
(i) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(ii) either T is continuous or for any sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Then T has a fixed point.

For more details on α-admissible mappings, we refer the reader to [33-37].
Very recently, Salimi et al. [38] modified and generalized the notions of α - ψ-contractive mappings and α-admissible mappings as follows.

Definition 3.2 [38] Let T be a self-mapping on X and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ be two functions. We say that T is an α-admissible mapping with respect to η if

$$
x, y \in X, \quad \alpha(x, y) \geq \eta(x, y) \quad \Longrightarrow \quad \alpha(T x, T y) \geq \eta(T x, T y) .
$$

Note that if we take $\eta(x, y)=1$, then this definition reduces to Definition 3.1. Also, if we take $\alpha(x, y)=1$, then we say that T is an η-subadmissible mapping.
The following result properly contains Theorem 3.1 and Theorems 2.3 and 2.4 of [37].

Theorem 3.2 [38] Let (X, d) be a complete metric space and T be an α-admissible mapping with respect to η. Assume that

$$
\begin{equation*}
x, y \in X, \quad \alpha(x, y) \geq \eta(x, y) \quad \Longrightarrow \quad d(T x, T y) \leq \psi(M(x, y)), \tag{43}
\end{equation*}
$$

where $\psi \in \Psi$ and

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, T x)+d(y, T y)}{2}, \frac{d(x, T y)+d(y, T x)}{2}\right\} .
$$

Also, suppose that the following assertions hold:
(i) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq \eta\left(x_{0}, T x_{0}\right)$;
(ii) either T is continuous or for any sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, we have $\alpha\left(x_{n}, x\right) \geq \eta\left(x_{n}, x\right)$ for all $n \in \mathbb{N} \cup\{0\}$.
Then T has a fixed point.

In fact, the Banach contraction principle and Theorem 3.2 hold for the following example, but Theorem 3.1 does not hold.

Example 3.1 [38] Let $X=[0, \infty)$ be endowed with the usual metric $d(x, y)=|x-y|$ for all $x, y \in X$, and let $T: X \rightarrow X$ be defined by $T x=\frac{1}{4} x$. Also, define $\alpha: X^{2} \rightarrow[0, \infty)$ by $\alpha(x, y)=3$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=\frac{1}{2} t$.

Theorem 3.3 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous α-admissible mapping with respect to η on X, there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq \eta\left(x_{0}, f x_{0}\right)$ and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $\alpha(x, x) \geq \eta(x, x)$. Assume
that

$$
\begin{align*}
& \alpha(x, y) \geq \eta(x, y) \\
& \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{44}
\end{align*}
$$

for all $x, y \in X$, where $0 \leq r<1$. Then f has a fixed point.
Proof Let $x_{0} \in X$ and define a sequence $\left\{x_{n}\right\}$ by $x_{n}=f^{n} x_{0}$ for all $n \in \mathbb{N}$. Since f is an α-admissible mapping with respect to η and $\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, f x_{0}\right) \geq \eta\left(x_{0}, f x_{0}\right)=\eta\left(x_{0}, x_{1}\right)$, we deduce that $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(f x_{0}, f x_{1}\right) \geq \eta\left(f x_{0}, f x_{1}\right)=\eta\left(x_{1}, x_{2}\right)$. Continuing this process, we get $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N} \cup\{0\}$. Now, from (44) we have

$$
\begin{aligned}
& G_{p}\left(f f^{n} x_{0}, f^{2} f^{n} x_{0}, f^{2} f^{n} x_{0}\right) \\
& \quad \leq r \max \left\{G_{p}\left(f^{n} x_{0}, f^{n} x_{0}, f f^{n} x_{0}\right), G_{p}\left(\not f^{n} x_{0}, f^{2} f^{n} x_{0}, f^{2} f^{n} x_{0}\right)\right\},
\end{aligned}
$$

which implies

$$
\begin{equation*}
G_{p}\left(f^{n+1} x_{0}, f^{n+2} x_{0}, f^{n+2} x_{0}\right) \leq r G_{p}\left(f^{n} x_{0}, f^{n+1} x_{0}, f^{n+1} x_{0}\right) . \tag{45}
\end{equation*}
$$

