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1 Introduction and preliminaries
Let E be a real Banach space with the dual E∗. Recall that the normalized duality mapping
J from E to E∗ is defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing. Let BE = {x ∈ E : ‖x‖ = } be the unit
ball of E. Recall that E is said to be smooth iff limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ BE . It

is also said to be uniformly smooth iff the above limit is attained uniformly for x, y ∈ BE .
E is said to be strictly convex iff ‖ x+y

 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =  and x �= y. It is
said to be uniformly convex iff limn→∞ ‖xn – yn‖ =  for any two sequences {xn} and {yn}
in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = . It is well known that E is uniformly
smooth if and only if E∗ is uniformly convex. In what follows, we use⇀ and→ to stand for
weak and strong convergence, respectively. Recall that E enjoys the Kadec-Klee property
iff for any sequence {xn} ⊂ E, and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ → 
as n → ∞. It is well known that if E is a uniformly convex Banach space, then E enjoys
the Kadec-Klee property. Let E be a smooth Banach space. Let us consider the functional
defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Recently, Alber [] introduced a generalized projection operator�C in a Banach space E
which is an analogue of themetric projection PC in Hilbert spaces. Recall that the general-
ized projection �C : E → C is a map that assigns to an arbitrary point x ∈ E the minimum
point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the solution to the minimiza-
tion problem φ(x̄,x) =miny∈C φ(y,x). Existence and uniqueness of the operator�C follows
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from the properties of the functional φ(x, y) and strict monotonicity of the mapping J .
If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) =  if and only
if x = y. In Hilbert spaces, �C = PC . It is obvious from the definition of function φ that
(‖x‖ – ‖y‖) ≤ φ(x, y) ≤ (‖y‖ + ‖x‖), ∀x, y ∈ E.
LetR be the set of real numbers. Let F be a bifunction fromC×C toR, whereR denotes

the set of real numbers. Let ϕ : C → R be a real-valued function and A : C → E∗ be a
mapping. The so-called generalized mixed equilibrium problem is to find p ∈ C such that

F(p, y) + 〈Ap, y – p〉 + ϕ(y) – ϕ(p) ≥ , ∀y ∈ C. (.)

We use GMEP(F ,A,ϕ) to denote the solution set of the equilibrium problem. That is,

GMEP(F ,A,ϕ) :=
{
p ∈ C : F(p, y) + 〈Ap, y – p〉 + ϕ(y) – ϕ(z) ≥ ,∀y ∈ C

}
.

Next, we give some special cases:
If A = , then problem (.) is equivalent to finding p ∈ C such that

F(p, y) + ϕ(y) – ϕ(z) ≥ , ∀y ∈ C, (.)

which is called the mixed equilibrium problem.
If F = , then problem (.) is equivalent to finding p ∈ C such that

〈Ap, y – p〉 + ϕ(y) – ϕ(z) ≥ , ∀y ∈ C, (.)

which is called the mixed variational inequality of Browder type.
If ϕ = , then problem (.) is equivalent to finding p ∈ C such that

F(p, y) + 〈Ap, y – p〉 ≥ , ∀y ∈ C, (.)

which is called the generalized equilibrium problem.
If A =  and ϕ = , then problem (.) is equivalent to finding p ∈ C such that

F(p, y) ≥ , ∀y ∈ C, (.)

which is called the equilibrium problem.
For solving the above problem, let us assume that the bifunction F : C×C →R satisfies

the following conditions:
(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤ , ∀x, y ∈ C;
(A)

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y), ∀x, y, z ∈ C;

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.
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Iterative algorithms have emerged as an effective and powerful tool for studying a wide
class of problems which arise in economics, finance, image reconstruction, ecology, trans-
portation, network, elasticity and optimization; see [–] and the references therein. The
computation of solutions of nonlinear operator equations (inequalities) is important in the
study of many real world problems. Recently, the study of the convergence of various iter-
ative algorithms for solving various nonlinear mathematical models forms the major part
of numerical mathematics.
Let C be a nonempty subset of E, and let T : C → C be a mapping. In this paper, we

use F(T) to stand for the fixed point set of T . Recall that T is said to be asymptotically
regular on C iff for any bounded subset K of C, lim supn→∞{‖Tn+x – Tnx‖ : x ∈ K} = .
Recall that T is said to be closed iff for any sequence {xn} ⊂ C such that limn→∞ xn = x
and limn→∞ Txn = y, then Tx = y. Recall that a point p in C is said to be an asymptotic
fixed point of T iff C contains a sequence {xn} which converges weakly to p such that
limn→∞ ‖xn – Txn‖ = . The set of asymptotic fixed points of T will be denoted by F̃(T).
T is said to be relatively nonexpansive iff F̃(T) = F(T) �= ∅ and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

