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1 Introduction and preliminaries
There are threemainmotivations for this paper. The first is the introduction of the concept
of aG-metric space and fixed point theorems onG-metric spaces. The second is the works
on fixed point theorems of Meir-Keeler type contractions. The third is some recent works
on fixed point theorems in a partially ordered set.
In this paper, we will combine these ideas and present some new results. In fact, due

to the powerfulness of the classical Banach contraction principle in nonlinear analysis,
various generalizations of the classical Banach contraction principle have been of great
interest for many authors (see, e.g., [–]). Next, let us recall some definitions and known
results.
In , Mustafa and Sims [] introduced the concept of G-metric spaces as follows.

Definition  (See []) Let X be a non-empty set, G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x) for all x, y ∈ X. (.)
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Example  Let (X,d) be a metric space. The function G : X ×X ×X → [, +∞), defined
by

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}

or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x)

for all x, y, z ∈ X, is a G-metric on X.

Definition  (See []) Let (X,G) be aG-metric space, and let {xn} be a sequence of points
of X, therefore, we say that (xn) isG-convergent to x ∈ X if limn,m→+∞ G(x,xn,xm) = , that
is, for any ε > , there exists N ∈N such that G(x,xn,xm) < ε for all n,m ≥ N . We call x the
limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition  (See []) Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x) →  as n→ +∞,
() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x) →  as n,m → +∞.

Definition  (See []) Let (X,G) be a G-metric space. A sequence {xn} is called a G-
Cauchy sequence if for any ε > , there is N ∈ N such that G(xn,xm,xl) < ε for all m,n, l ≥
N , that is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition  (See []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() the sequence {xn} is G-Cauchy,
() for any ε > , there exists N ∈ N such that G(xn,xm,xm) < ε for allm,n≥ N .

Definition  (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition  (See []) Let (X,G) be aG-metric space. Amapping T : X → X is said to be
G-continuous if {T(xn)} isG-convergent to T(x) where {xn} is anyG-convergent sequence
converging to x.

Definition  Let (X,�) be a partially ordered set, (X,G) be a G-metric space. A partially
ordered G-metric space (X,G,�) is called ordered complete if for each convergent se-
quence {xn}∞n= ⊂ X, the following conditions hold:

(OC) if {xn} is a non-increasing sequence in X such that xn → x∗, then x∗ � xn ∀n ∈ N,
(OC) if {yn} is a non-decreasing sequence in X such that yn → y∗, then y∗ � yn ∀n ∈N.

In [], Mustafa characterized the well-known Banach contraction principle mapping
in the context of G-metric spaces in the following ways.
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Theorem  (See []) Let (X,G) be a complete G-metric space and T : X → X be a map-
ping satisfying the following condition for all x, y, z ∈ X:

G(Tx,Ty,Tz) ≤ kG(x, y, z), (.)

where k ∈ [, ). Then T has a unique fixed point.

Theorem  (See []) Let (X,G) be a complete G-metric space and T : X → X be a map-
ping satisfying the following condition for all x, y ∈ X:

G(Tx,Ty,Ty) ≤ kG(x, y, y), (.)

where k ∈ [, ). Then T has a unique fixed point.

Remark  The condition (.) implies the condition (.). The converse is true only if
k ∈ [,  ). For details, see [].

Ran and Reurings [] proved the analog of the Banach contraction mapping principle
for continuous self-mappings under certain conditions in the context of a partially ordered
set. In this paper [], the authors solved a matric equation as an application. Following
this initial paper, Nieto and López [] published the paper in which the authors extended
the results of Ran and Reurings [] for a mapping T not necessarily continuous by as-
suming an additional hypothesis on (X,�,d).
An interesting and general contraction condition for self-maps in metric spaces was

considered by Meir and Keeler [] in .

Definition  Let (X,d) be a metric space and T be a self-map on X. Then T is called a
Meir-Keeler type contraction whenever for each ε >  there exists δ >  such that for any
x, y ∈ X,

ε ≤ d(x, y) < ε + δ ⇒ d(Tx,Ty) < ε. (.)

Recently, Harjani, Lopez and Sadarangani [] extended the classical result in [] to par-
tially orderedmetric spaces. In fact, they proved several interesting results for fixed points
of Meir-Keeler contractions in a complete metric space endowed with a partial order. For
more related results, we refer the reader to [, , ] and references therein. Following
this line of thought, we introduce a generalizedMeir-Keeler type contraction onG-metric
spaces and extend the results of [, ] in the context of partially orderedG-metric spaces.
We say that the tripled (x, y, z) ∈ X is distinct if at least one of the following holds:

(i) x �= y, (ii) y �= z, (iii) x �= z.