Continuing the above process, we can obtain

$$
\begin{equation*}
G_{p}\left(f^{n} x_{0}, f^{n+1} x_{0}, f^{n+1} x_{0}\right) \leq r G_{p}\left(f^{n-1} x_{0}, f^{n} x_{0}, f^{n} x_{0}\right) \leq \cdots \leq r^{n} G_{p}\left(x_{0}, f x_{0}, f x_{0}\right) \tag{46}
\end{equation*}
$$

Then, for any $m>n$, by (46) we get

$$
\begin{aligned}
G_{p}\left(f^{n} x_{0}, f^{m} x_{0}, f^{m} x_{0}\right) \leq & G_{p}\left(f^{n} x_{0}, f^{n+1} x_{0}, f^{n+1} x_{0}\right)+G_{p}\left(f^{n+1} x_{0}, f^{m} x_{0}, f^{m} x_{0}\right) \\
\leq & G_{p}\left(f^{n} x_{0}, f^{n+1} x_{0}, f^{n+1} x_{0}\right)+G_{p}\left(f^{n+1} x_{0}, f^{n+2} x_{0}, f^{n+2} x_{0}\right) \\
& +G_{p}\left(f^{n+2} x_{0}, f^{m} x_{0}, f^{m} x_{0}\right) \\
\leq & G\left(f^{n} x_{0}, f^{n+1} x_{0}, f^{n+1} x_{0}\right)+G_{p}\left(f^{n+1} x_{0}, f^{n+2} x_{0}, f^{n+2} x_{0}\right) \\
& +G_{p}\left(f^{n+2} x_{0}, f^{n+3} x_{0}, f^{n+3} x_{0}\right)+\cdots+G_{p}\left(f^{m-1} x_{0}, f^{m} x_{0}, f^{m} x_{0}\right) \\
\leq & \frac{r^{n}}{1-r} G_{p}\left(x_{0}, f x_{0}, f x_{0}\right) .
\end{aligned}
$$

This implies that $\lim _{m, n \rightarrow+\infty} G_{p}\left(f^{n} x_{0}, f^{m} x_{0}, f^{m} x_{0}\right)=0$, that is, $\left\{x_{n}\right\}$ is a G_{p}-Cauchy sequence.

Since $\left\{x_{n}\right\}$ is a G_{p}-Cauchy sequence in the complete G_{p}-metric space X, from Lemma 1.2, $\left\{x_{n}\right\}$ is a Cauchy sequence in the metric space $\left(X, d_{G_{p}}\right)$. Completeness of $\left(X, G_{p}\right)$ yields that $\left(X, d_{G_{p}}\right)$ is also complete. Then there exists $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{G_{p}}\left(x_{n}, z\right)=0 . \tag{47}
\end{equation*}
$$

Since $\lim _{m, n \rightarrow+\infty} G_{p}\left(x_{n}, x_{m}, x_{m}\right)=0$, from Lemma 1.2 we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} G_{p}\left(x_{n}, z, z\right)=\lim _{n \rightarrow+\infty} G_{p}\left(x_{n}, x_{n}, z\right)=G_{p}(z, z, z)=0 . \tag{48}
\end{equation*}
$$

From the continuity of f, we have

$$
\lim _{n \rightarrow+\infty} G_{p}\left(x_{n+1}, f z, f z\right)=G_{p}(f z, f z, f z),
$$

and hence we get

$$
G_{p}(z, f z, f z) \leq \lim _{n \rightarrow+\infty} G\left(z, x_{n+1}, x_{n+1}\right)+\lim _{n \rightarrow+\infty} G\left(x_{n+1}, f z, f z\right)=G_{p}(f z, f z, f z)
$$

So, we get that $G_{p}(z, f z, f z) \leq G_{p}(f z, f z, f z)$. Since the opposite inequality always holds, we get that

$$
G_{p}(z, f z, f z)=G_{p}(f z, f z, f z)
$$

As $\alpha(z, z) \geq \eta(z, z)$ we have

$$
\begin{equation*}
G_{p}(z, f z, f z)=G_{p}(f z, f z, f z) \leq r \max \left\{G_{p}(z, z, z), G_{p}(z, f z, f z), G_{p}(z, f z, f z)\right\} \tag{49}
\end{equation*}
$$

where $0 \leq r<1$. Hence, $G_{p}(z, f z, f z) \leq r G_{p}(z, f z, f z)$. Thus, $G_{p}(z, f z, f z)=0$, that is, $z=f z$.