T is said to be relatively asymptotically nonexpansive iff F̃(T) = F(T) �= ∅ and

φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.
Recall that T is said to be quasi-φ-nonexpansive iff F(T) �= ∅ and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

Recall that T is said to be asymptotically quasi-φ-nonexpansive iff there exists a se-
quence {μn} ⊂ [,∞) with μn →  as n→ ∞ such that

F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . The class of relatively asymptotically nonexpansive mappings, which is an
extension of the class of relatively nonexpansive mappings, was first introduced in [].

Remark . The class of asymptotically quasi-φ-nonexpansive mappings, which is an
extension of the class of quasi-φ-nonexpansive mappings, was considered in [–].
The class of quasi-φ-nonexpansive mappings and the class of asymptotically quasi-
φ-nonexpansive mappings are more general than the class of relatively nonexpansive
mappings and the class of relatively asymptotically nonexpansive mappings. Quasi-φ-
nonexpansive mappings and asymptotically quasi-φ-nonexpansive mappings do not re-
quire the restriction F(T) = F̃(T).

Recall that T is said to be generalized asymptotically quasi-φ-nonexpansive iff F(T) �= ∅,
and there exist two nonnegative sequences {μn} ⊂ [,∞) with μn →  and {ξn} ⊂ [,∞)
with ξn →  as n → ∞ such that

φ
(
p,Tnx

) ≤ ( +μn)φ(p,x) + ξn, ∀x ∈ C,∀p ∈ F(T),∀n≥ .
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Remark . The class of generalized asymptotically quasi-φ-nonexpansivemappings []
is a generalization of the class of generalized asymptotically quasi-nonexpansivemappings
in the framework of Banach spaces which was studied by Agarwal et al. [].

In this paper, we consider a projection algorithm for a common solution of a family of
generalized asymptotically quasi-φ-nonexpansive mappings and generalized mixed equi-
libriumproblems. A strong convergence theorem is established in a Banach space. In order
to prove our main results, we need the following lemmas.

Lemma . [] Let E be a uniformly convex Banach space, and let r > . Then there exists
a strictly increasing, continuous and convex function g : [, r] → R such that g() =  and

∥∥∥∥∥
∞∑
i=

(αixi)

∥∥∥∥∥


≤
∞∑
i=

(
αi‖xi‖

)
– αiαjg

(‖xi – xj‖
)
, ∀i, j ∈ {, , . . . ,N}

for all x,x, . . . ,∈ Br = {x ∈ E : ‖x‖ ≤ r} and α,α, . . . ,∈ [, ] such that
∑∞

i= αi = .

Lemma . [] Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then x =�Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . [] Let E be a uniformly smooth and strictly convex Banach space which
also enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset
of E. LetT : C → C be a generalized asymptotically quasi-φ-nonexpansivemapping. Then
F(T) is closed and convex.

Lemma . [] LetC be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Let A : C → E∗ be a continuous andmonotonemapping, let ϕ : C →R be
convex and lower semi-continuous, and let F be a bifunction from C × C to R satisfying
(A)-(A). Let r >  and x ∈ E. Then there exists z ∈ C such that

F(z, y) + 〈Az, y – z〉 + ϕ(y) – ϕ(z) +

r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Define a mapping Tr : E → C by

Trx =
{
z ∈ C : F(z, y) + 〈Az, y – z〉 + ϕ(y) – ϕ(z) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
.

Then the following conclusions hold:
() Tr is a single-valued firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

http://www.fixedpointtheoryandapplications.com/content/2013/1/318
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() F(Tr) =GMEP(F ,A,ϕ) is closed and convex;
() Tr is quasi-φ-nonexpansive;
() φ(q,Trx) + φ(Trx,x)≤ φ(q,x), ∀q ∈ F(Tr).