The tripled (x, y, z) ∈ X is called strictly distinct if all inequalities (i)-(iii) hold.

Definition  Let (X,G,�) be a partially orderedG-metric space. Suppose thatT : X → X
is a self-mapping satisfying the following condition:
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For each ε > , there exists δ >  such that for any x, y, z ∈ X with x � y� z,

ε ≤ G(x, y, z) < ε + δ ⇒ G(Tx,Ty,Tz) < ε. (.)

Then T is called G-Meir-Keeler contractive.

Remark  Notice that if T : X → X is G-Meir-Keeler contractive on a G-metric space
(X,G), then T is contractive, that is,

G(Tx,Ty,Tz) <G(x, y, z) (.)

for all distinct tripled (x, y, z) ∈ X with x � y� z.

Definition  Let (X,�) be a partially ordered set and T : X → X be a mapping. We say
that T is nondecreasing if for x, y ∈ X,

x � y implies Tx � Ty. (.)

Definition  Let (X,G,�) be aG-metric space. Suppose thatT : X → X is a self-mapping
satisfying the following condition:
Given ε > , there exists δ >  such that for any x, y ∈ X with x � y,

ε ≤ G(x, y, y) < ε + δ ⇒ G(Tx,Ty,Ty) < ε. (.)

Then T is called G-Meir-Keeler contractive of second type.

Remark  It is easy to see that aG-Meir-Keeler contractionmust beG-Meir-Keeler con-
tractive of second type. In addition, if T : X → X is G-Meir-Keeler contractive of second
type on a partially ordered G-metric space (X,G,�), then

G(Tx,Ty,Ty) <G(x, y, y) (.)

for all (x, y) ∈ X with x ≺ y. Moreover, we have

G(Tx,Ty,Ty) ≤ G(x, y, y) (.)

for all (x, y) ∈ X with x � y.

2 Main results
In this paper, we discuss the existence of fixed points for a Meir-Keeler type contraction
in partially ordered G-metric spaces.

Theorem  Let (X,�) be a partially ordered set endowed with a G-metric and T : X → X
be a given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
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(iv) T is G-continuous;
(v) T : X → X is G-Meir-Keeler contractive of second type.

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain the uniqueness of the fixed point.

Proof The following proof follows the same lines as previous proofs of related results in [,
], but we reproduce it for the sake of completeness. More precisely, the first part of the
proof for Theorem , the proof up to equation (.), is analogous to the corresponding
proof of Harjani et al. in []. But, for the general readership, we give all the details here.
Take x ∈ X such that the condition (iii) holds, that is, x � Tx.We construct an iterative

sequence {xn} in X as follows:

xn = Txn– for n≥ . (.)

Taking into account that T is a non-decreasing mapping together with (.), we have x �
Tx = x implies x = Tx � Tx = x. By induction, we get

x � x � x � · · · � xn– � xn � xn+ � · · · . (.)

Suppose that there exists n such that xn = xn+. Since xn = xn+ = Txn , then xn is the
fixed point of T , which completes the existence part of the proof. Suppose that xn �= xn+
for all n ∈N. Thus, by (.) we have

x ≺ x ≺ x ≺ · · · ≺ xn– ≺ xn ≺ xn+ ≺ · · · . (.)

By (G), we have

G(xn,xn+,xn+) >  (.)

for all n = , , , . . . . By Remark , we observe that for all n = , , , . . . ,

G(xn+,xn+,xn+) =G(Txn,Txn+,Txn+) <G(xn,xn+,xn+). (.)

Define tn = G(xn,xn+,xn+). Due to (.), the sequence {tn} is a (strictly) decreasing se-
quence in R

+ and thus it is convergent, say t ∈ R
+. We claim that t = . Suppose, to the

contrary, that t > . Thus, we have

 < t <G(xn,xn+,xn+) for all n = , , , . . . . (.)

Assume ε = t > . Then by hypothesis, there exists a convenient δ(ε) >  such that (.)
holds. On the other hand, due to the definition of ε, there exists n ∈N such that

ε < tn =G(xn ,xn+,xn+) < ε + δ. (.)