If in Theorem 3.3 we take $\eta(x, y)=1$, then we deduce the following corollary.

Corollary 3.1 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous α-admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\alpha(x, y) \geq 1 \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}
$$

for all $x, y \in X$, where $0 \leq r<1$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $\alpha(x, x) \geq 1$. Then f has a fixed point.

If in Theorem 3.3 we take $\alpha(x, y)=1$, then we deduce the following corollary.

Corollary 3.2 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous η-subadmissible mapping on X, and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
\begin{equation*}
\eta(x, y) \leq 1 \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{50}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $1 \geq \eta(x, x)$. Then f has a fixed point.

In the following theorem, we omit the continuity of the mapping f.
Theorem 3.4 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space and f be an α-admissible mapping with respect to η on X such that

$$
\begin{align*}
& \alpha(x, y) \geq \eta(x, y) \\
& \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{51}
\end{align*}
$$

for all $x, y \in X$, where $0 \leq r<1$. Assume that the following conditions hold:
(i) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq \eta\left(x_{0}, f x_{0}\right)$;
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\alpha\left(x_{n}, x\right) \geq \eta\left(x_{n}, x\right)$ for all $n \in \mathbb{N} \cup\{0\}$.
Thenf has a fixed point.

Proof Let $x_{0} \in X$ be such that $\alpha\left(x_{0}, f x_{0}\right) \geq \eta\left(x_{0}, f x_{0}\right)$ and define a sequence $\left\{x_{n}\right\}$ in X by $x_{n}=f^{n} x_{0}=f x_{n-1}$ for all $n \in \mathbb{N}$. Following the proof of Theorem 3.1, we have $\alpha\left(x_{n}, x_{n+1}\right) \geq$ $\eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N} \cup\{0\}$ and there exists $x \in X$ such that $x_{n} \rightarrow x$ as $n \rightarrow+\infty$. Hence, from (ii) we deduce that $\alpha\left(x_{n}, x\right) \geq \eta\left(x_{n}, x\right)$ for all $n \in \mathbb{N} \cup\{0\}$.

Hence, by (51), it follows that for all n,

$$
G_{p}\left(x_{n+1}, f x, f x\right) \leq r \max \left\{G_{p}\left(x_{n}, x, x\right), G_{p}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{p}(x, f x, f x)\right\} .
$$

Taking the limit as $n \rightarrow+\infty$ in the above inequality, from Lemma 1.3 we obtain ($1-$ $r) G(x, f x, f x) \leq 0$, which implies that $x=f x$.

Corollary 3.3 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space and f be an α-admissible mapping on X such that

$$
\begin{equation*}
\alpha(x, y) \geq 1 \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{52}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$. Assume that the following conditions hold:
(i) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$;
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Thenf has a fixed point.
Example 3.2 Let $X=[0,+\infty)$ and $G_{p}(x, y, z)=\max \{x, y, z\}$ be a G_{p}-metric on X. Define $f: X \rightarrow X$ by

$$
f x= \begin{cases}\frac{x}{24} & \text { if } x \in[0,1] \cup\{2\}=U \\ 37 / 12 & \text { if } x=3 \\ (1+x)^{x} & \text { if } x \in[0,+\infty) \backslash([0,1] \cup\{2,3\})=V\end{cases}
$$

and $\alpha: X \times X \rightarrow[0,+\infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \in[0,1] \\ 1 / 8 & \text { if } x=2 \text { and } y=3 \\ 0 & \text { otherwise }\end{cases}
$$

Now, we prove that all the hypotheses of Corollary 3.3 are satisfied and hence f has a fixed point.

