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Abstract
In this paper, we introduce g-approximative multivalued mappings to a partial metric
space. Based on this definition, we give some new definitions. Further, common fixed
point results for g-approximative multivalued mappings satisfying generalized
contractive conditions are obtained in the setup of ordered partial metric spaces.
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1 Introduction and preliminaries
The study of fixed points for multivalued contraction mappings using the Hausdorff met-
ric was initiated by Nadler []. After this, fixed point theory has been developed further
and applied to many disciplines to solve functional equations. The Banach contraction
principle has been extended in different directions either by using generalized contrac-
tions for multivalued mappings and hybrid pairs of single and multivalued mappings, or
by using more general spaces. Dhage [, ] established hybrid fixed point theorems and
obtained some applications of presented results. Hong and Shen [] proved common fixed
point results for generalized contractivemultivalued operators in a completemetric space.
Also, the monotone iterative technique is associated with several nonlinear problems [].
This technique is also employed to prove the existence of fixed points for multivalued
monotone operators (see, for example, []). In [], the problem of existence and approxi-
mation of coupled fixed points for mixed monotone multivalued operators was studied in
ordered Banach spaces under the assumption that operators satisfy the condensing con-
dition and upper demicontinuity.
Hong introduced the concepts of approximative values, comparable approximative val-

ues, upper and lower comparable approximative values in []. These definitions are a very
useful tool for proving the existence of a fixed point of a multivalued operator in an or-
dered metric space. Then, Abbas and Erduran in [] extended the concept of these defi-
nitions using g self-mappings, so they introduced g-approximative multivalued mappings
and proved coincidence and common fixed point results for a hybrid pair of multivalued
and single-valued mappings. Also, they introduced the concepts of g-comparable approx-
imative, g-upper comparable approximative and g-lower comparable approximative mul-
tivalued mappings.
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In this paper, unless otherwise mentioned, let (X,p) denote an ordered complete partial
metric space with a partial order ≤ and distance p(·, ·).

Definition  Let X be an ordered partial metric space. A mapping g : X → X is said to be
(i) weakly L-idempotent if gx ≤ gx for x in X, (ii) weakly R-idempotent if gx ≤ gx for x
in X. For example, a mapping g : [, ] → [, ] given by g(x) = x is weakly R-idempotent.

Definition  An ordered partial metric space is said to have a subsequential limit com-
parison property if for every nondecreasing sequence (nonincreasing sequence) {xn} in X
such that xn → x, there exists a subsequence {xnk } of {xn} with xnk ≤ x (x ≤ xnk ), respec-
tively.

Definition  Anordered partialmetric space is said to have a sequential limit comparison
property if for every nondecreasing sequence (nonincreasing sequence) {xn} inX such that
xn → x implies that xn ≤ x (x≤ xn), respectively.

Let X be any nonempty set endowed with a partial order ≤ and let g : X → X be a given
mapping. We define the set �g ⊆ X ×X by

�g =
{
(x, y) ∈ X ×X : gx≤ gy

}
.

Note that for each x ∈ X, one has (x,x) ∈ �g .

Example  Let X = {, , } be endowed with the usual order ≤ and g be a self-map
on X defined as g = , g =  and g = . Then the subset �g of X × X is �g =
{(, ), (, ), (, ), (, ), (, ), (, )}.

In order to extend the concept of g-approximative, g-CAV, g-UCAV, g-LCAV multival-
uedmappings on partial metric spaces, we first adapt the notion of g-approximative to the
partial metric framework as follows.

Definition  Let X be a partial metric space and g : X → X. A subset Y of X is said to be
g-approximative for some x in X if Y ⊂ g(X) and the set

�
g
Y
(
g(x)

)
=

{
y ∈ Y : p

(
g(x), y

)
= p

(
Y , g(x)

)}
is nonempty.