Taking the condition (.) into account, the expression (.) yields that

tn+ =G(xn+,xn+,xn+) =G(Txn ,Txn+,Txn+) < ε = t, (.)

which contradicts (.). Hence t = , that is, limn→∞ tn = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/35


Ding and Karapınar Fixed Point Theory and Applications 2013, 2013:35 Page 6 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/35

Wewill show that {xn}∞n= is aG-Cauchy sequence. ∀ε > , by the hypothesis, there exists
a suitable δ(ε) >  such that (.) holds. Without loss of generality, we assume δ < ε. Since
t = , there exists N ∈ N such that

tn– =G(xn–,xn,xn) < δ for all n ≥ N. (.)

We assert that for any fixed k ≥ N,

G(xk ,xk+r,xk+r) ≤ ε for all r = , , . . . (.)

holds. To prove the assertion, we use the method of induction. Regarding (.), the asser-
tion (.) is satisfied for r = . Suppose the assertion (.) is satisfied for r = , , . . . ,m
for somem ∈N. For r =m + , by the help of (G) and (.), we consider

G(xk–,xk+m,xk+m) ≤ G(xk–,xk ,xk) +G(xk ,xk+m,xk+m)

< ε + δ. (.)

If G(xk–,xk+m,xk+m) ≥ ε, then by (.) we get

G(xk ,xk+m+,xk+m+) =G(Txk–,Txk+m,Txk+m) < ε. (.)

Hence (.) is satisfied.
IfG(xk–,xk+m,xk+m) = , then by (G), we derive that xk– = xk+m and hence xk = Txk– =

Txk+m = xk+m+. By (G), we have

G(xk ,xk+m+,xk+m+) =G(xk ,xk ,xk) =  < ε,

and thus (.) is satisfied.
If  <G(xk–,xk+m,xk+m) < ε, then by Remark ,

G(xk ,xk+m+,xk+m+) =G(Txk–,Txk+m,Txk+m) ≤ G(xk–,xk+m,xk+m) < ε.

Consequently, (.) is satisfied for r =m+. Hence,G(xk ,xk+r ,xk+r) ≤ ε for all k ≥ N and
r ≥ , which means

G(xn,xm,xm) < ε ∀m ≥ n≥ N. (.)

Then, for all n≥ m ≥ N, by (.), we have

G(xn,xm,xm) =G(xm,xn,xm) ≤ G(xm,xn,xn) +G(xn,xn,xm) = G(xm,xn,xn) < ε.

Thus, for allm,n≥ N, there holds

G(xn,xm,xm) < ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/35
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By Proposition , {xn} is a G-Cauchy sequence. Since (X,G) is G-complete, there exists
u ∈ X such that

lim
n→∞G(xn,u,u) = . (.)

We will show now that u ∈ X is a fixed point of T , that is, u = Tu. Since T is G-
continuous, the sequence {Txn} = {xn+} converges to Tu, that is,

lim
n→∞G(Txn,Txn,Tu) = lim

n→∞G(Txn,Tu,Tu) = . (.)

On the other hand, the rectangle inequality (G) yields that

G(u,Tu,Tu) ≤ G(u,xn+,xn+) +G(xn+,Tu,Tu)

= G(u,xn+,xn+) +G(Txn,Tu,Tu). (.)

Letting n → ∞ in (.), we conclude that G(u,Tu,Tu) = . Hence, u = Tu, that is, u ∈
is a fixed point of T .
To prove the uniqueness, we assume that v ∈ X is another fixed point of T . By the as-

sumptions, we know that there exists w ∈ X such that u� w and v � w. By Remark , we
get

G(u,Tw,Tw) =G(Tu,Tw,Tw) ≤ G(u,w,w).

Since T is nondecreasing, Tu� Tw. Again by Remark , we get

G
(
u,Tw,Tw

)
=G

(
T(Tu),T(Tw),T(Tw)

) ≤G(Tu,Tw,Tw) =G(u,Tw,Tw).

Continuing in this way, we conclude

G
(
u,Tnw,Tnw

) ≤ · · · ≤G(u,Tw,Tw) ≤ G(u,w,w).

Let sn = G(u,Tnw,Tnw). Hence, we conclude that {sn} is a non-increasing sequence
bounded below by zero. Thus, there exists L ≥  such that

lim
n→∞ sn = L = inf

n
sn.

We claim that L = . Suppose, on the contrary, that L > . Choose ε = L and δ >  be such
that (.) holds. Then, there exists n such that L ≤ G(u,Tnw,Tnw) < L+δ, which implies

G
(
u,Tn+w,Tn+w

)
=G

(
Tu,Tn+w,Tn+w

)
< L.

This contradicts with the definition of L. Hence,

lim
n→∞G

(
u,Tnw,Tnw

)
= . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/35


Ding and Karapınar Fixed Point Theory and Applications 2013, 2013:35 Page 8 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/35

Similarly, one can also obtain

lim
n→∞G

(
v,Tnw,Tnw

)
= . (.)