2 Main results
Theorem . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E.
Let � be an index set and N be an integer. Let Aj : C → E∗ be a continuous and mono-
tone mapping and ϕj : C → R be a lower semi-continuous and convex function. Let Fj
be a bifunction from C × C to R satisfying (A)-(A) for every j ∈ �. Let T be an iden-
tity mapping, and let Ti : C → C be a generalized asymptotically quasi-φ-nonexpansive
mapping for every  ≤ i ≤ N . Assume that Ti is closed asymptotically regular on C and
	 :=

⋂N
i= F(Ti)∩ ⋂

j∈� GMEP(Fj,Aj,ϕj) is nonempty and bounded. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C,j = C,

C =
⋂

j∈� C,j,

x =�Cx,

yn = J–(
∑N

i= αn,iJTn
i xn),

un,j ∈ C such that Fj(un,j, y) + 〈Ajun,j, y – un,j〉 + ϕj(y) – ϕj(un,j)

+ 
rn,j

〈y – un,j, Jun,j – Jyn〉 ≥ , ∀y ∈ C,

Cn+,j = {z ∈ Cn : φ(z,un,j) ≤ φ(z,xn) +
∑N

i= μn,iMn +Nξn},
Cn+ =

⋂
J∈� Cn+,J ,

xn+ =�Cn+x,

where {αn,i} is a real number sequence in (, ) for every i ≤ , {rn,j} is a real number sequence
in [r,∞), where r is some positive real number, and Mn = sup{φ(z,xn) : z ∈ 	}. Assume
that

∑N
i= αn,i =  and lim infn→∞ αn,αn,i >  for every  ≤ i ≤ N . Then the sequence {xn}

converges strongly to �	x, where �	 is the generalized projection from E onto 	 .

Proof The proof is split into five steps.
Step . Show that the common solution set 	 is convex and closed.
This step is clear in view of Lemma . and Lemma ..
Step . Show that the set Cn is convex and closed.
To show Step , it suffices to show, for any fixed but arbitrary i ∈ �, that Cn,i is convex

and closed. This can be proved by induction. It is clear that C,j = C is convex and closed.
Assume that Cm,j is closed and convex for somem ≥ .We next prove that Cm+,j is convex
and closed. It is clear that Cm+,j is closed. We only prove they are convex. Indeed, ∀x, y ∈
Cm+,j, we find that x, y ∈ Cm,j, and

φ(x,um,j) ≤ φ(x,xm) +
N∑
i=

μn,iMn +Nξn,

http://www.fixedpointtheoryandapplications.com/content/2013/1/318
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and

φ(y,um,j) ≤ φ(y,xm) +
N∑
i=

μn,iMn +Nξn.

Notice that the above two inequalities are equivalent to the following inequalities, respec-
tively:

〈x, Jxm – Jum,j〉 ≤ ‖xm‖ – ‖um,j‖ +
N∑
i=

μn,iMn +Nξn

and

〈y, Jxm – Jum,j〉 ≤ ‖xm‖ – ‖um,j‖ +
N∑
i=

μn,iMn +Nξn.

These imply that


〈
ax + ( – a)y, Jxm – Jum,j

〉 ≤ ‖xm‖ – ‖um,j‖ +
N∑
i=

μn,iMn +Nξn, ∀a ∈ (, ).

Since Cm,j is convex, we see that ax + ( – a)y ∈ Cm,j. Notice that the above inequality is
equivalent to

φ
(
ax + ( – a)y,um,j

) ≤ φ
(
ax + ( – a)y,xm

)
+

N∑
i=

μn,iMn +Nξn.

This proves that Cm+,j is convex. This proves that Cn is closed and convex. This completes
Step .
Step . Show that 	 ⊂ Cn.
It suffices to claim that 	 ⊂ Cn,j for every j ∈ �. Note that 	 ⊂ C,j = C. Suppose that

	 ⊂ Cm,j for some m and for every j ∈ �. Then, for ∀z ∈ 	 ⊂ Cm,j, we have

φ(z,um,j) = φ(z,Trm,j ym)

≤ φ(z, ym)

= φ

(
z, J–

(
αm,Jxm +

N∑
i=

αm,iJTm
i xm

))

= ‖z‖ – 

〈
z,αm,Jxm +

N∑
i=

αm,iJTm
i xm

〉
+

∥∥∥∥∥αm,Jxm +
N∑
i=

αm,iJTm
i xm

∥∥∥∥∥


≤ ‖z‖ – αm,〈z, Jxm〉 – 
N∑
i=

αm,i
〈
z, JTm

i xm
〉

+ αm,‖xm‖ +
N∑
i=

αm,i
∥∥Tm

i xm
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/318
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= αm,φ(z,xm) +
N∑
i=

αm,iφ
(
z,Tm

i xm
)