Definition  Let X be a partially ordered set. A mapping F : X → X (collection of all
nonempty subsets of X) is said to be:

(i) g-approximative multivalued mapping (in short g-AV multivalued mapping), if Fx
is g-approximative for each x ∈ X , that is, �g

Fx(g(x)) is nonempty for each x in X .
(ii) g-CAV multivalued mapping (g-comparable approximative multivalued mapping)

if F is g-approximative and for each z ∈ X , there exists g(y) ∈ �
g
F(z)(g(z)) such that

gy is comparable to gz.
(iii) g-UCAV (g-upper comparable approximative multivalued mapping) if F is

g-approximative and for each z ∈ X , there exists g(y) ∈ �
g
F(z)(g(z)) such that

g(z) ≤ g(y).

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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(iv) g-LCAV (g-lower comparable approximative multivalued mapping) if F is
g-approximative and for each z ∈ X , there exists g(y) ∈ �

g
F(z)(g(z)) such that

g(y) ≤ g(z).

If F is single-valued, then g-UCAV (g-LCAV) means that Fx≥ gx (Fx≤ gx) for x ∈ X.

Definition  Let g : X –→ X and T : X –→ CB(X). A point x in X is said to be: (i) a fixed
point of g if g(x) = x, (ii) a fixed point of T if x ∈ T(x), (iii) a coincidence point of a pair
(g,T) if gx ∈ Tx, (iv) a common fixed point of a pair (g,T) if x = gx ∈ Tx.

F(g), C(g,T) and F(g,T) denote the set of all fixed points of g , the set of all coincidence
points of the pair (g,T) and the set of all common fixed points of the pair (g,T), respec-
tively.

Definition  Let f : X –→ X, T : X –→ CB(X) and fTx ∈ CB(X). The pair (f ,T) is called
() commuting if Tfx = fTx for all x ∈ X, () weakly compatible [] if they commute at their
coincidence points, that is, fTx = Tfx whenever x ∈ C(f ,T), () (IT)-commuting at x ∈ X
if fTx ⊆ Tfx.

Definition  Let T : X –→ CB(X). Themap f : X –→ X is said to be T-weakly commuting
at x ∈ X if f x ∈ Tfx.

Definition  The map f : X → X is said to be coincidently idempotent with respect to
T : X → CB(X) if f (x) = f (x) for x in C(f ,T). The point x is called a point of coincident
idempotency.

Now, we present an example of a hybrid pair {f ,T} for which f is T-weakly commuting
at some x ∈ C(f ,T).

Example  Let X = [,∞) with the usual metric. Define f : X → X, T : X → CB(X) by

fx =

{
,  ≤ x < ,
x + ,  ≤ x < ∞

and

Tx =

{
{x},  ≤ x < ,
[,x + ],  ≤ x < ∞.

It can be easily verified that f is T-weakly commuting at x =  ∈ C(f ,T).

Example  Let X = R with the usual metric. Define f : X → X, T : X → CB(X) by

fx =

{
–, x ≤ ,
–

x ,  < x

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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and

Tx =

⎧⎪⎨
⎪⎩

{x}, x ≤ –,
[x, ], – < x≤ ,
[,x],  < x < ∞.

Here C(f ,T) = {–} and f is coincidently idempotent with respect to T .

Let α ∈ (, +∞].� denotes the class of mappings f : [,α)→Rwhich satisfy the follow-
ing conditions:

(i) f () =  and f (t) >  for each t ∈ (,α),
(ii) f is continuous,
(iii) f is nondecreasing on [,α).
Amapping f is said to be sublinear if f (t +t) ≤ f (t)+ f (t) whenever t, t, t +t ∈ (,α).

We define �s = {f : [,α)→R : f is sublinear and f ∈�}.
	� denotes the family of mappings ψ : [,α)→ [, +∞) which satisfy the following con-

ditions:
(a) ψ(t) < t for each t ∈ (,α),
(b) ψ is nondecreasing and right upper semi-continuous,
(c) for each t ∈ (,α), limn→∞ ψn(t) = .
By means of the functions f and ψ given in� and 	� respectively, a generalized contrac-

tive condition was defined in []. Let� denote the class of mappingsψ : [,α)→ [, +∞)
for which ψ(t) < t and

∑∞
n= ψ

n(t) < ∞ for each t in (,α).