Let $x, y \in X$, if $\alpha(x, y) \geq 1$, then $x, y \in[0,1]$. On the other hand, for all $x \in[0,1]$, we have $f x \leq 1$ and hence $\alpha(f x, f y) \geq 1$. This implies that f is an α-admissible mapping on X. Obviously, $\alpha(0, f 0) \geq 1$.

Now, if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\left\{x_{n}\right\} \subseteq[0,1]$ and hence $x \in[0,1]$. This implies that $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.

If $\alpha(x, y) \geq 1$, then $x, y \in[0,1]$. Hence,

$$
\begin{aligned}
G_{p}(f x, f y, f y) & =\max \{f x, f y\}=\max \left\{\frac{x}{24}, \frac{y}{24}\right\} \\
& \leq \frac{1}{12} \max \{x, y\} \\
& \leq \frac{1}{12} \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} .
\end{aligned}
$$

Thus, all the conditions of Corollary 3.3 are satisfied and therefore f has a fixed point $(x=0)$.

Corollary 3.4 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space and f be an η-subadmissible mapping on X such that

$$
\eta(x, y) \leq 1 \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}
$$

for all $x, y \in X$, where $0 \leq r<1$. Assume that the following conditions hold:
(i) there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$;
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\eta\left(x_{n}, x\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Thenf has a fixed point.

4 Consequences

Theorem 4.1 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous α-admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\begin{equation*}
\alpha(x, y) G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{53}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$ and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $\alpha(x, x) \geq \eta(x, x)$. Then f has a fixed point.

Proof Assume that $\alpha(x, y) \geq 1$, then from (53) we get

$$
G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} .
$$

That is,

$$
\alpha(x, y) \geq 1 \quad \Longrightarrow \quad G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} .
$$

Hence all the conditions of Corollary 3.1 hold and f has a fixed point.

Similarly, we can deduce the following results.

Theorem 4.2 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous α admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\left(G_{p}(f x, f y, f y)+\ell\right)^{\alpha(x, y)} \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}+\ell
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell \geq 1$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $\alpha(x, x) \geq 1$. Then f has a fixed point.

Theorem 4.3 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous α admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\begin{equation*}
(\alpha(x, y)+\ell)^{G_{p}\left(f x_{i} f f_{y} f y\right)} \leq(1+\ell)^{r^{\max \left\{G_{p}(x, y, y), G_{p}\left(x_{x} f x_{2} f x\right), G_{p}(y, f y, f y)\right\}}} \tag{54}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell>0$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $\alpha(x, x) \geq 1$. Then f has a fixed point.

Theorem 4.4 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous η-subadmissible mapping on X, and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
\begin{equation*}
G_{p}(f x, f y, f y) \leq r \eta(x, y) \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{55}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $1 \geq \eta(x, x)$. Then f has a fixed point.

Theorem 4.5 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous η-subadmissible mapping on X, and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
G_{p}(f x, f y, f y)+\ell \leq\left(r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}+\ell\right)^{\eta(x, y)}
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell \geq 1$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $1 \geq \eta(x, x)$. Then f has a fixed point.

Theorem 4.6 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be a continuous η-subadmissible mapping on X, and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
\begin{equation*}
(1+\ell)^{G_{p}\left(f x_{x} f y, f y\right)} \leq(\eta(x, y)+\ell)^{r \max \left\{G_{p}(x, y, y), G_{p}\left(x, f x_{x} f x\right), G_{p}(y, f y, f y)\right\}} \tag{56}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell>0$, and if any sequence $\left\{x_{n}\right\}$ in X converges to a point x, then we have $1 \geq \eta(x, x)$. Then f has a fixed point.

Theorem 4.7 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be an α-admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\alpha(x, y) G_{p}(f x, f y, f y) \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}
$$

for all $x, y \in X$, where $0 \leq r<1$. If $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then f has a fixed point.

Theorem 4.8 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be an α-admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\left(G_{p}(f x, f y, f y)+\ell\right)^{\alpha(x, y)} \leq r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}+\ell
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell \geq 1$. If $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then f has a fixed point.