≤ αm,φ(z,xm) +
N∑
i=

αm,iφ(z,xm) +
N∑
i=

αm,iμm,iφ(z,xm) +
N∑
i=

αm,iξm

≤ φ(z,xm) +
N∑
i=

μm,iφ(z,xm) +
N∑
i=

αm,iξm

≤ φ(z,xm) +
N∑
i=

μm,iMm +
N∑
i=

αm,iξm

≤ φ(z,xm) +
N∑
i=

μm,iMm +Nξm, (.)

which proves that z ∈ Cm+,j. This completes Step .
Step . Show that xn → p, where p ∈ 	 .
In view of Lemma ., we find that φ(xn,x) ≤ φ(w,x)–φ(w,xn) ≤ φ(w,x) for ∀w ∈ 	 ⊂

Cn. This shows that the sequence φ(xn,x) is bounded. It follows that {xn} is also bounded.
Since the framework of the space is reflexive, we may, without loss of generality, assume
that xn ⇀ p, where p ∈ Cn. Note that φ(xn,x) ≤ φ(p,x). It follows that

φ(p,x) ≤ lim inf
n→∞ φ(xn,x) ≤ lim sup

n→∞
φ(xn,x) ≤ φ(p,x).

This gives that limn→∞ φ(xn,x) = φ(p,x). Hence, we have limn→∞ ‖xn‖ = ‖p‖. Since the
space E enjoys the Kadec-Klee property, we find that xn → p as n → ∞.
Now, we are in a position to show that p ∈ ⋂

j∈� GMEP(Fj,Aj,ϕj). By the construction
of Cn, we have that Cn+ ⊂ Cn and xn+ =�Cn+x ∈ Cn. It follows that

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

Letting n → ∞, we obtain that φ(xn+,xn)→ . In view of xn+ ∈ Cn+, we see that

φ(xn+,un,j) ≤ φ(xn+,xn) +
N∑
i=

μn,iMn +Nξn.

We, therefore, obtain that limn→∞ φ(xn+,un,j) = . It follows that limn→∞ ‖un,j‖ = ‖p‖. It
follows that limn→∞ ‖Jun,j‖ = ‖Jp‖. This implies that {Jun,j} is bounded. Note that E is re-
flexive and E∗ is also reflexive. We may assume that Jun,j ⇀ u∗,j ∈ E∗. In view of the re-
flexivity of E, we see that J(E) = E∗. This shows that there exists uj ∈ E such that Juj = u∗,j.
It follows that φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖. Taking lim infn→∞ on the both

http://www.fixedpointtheoryandapplications.com/content/2013/1/318
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sides of the equality above yields that

 ≥ ‖p‖ – 
〈
p,u∗,j〉 + ∥∥u∗,j∥∥

= ‖p‖ – 
〈
p, Juj

〉
+

∥∥Juj∥∥

= ‖p‖ – 
〈
p, Juj

〉
+

∥∥uj∥∥

= φ
(
p,uj

)
.

That is, p = uj, which in turn implies that Jp = u∗,j. It follows that Jun,j ⇀ Jp ∈ E∗. Since E∗

enjoys the Kadec-Klee property, we obtain that Jun,j– Jp→  as n→ ∞. Since J– : E∗ → E
is demicontinuous, it follows that un,j ⇀ p. Since E enjoys the Kadec-Klee property, we
obtain that un,j → p as n → ∞. Note that ‖xn –un,j‖ ≤ ‖xn –p‖+‖p–un,j‖. This gives that

lim
n→∞‖xn – un,j‖ = . (.)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞‖Jxn – Jun,j‖ = . (.)

Notice that

φ(z,xn) – φ(z,un,j) = ‖xn‖ – ‖un,j‖ – 〈z, Jxn – Jun,j〉
≤ ‖xn – un,j‖

(‖xn‖ + ‖un,j‖
)
+ ‖z‖‖Jxn – Jun,j‖.

It follows from (.) and (.) that

lim
n→∞φ(z,xn) – φ(z,un,j) = . (.)

From (.), we find that φ(z, yn) ≤ φ(z,xn) +
∑N

i= μn,jMn + Nξn, where z ∈ 	 . In view of
un,j = Srn,j yn, we find from Lemma . that

φ(un,j, yn) = φ(Srn,j yn, yn)

≤ φ(z, yn) – φ(z,Srn,j yn)

≤ φ(z,xn) – φ(z,Srn,j yn) +
N∑
i=

μn,jMn +Nξn

= φ(z,xn) – φ(z,un,j) +
N∑
i=

μn,jMn +Nξn.

From (.), we obtain that

lim
n→∞φ(un,j, yn) = .