Definition  For two subsetsA, B of X, we sayA ≤ B if for each x ∈ X, there exists y ∈ Y
such that x ≤ y and A≤ B if each x ∈ A, y ∈ B implies that x ≤ y.

A multivalued mapping F : X → X is said to be g-nondecreasing (g-nonincreasing) if
gx ≤ gy implies that Fx ≤ Fy (Fy ≤ Fx) for all x, y ∈ X. F is said to be g-monotone if F is
g-nondecreasing or g-nonincreasing. Moreover, in what follows, (X,≤) will be a partially
ordered set such that there exists a complete partial metric p on X. Let D = sup{p(x, y) :
x, y ∈ X}. Set α = p if p = ∞ and α > p if p < ∞.
Consistent with [–], the following definitions and results will be needed in the se-

quel.

Definition  A partial metric on a nonempty set X is a function p : X × X → R+ such
that for all x, y, z ∈ X,

(i) x = y⇔ p(x,x) = p(x, y) = p(y, y),
(ii) p(x,x)≤ p(x, y),
(iii) p(x, y) = p(y,x),
(iv) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).
A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial

metric on X.

Each partial metric p on X generates a T topology τp on X which has as a base the
family of open p-balls {Bp(x, ε),x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}
for all x ∈ X and ε > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.
A mapping f : X → X is said to be continuous at x ∈ X if for every ε > , there exists

δ >  such that f (Bp(x, δ)) ⊂ Bp(f (x), ε).

Definition  Let (X,p) be a partial metric space and {xn} be a sequence in X. Then
(i) {xn} converges to a point x ∈ X if and only if p(x,x) = limn→+∞ p(x,xn),
(ii) {xn} is called a Cauchy sequence if there exists (and is finite) limn,m→+∞ p(xn,xm).

Definition  Apartialmetric space (X,p) is said to be complete if everyCauchy sequence
{xn} in X converges, with respect to τp, to a point x ∈ X such that p(x,x) = p(xn,xm).

Lemma  Let (X,p) be a partial metric space. Then
(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,ps),
(b) (X,p) is complete if and only if the metric space (X,ps) is complete. Furthermore,

limn→+∞ ps(xn,x) =  if and only if

p(x,x) = lim
n→+∞p(xn,x) = lim

n,m→+∞p(xn,xm).

Lemma  Let (X,p) be a partial metric space and let T : X → X be a continuous self-
mapping. Assume {xn} ∈ X such that xn → z as n→ ∞. Then

lim
n→∞p(Txn,Tz) = p(Tz,Tz).

Recently Haydi et al. introduced a partial Hausdorff metric on a partial metric space
and they extended Nadler’s fixed point theorem on partial metric spaces using the partial
Hausdorff metric.
Let (X,p) be a partial metric space. Let CBp(X) be a family of all nonempty, closed and

bounded subsets of the partial metric space (X,p), induced by the partial metric p. Note
that closedness is taken from (X, τp) (τp is the topology induced by p) and boundedness is
given as follows: A is a bounded subset in (X,p) if there exist x ∈ X andM ≥  such that
for all a ∈ A, we have a ∈ Bp(x,M), that is, p(x,a) < p(a,a) +M.
For A,B ∈ CBp(X) and x ∈ X,

p(x,A) = inf
{
p(x, y) : y ∈ A

}
,

δp(A,B) = sup
{
p(a,B) : a ∈ A

}
,

δp(B,A) = sup
{
p(A,b) : b ∈ B

}
.

It is immediate to check that p(x,A) =  ⇒ ps(x,A) = , where ps(x,A) = inf{ps(x,a) : a ∈
A}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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Remark  ([]) Let (X,p) be a partial metric space and A be any nonempty set in (X,p),
then a ∈ A if and only if p(a,A) = p(a,a), where A denotes the closure of A with respect to
the partial metric p. Note that A is closed in (X,p) if and only if A = A.

Proposition  ([]) Let (X,p) be a partialmetric space. For any A,B,C ∈ CBp(X),we have
the following:

(i) δp(A,A) = sup{p(a,a) : a ∈ A};
(ii) δp(A,A) ≤ δp(A,B);
(iii) δp(A,B) =  implies that A⊂ B;
(iv) δp(A,B) ≤ δp(A,C) + δp(C,B) – infc∈C p(c, c).