In view of (.), (.) and

G(u, v, v)≤ G
(
u,Tnw,Tnw

)
+G

(
Tnw, v, v

)
,

we deduce G(u, v, v) = , i.e., u = v. Hence, the fixed point of T is unique. �

Corollary  Let (X,�) be a partially ordered set endowedwith aG-metric andT : X → X
be a given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
(iv) T is G-continuous;
(v) T : X → X is G-Meir-Keeler contractive.

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X, there exists w ∈ X such that
x � w and y� w, we obtain the uniqueness of the fixed point.

Substituting the condition (iv) in Theorem  by the condition that X is ordered com-
plete, we can get the following result.

Theorem Let (X,�) be a partially ordered set endowed with a G-metric and T : X → X
be a given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
(iv) X is ordered complete;
(v) T : X → X is G-Meir-Keeler contractive of second type.

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain the uniqueness of the fixed point.

Proof Let xn and u be as in the proof of Theorem . We only need to show u = Tu. Since
X is ordered complete, in view of (.) and (.), we conclude xn � u for all n. Then, by
Remark , (G) and (.), we get

G(Tu,u,u) ≤ G(Tu,xn,xn) +G(xn,u,u)

= G(Txn–,Txn–,Tu) +G(xn,u,u)

≤ G(xn–,xn–,u) +G(xn,u,u).

Letting n → ∞, we conclude G(Tu,u,u) = , i.e., Tu = u. �

Corollary  Let (X,�) be a partially ordered set endowedwith aG-metric and T : X → X
be a given mapping. Suppose that the following conditions hold:

(i) (X,G) is G-complete;
(ii) T is nondecreasing (with respect to �);

http://www.fixedpointtheoryandapplications.com/content/2013/1/35


Ding and Karapınar Fixed Point Theory and Applications 2013, 2013:35 Page 9 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/35

(iii) there exists x ∈ X such that x � Tx;
(iv) X is ordered complete;
(v) T : X → X is G-Meir-Keeler contractive.

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists w ∈ X such that
x � w and y� w, we obtain the uniqueness of the fixed point.

Theorem Let (X,�) be a partially ordered set endowedwith a G-metric and T : X → X
be a given mapping. Suppose that there exists a function ϕ : [,∞)→ [,∞) satisfying the
following conditions
(F) ϕ() =  and ϕ(t) >  for all t > ;
(F) ϕ is nondecreasing and right continuous;
(F) for every ε > , there exists δ such that

ε ≤ ϕ
(
G(x, y, y)

)
< ε + δ implies ϕ

(
G(Tx,Ty,Ty)

)
< ϕ(ε) (.)

for all (x, y) ∈ X ×X with x � y. Then T is G-Meir-Keeler contractive of second type.

Proof We take ε > . Due to (F), we have ϕ(ε) > . Thus there exists θ >  such that

ϕ(ε) ≤ ϕ
(
G(x, y, y)

)
< ϕ(ε) + θ implies ϕ

(
G(Tx,Ty,Ty)

)
< ϕ(ε). (.)

From the right continuity of ϕ, there exists δ >  such that ϕ(ε + δ) < ϕ(ε) + θ . Fix (x, y) ∈
X ×X with x � y such that ε ≤ G(x, y, y) < ε + δ. So, we have

ϕ(ε) ≤ ϕ
(
G(x, y, y)

) ≤ ϕ(ε + δ) < ϕ(ε) + θ .

Hence, ϕ(G(Tx,Ty,Ty)) < ϕ(ε). Thus, we have G(Tx,Ty,Ty) < ε, which completes the
proof. �

Since a function t → ∫ t
 f (s)ds is absolutely continuous, we derive the following corollary

from Theorem  and Theorem .

Corollary  Let (X,�) be a partially ordered set endowed with a G-metric, T : X → X
be a given mapping, and f be a locally integrable function from [,∞) into itself satisfying∫ t
 f (s)ds >  for all t > . Assume that the conditions (i)-(iv) of Theorem  hold, and for
each ε > , there exists δ >  such that

ε ≤
∫ G(x,y,y)


f (s)ds < ε + δ ⇒

∫ G(Tx,Ty,Ty)


f (s)ds <

∫ ε


f (s)ds (.)

for all x, y ∈ X with x � y. Then T has a fixed point.Moreover, if for all (x, y) ∈ X ×X, there
exists w ∈ X such that x� w and y � w, we obtain the uniqueness of the fixed point.
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