Theorem 4.9 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be an α-admissible mapping on X, and there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$. Assume that

$$
\begin{equation*}
(\alpha(x, y)+\ell)^{G_{p}\left(f x_{x} f y, f y\right)} \leq(1+\ell)^{r \max \left\{G_{p}(x, y, y), G_{p}\left(x_{f} f x_{i} f x\right), G_{p}\left(y, f y_{y} f y\right)\right\}} \tag{57}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell>0$. If $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then f has a fixed point.

Theorem 4.10 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be an η-subadmissible mapping on X, and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
\begin{equation*}
G_{p}(f x, f y, f y) \leq r \eta(x, y) \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\} \tag{58}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$. If $\left\{x_{n}\right\}$ is a sequence in X such that $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, we have $\eta\left(x_{n}, x\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then f has a fixed point.

Theorem 4.11 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be an η-subadmissible mapping on X and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
G_{p}(f x, f y, f y)+\ell \leq\left(r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}+\ell\right)^{\eta(x, y)}
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell \geq 1$. If $\left\{x_{n}\right\}$ is a sequence in X such that $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, we have $\eta\left(x_{n}, x\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then f has a fixed point.

Theorem 4.12 Let $\left(X, G_{p}\right)$ be a G_{p}-complete G_{p}-metric space, f be an η-subadmissible mapping on X, and there exists $x_{0} \in X$ such that $\eta\left(x_{0}, f x_{0}\right) \leq 1$. Assume that

$$
\begin{equation*}
(1+\ell)^{G_{p}(f x, f y, f y)} \leq(\eta(x, y)+\ell)^{r \max \left\{G_{p}(x, y, y), G_{p}(x, f x, f x), G_{p}(y, f y, f y)\right\}} \tag{59}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq r<1$ and $\ell>0$. If $\left\{x_{n}\right\}$ is a sequence in X such that $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all n and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $\eta\left(x_{n}, x\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then f has a fixed point.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in this research. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Belgrade, Serbia. ${ }^{2}$ Department of Mathematics, King Abdulaziz University, P.O. Box 138381, Jeddah, 21323, Saudi Arabia. ${ }^{3}$ Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. ${ }^{4}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.

Acknowledgements

This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks the DSR financial support.