This implies that ‖un,j‖ – ‖yn‖ →  as n → ∞. Since un,j → p as n → ∞, we arrive at
limn→∞ ‖yn‖ = ‖p‖. It follows that limn→∞ ‖Jyn‖ = ‖Jp‖. Since E∗ is also reflexive, we may

http://www.fixedpointtheoryandapplications.com/content/2013/1/318
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assume that Jyn ⇀ y∗ ∈ E∗. In view of J(E) = E∗, we see that there exists y ∈ E such that
Jy = y∗. It follows that

φ(un,j, yn) = ‖un,j‖ – 〈un,j, Jyn〉 + ‖Jyn‖.

Taking lim infn→∞ on the both sides of the equality above yields that  ≥ φ(p, y). That is,
p = y, which in turn implies that y∗ = Jp. It follows that Jyn ⇀ Jp ∈ E∗. Since E∗ enjoys
the Kadec-Klee property, we obtain that Jyn – Jp →  as n→ ∞. Note that J– : E∗ → E is
demicontinuous. It follows that yn ⇀ p. Since E enjoys the Kadec-Klee property, we obtain
that yn → p as n→ ∞. Since ‖un,j – yn‖ ≤ ‖un,j –p‖+‖p– yn‖, we find that limn→∞ ‖un,i –
yn‖ = . Since J is uniformly norm-to-norm continuous on any bounded sets, we have
limn→∞ ‖Jun,j – Jyn‖ = . From the assumption rn,i ≥ r, we see that limn→∞

‖Jun,j–Jyn‖
rn,j

= .
Notice that

fj(un,j, y) +

rn,j

〈y – un,j, Jun,j – Jyn〉 ≥ , ∀y ∈ C,

where fj(un,j, y) = Fj(un,j, y) + 〈Ajun,j, y – un,j〉 + ϕj(y) – ϕj(un,j). From (A), we find that

‖y – un,j‖‖Jun,j – Jyn‖
rn,j

≥ 
rn,j

〈y – un,j, Jun,j – Jyn〉 ≥ fj(y,un,j), ∀y ∈ C.

Taking the limit as n→ ∞, we find that fj(y,p) ≤ , ∀y ∈ C. For  < tj <  and y ∈ C, define
ytj = tjy + ( – tj)p. It follows that yt,j ∈ C, which yields that fj(yt,j,p) ≤ . It follows from
conditions (A) and (A) that  = fj(yt,j, yt,j) ≤ tjfj(yt,j, y) + ( – tj)fj(yt,j,p) ≤ tjfj(yt,j, y). This
yields that fj(yt,j, y) ≥ . Letting tj ↓ , we find from condition (A) that fj(p, y) ≥ , ∀y ∈ C.
This implies that p ∈ EP(fj) =GMEP(Fj,Aj,ϕj) for every j ∈ �.
Next, we state p ∈ ⋂N

i= F(Ti). Since E is uniformly smooth, we know that E∗ is uniformly
convex. It follows from Lemma . that

φ(z,un,j) = φ(z,Srn,j yn)

≤ φ(z, yn)

= φ

(
z, J–

(
αn,Jxn +

N∑
i=

αn,iJTn
i xn

))

= ‖z‖ – 

〈
z,αn,Jxn +

N∑
i=

αn,iJTn
i xn

〉
+

∥∥∥∥∥αn,Jxn +
N∑
i=

αn,iJTn
i xn

∥∥∥∥∥


≤ ‖z‖ – αn,〈z, Jxn〉 – 
N∑
i=

αn,i
〈
z, JTn

i xn
〉

+ αn,‖xn‖ +
N∑
i=

αn,i
∥∥Tn

i xn
∥∥ – αn,( – αn,i)g

(∥∥Jxn – JTn
i xn

∥∥)

= αn,φ(z,xm) +
N∑
i=

αn,iφ
(
z,Tn

i xn
)
– αn,( – αn,i)g

(∥∥Jxn – JTn
i xn

∥∥)

≤ αn,φ(z,xm) +
N∑
i=

αn,iφ(z,xm) +
N∑
i=

αn,iμn,iφ(z,xn) +
N∑
i=

αn,iξn

http://www.fixedpointtheoryandapplications.com/content/2013/1/318
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– αn,( – αn,i)g
(∥∥Jxn – JTn

i xn
∥∥)

≤ φ(z,xn) +
N∑
i=

μn,iφ(z,xm) +
N∑
i=

αn,iξn

– αn,( – αn,i)g
(∥∥Jxn – JTn

i xn
∥∥)

≤ φ(z,xn) +
N∑
i=

μn,iMn +Nξn – αn,( – αn,i)g
(∥∥Jxn – JTn

i xn
∥∥)
.