Proposition  ([]) Let (X, p) be a partialmetric space. For all A,B,C ∈ CBp(X),we have
(h) Hp(A,A) ≤ Hp(A,B);
(h) Hp(A,B) =Hp(B,A);
(h) Hp(A,B) ≤ Hp(A,C) +Hp(C,B) – infc∈C p(c, c).

Note that (X,p) is a partial metric space. For A,B ∈ CBp(X), the following holds:
Hp(A,B) =  implies that A = B. The converse of this case is not true in general as it is
clear from the following example.

Example  ([]) LetX = [, ] be endowedwith the partialmetric p : X×X → R+ defined
by p(x, y) =max{x, y}. From (i) of Proposition ., we have

Hp(X,X) = δp(X,X) = sup{x :  ≤ x ≤ } =  	= .

In view of Proposition . and Corollary . in [], we call the mapping Hp : CBp(X)×
CBp(X)→ [, +∞) a partial Hausdorff metric induced by p.

Remark  It is easy to show that any Hausdorff metric is a partial Hausdorff metric. The
converse is not true (Example . of in []).

The aim of this paper is to adapt the notion of g-approximative to the partial metric and
extend the concept of g-UCAV, g-LCAV, g-CAV mappings. Also, we prove some fixed
point theorems for multivalued mappings and give an example associated with the fol-
lowing theorem.

Theorem  Suppose that g is a nondecreasing self-map on X and F : X → X is g-UCAV
and the following holds:

f
(
Hp(Fx,Fy)

) ≤ ψ
(
f
(
Mg(x, y)

))
(.)

for any (x, y) ∈ �g , where f ∈�s and ψ ∈ � and

Mg(x, y) =max

{
p(gx, gy),p(gx,Fx),p(gy,Fy),

p(gx,Fy) + p(gy,Fx)


}
.

If X has the limit comparison property and g(X) is closed, then F and g have a coincidence
point x in X.Moreover, F and g have a common fixed point if one of the following conditions
holds:

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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(i) Pair (F , g) is IT-commuting at some x ∈ C(F , g) and limn→∞ gnx = u for some u ∈ X
and g is continuous at u.

(ii) Pair (F , g) is IT-commuting at some x ∈ C(F , g) and gx = gx.
(iii) g is F-weakly commuting at some C(F , g) and g is coincidently idempotent with

respect to T .
(iv) g is continuous at x for some x ∈ C(F , g) for some u ∈ X ; lim gnu = x.
(v) g(C(g,F)) is a singleton subset of C(g,F).

Proof Let x ∈ X. If gx ∈ Fx, then the result is proved. If not, then we proceed as follows.
As F is g-UCAV, Fx ⊂ g(X),�g

F(x)(g(x)) is nonempty, so there exists gx ∈ Fx with gx 	=
gx such that p(gx, gx) = p(Fx, gx) for some x ∈ X and gx ≥ gx. Similarly, there exists
gx ∈ Fx with gx 	= gx such that p(gx, gx) = p(Fx, gx) for some x ∈ X, and gx ≥ gx.
We continue to construct a sequence {xn} for which either gxn– ∈ Fxn– or there exists
gxn ∈ Fxn– with gxn 	= gxn– and gxn ≥ gxn– such that

p(gxn, gxn–) = p(Fxn–, gxn–), for n = , , . . . (.)

for some xn in X. On the other hand,

p(Fxn–, gxn–) = sup
x∈Fxn–

p(x,Fxn–) ≤ Hp(Fxn–,Fxn–) (.)

implies that

p(gxn, gxn–) ≤Hp(Fxn–,Fxn–), for n = , , . . . . (.)