Received: 9 August 2013 Accepted: 25 October 2013 Published: 25 Nov 2013

References

1. Zand, MRA, Nezhad, AD: A generalization of partial metric spaces. J. Contemp. Appl. Math. 24, 86-93 (2011)
2. Matthews, SG: Partial metric topology. In: General Topology and Its Applications. Proc. 8th Summer Conf., Queen's College, 1992. Annals of the New York Academy of Sciences, vol. 728, pp. 183-197 (1994)
3. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)
4. Parvaneh, V, Roshan, JR, Kadelburg, Z: On generalized weakly GP-contractive mappings in ordered GP-metric spaces. Gulf J. Math. 1, 78-97 (2013)
5. Aydi, H, Karapınar, E, Salimi, P: Some fixed point results in GP-metric spaces. J. Appl. Math. 2012, Article ID 891713 (2012). doi:10.1155/2012/891713
6. Oltra, S, Valero, O: Banach's fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36(1-2), 17-26 (2004)
7. Khan, MS, Swaleh, M, Sessa, S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1-9 (1984)
8. Alber, YI, Guerre-Delabriere, S: Principle of weakly contractive maps in Hilbert spaces. In: Gohberg, I, Lyubich, Y (eds.) New Results in Operator Theory. Advances and Appl., vol. 98, pp. 7-22. Birkhäuser, Basel (1997)
9. Rhoades, BE: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683-2693 (2001)
10. Zhang, Q, Song, Y: Fixed point theory for generalized φ-weak contractions. Appl. Math. Lett. 22, 75-78 (2009)
11. Abbas, M, Đorić, $D:$ Common fixed point theorem for four mappings satisfying generalized weak contractive condition. Filomat 24(2), 1-10 (2010)
12. Đorić, D: Common fixed point for generalized (ψ, φ)-weak contractions. Appl. Math. Lett. 22, 1896-1900 (2009)
13. Moradi, S, Fathi, Z, Analouee, E: Common fixed point of single valued generalized φ_{f}-weak contractive mappings. Appl. Math. Lett. 24(5), 771-776 (2011)
14. Razani, A, Parvaneh, V, Abbas, M: A common fixed point for generalized $(\psi, \varphi)_{f, g}$-weak contractions. Ukr. Math. J. 63, 11 (2012)
15. Abbas, M, Nazir, T, Radenović, S: Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 24, 1520-1526 (2011)
16. Abbas, M, Parvaneh, V, Razani, A: Periodic points of T-Ćirić generalized contraction mappings in ordered metric spaces. Georgian Math. J. 19(4), 597-610 (2012)
17. Agarwal, RP, El-Gebeily, MA, O'Regan, D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87(1), 109-116 (2008)
18. Al-Khaleel, M, Al-Sharif, S, Khandaqji, M: Fixed point for contraction mappings in generalized cone metric spaces. Jordan J. Math. Stat. 5(4), 291-307 (2012)
19. Aghajani, A, Radenović, S, Roshan, JR: Common fixed point results for four mappings satisfying almost generalized (S, T)-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 218, 5665-5670 (2012)
20. Khan, MA, Sumitra, Kumar, R: Subcompatible and subsequential continuous maps in non Archimedean Menger PM-spaces. Jordan J. Math. Stat. 5(2), 137-150 (2012)
21. Khan, MA, Sumitra, Kumar, R: Semi-compatible maps and common fixed point theorems in non-Archimedean Menger PM-spaces. Jordan J. Math. Stat. 5(3), 185-199 (2012)
22. Esmaily, J, Vaezpour, SM, Rhoades, BE: Coincidence point theorem for generalized weakly contractions in ordered metric spaces. Appl. Math. Comput. 219, 1536-1548 (2012)
23. Harjani, J, López, B, Sadarangani, K: Fixed point theorems for weakly C-contractive mappings in ordered metric spaces. Comput. Math. Appl. 61, 790-796 (2011)
24. Nashine, HK, Samet, B: Fixed point results for mappings satisfying (ψ, φ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 74, 2201-2209 (2011)
25. Nieto, JJ, López, RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005)
26. Nieto, JJ, López, RR: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 23, 2205-2212 (2007)
27. Radenović, S, Kadelburg, Z: Generalized weak contractions in partially ordered metric spaces. Comput. Math. Appl. 60, 1776-1783 (2010)
28. Ran, ACM , Reurings, MCB: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc. Am. Math. Soc. 132, 1435-1443 (2004)
29. Shatanawi, W, Samet, B: On (ψ, ϕ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 62, 3204-3214 (2011)
30. Altun, I, Simsek, H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010, Article ID 621492 (2010)
31. Lakshmikantham, V, Ćirić, LB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric space. Nonlinear Anal. TMA 70, 4341-4349 (2009)
32. Samet, B, Vetro, C, Vetro, P: Fixed point theorem for α - ψ-contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
33. Hussain, N, Karapınar, E, Salimi, P, Akbar, F: $\boldsymbol{\alpha}$-Admissible mappings and related fixed point theorems. Fixed Point Theory Appl. 2013, 114 (2013)
34. Karapınar, E, Kumam, P, Salimi, P: On $\alpha-\psi$-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94 (2013)
35. Salimi, P, Vetro, C, Vetro, P: Fixed point theorems for twisted $(\alpha, \beta)-\psi$-contractive type mappings and applications. Filomat 27(4), 605-615 (2013)
36. Salimi, P, Vetro, C, Vetro, P: Some new fixed point results in non-Archimedean fuzzy metric spaces. Nonlinear Anal.: Model. Control, 18(3), 344-358 (2013)
37. Salimi, P, Karapınar, E: Suzuki-Edelstein type contractions via auxiliary functions. Math. Probl. Eng. 2013, Article ID 648528 (2013)
38. Salimi, P, Latif, A, Hussain, N: Modified α - ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 151 (2013)

10.1186/1687-1812-2013-317

Cite this article as: Ćirić et al.: Some fixed point results in ordered G_{p}-metric spaces. Fixed Point Theory and Applications 2013, 2013:317

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: ©2013 Cirić et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