This yields that

αn,( – αn,i)g
(∥∥Jxn – JTn

i xn
∥∥) ≤ φ(z,xn) – φ(z,un,j) +

N∑
i=

μn,iMn +Nξn.

In view of lim infn→∞ αn,( – αn,i) > , we see from (.) that limn→∞ g(‖Jxn – JTn
i xn‖) = 

It follows from the property of g that

lim
n→∞

∥∥Jxn – JTn
i xn

∥∥ = . (.)

Since xn → p as n → ∞ and J : E → E∗ is demicontinuous, we obtain that Jxn ⇀ Jp ∈ E∗.
Note that |‖Jxn‖ – ‖Jp‖| = |‖xn‖ – ‖p‖| ≤ ‖xn – p‖. This implies that ‖Jxn‖ → ‖Jp‖ as
n→ ∞. Since E∗ enjoys the Kadec-Klee property, we see that

lim
n→∞‖Jxn – Jp‖ = . (.)

On the other hand, we have ‖JTn
i xn – Jp‖ ≤ ‖JTn

i xn – Jxn‖ + ‖Jxn – Jp‖. Combining (.)
with (.), one obtains that limn→∞ ‖JTn

i xn – Jp‖ = . Since J– : E∗ → E is demicontinu-
ous, one sees that Tn

i xn ⇀ p. Notice that |‖Tn
i xn‖ – ‖p‖| ≤ ‖JTn

i xn – Jp‖. This yields that
limn→∞ ‖Tn

i xn‖ = ‖p‖. Since the space E enjoys the Kadec-Klee property, we obtain that
limn→∞ ‖Tn

i xn – p‖ = . Note that ‖Tn+xn – p‖ ≤ ‖Tn+xn – Tnxn‖ + ‖Tnxn – p‖. Since T
is asymptotically regular, we find that limn→∞ ‖Tn+

i xn – p‖ = . That is, TiTn
i xn – p → 

as n → ∞. It follows from the closedness of Ti that Tip = p for every i ∈ {, , . . . ,N}. This
completes Step .
Step . Show that p =�	x.
Since xn =�Cnx, we see that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈ Cn.

Since 	 ⊂ Cn, we find that

〈xn –w, Jx – Jxn〉 ≥ , ∀w ∈ 	 .

Letting n → ∞, we arrive at

〈p –w, Jx – Jp〉 ≥ , ∀w ∈ 	 .

From Lemma ., we can immediately obtain that p = �	x. This completes the proof.
�
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Remark . Theorem . mainly improves the corresponding results in Kim [], Yang
et al. [], Hao [], Qin et al. [], Qin et al. [].

Remark . The framework of the space in Theorem . can be applicable to Lp, p≥ .

If N =  and � = {}, then Theorem . is reduced to the following.

Corollary . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E. Let
F be a bifunction from C × C to R satisfying (A)-(A). Let Ti : C → C be a generalized
asymptotically quasi-φ-nonexpansive mapping for every i ∈ {, }. Assume that each Ti is
closed asymptotically regular on C and F(T) ∩ F(T) ∩ EP(F) is nonempty and bounded.
Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C = C,

x =�Cx,

yn = J–(αn,Jxn + αn,JTn
 xn + αn,JTn

 xn),

un ∈ C such that F(un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn) + (μn, +μn,)Mn + ξn},
xn+ =�Cn+x,

where {αn,}, {αn,}, and {αn,} are real number sequences in (, ), {rn} is a real number
sequence in [r,∞),where r is some positive real number, andMn = sup{φ(z,xn) : z ∈ F(T)∩
F(T) ∩ EF(F)}. Assume that

∑
i= αn,i =  and lim infn→∞ αn,αn,i > . Then the sequence

{xn} converges strongly to �F(T)∩F(T)∩EP(F)x, where �F(T)∩F(T)
⋂

EF(F) is the generalized
projection from E onto F(T)∩ F(T)∩ EP(F).

Remark . Corollary . mainly improves the corresponding results in Qin et al. [].
To be more clear, the mapping is extended from quasi-φ-nonexpansive mappings to gen-
eralized asymptotically quasi-φ-nonexpansive mappings and the framework of spaces is
extended from a uniformly smooth and uniformly convex Banach space to a uniformly
smooth and strictly convex Banach space.
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