Since f is nondecreasing, we have

f
(
p(gxn, gxn–)

) ≤ f
(
Hp(Fxn–,Fxn–)

)
≤ ψ

(
f
(
Mg(xn–,xn–)

))
,

in which

Mg(xn–,xn–)

=max

{
p(gxn–, gxn–),p(Fxn–, gxn–),p(Fxn–, gxn–),

p(Fxn–, gxn–) + p(Fxn–, gxn–)


}

=max

{
p(gxn–, gxn–),p(gxn, gxn–),p(gxn–, gxn–),

p(gxn–, gxn–) + p(gxn, gxn–)


}

=max
{
p(gxn–, gxn–),p(gxn, gxn–)

}
.
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If p(gxn–, gxn) ≥ p(gxn–, gxn–), then we have

f
(
p(gxn, gxn–)

) ≤ f
(
Hp(Fxn–,Fxn–)

)
≤ ψ

(
f
(
Mg(xn–,xn–)

))
≤ ψ

(
f
(
max

{
p(gxn–, gxn–),p(gxn–, gxn)

}))
≤ ψ

(
f
(
p(gxn, gxn–)

))
< f

(
p(gxn, gxn–)

)
,

a contradiction. So, we have p(gxn–, gxn–) > p(gxn–, gxn). This yields

f
(
p(gxn, gxn–)

) ≤ ψ
(
f
(
p(gxn–, gxn–)

))
.

Repeating this process, we have

f
(
p(gxn, gxn–)

) ≤ ψ
(
f
(
p(gxn–, gxn–)

))
≤ ψ(f (p(gxn–, gxn–)))
...

≤ ψn–(f (p(gx, gx))).
Form,n ∈N, we obtain

p(gxn, gxn+m) ≤
n+m–∑
i=n

p(xi,xi+).

This implies

f
(
p(gxn, gxn+m)

) ≤ f
(
p(gxn, gxn+) + · · · + p(gxn+m–, gxn+m)

)
≤ f

(
p(gxn, gxn+)

)
+ · · · + f

(
p(gxn+m–, gxn+m)

)
≤ ψn(f (p(gx, gx))) + · · · +ψn+m(

f
(
p(gx, gx)

))
≤

n+m–∑
i=n

ψ i(f (p(gx, gx))).
On taking limit as n → ∞ and using

∑∞
n= ψ

n(t) < ∞, we have limn→∞ p(gxn, gxn+m) = .
By the definition of ps, we get

ps(gxn, gxn+m) ≤ p(gxn, gxn+m) →  as n → ∞.

This yields that {g(xn)} is a Cauchy sequence in (g(X),ps). Since X is complete and
g(X) is closed, then (g(X),p) is complete, hence (g(X),ps) is complete. So, we have
limn→∞ ps(gxn, gx) =  for some x ∈ X. From Lemma , we get

p(gx, gx) = lim
n→∞p(gxn, gx) = lim

n→∞p(gxn, gxm) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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Consequently, {g(xn)} is a Cauchy sequence in (g(X),p). Now, we prove that p(Fx, gx) = .
Suppose that this is not true, then p(Fx, gx) > . For large enough n, we claim that the
following equation holds:

Mg(x,xn+) = max

{
p(gx, gxn+),p(Fx, gx),p(Fxn+, gxn+),

p(Fx, gxn+) + p(Fxn+, gx)


}

= p(Fx, gx).

Indeed, since limn→∞ p(gxn, gx) =  and limn→∞ p(Fxn+, gxn+) = , it follows that

lim
n→∞



[
p(Fx, gxn+) + p(Fxn+, gx)

]
≤ lim

n→∞



[
p(Fx, gx) + p(gx, gxn+) + p(Fxn+, gxn+) + p(gxn+, gx)

]
=


p(Fx, gx).

So, there exists n ∈N such thatMg(x,xn+) = d(Fx, gx) for every n > n. Note that

f
(
p(Fx, gxn+)

) ≤ f
(
H(Fx,Fxn+)

) ≤ ψ
(
f
(
Mg(x,xn+)

))
,

which, on taking limit as n→ ∞, gives

f
(
p(Fx, gx)

) ≤ ψ
(
f
(
p(Fx, gx)

))
< f

(
p(Fx, gx)

)
,

a contradiction. Hence, p(Fx, gx) =  and so gx ∈ Fx. Suppose now that (i) holds. Then
limn→∞ gnx = u, where u ∈ X. Since g is continuous at u, so we have that u is a fixed point
of g . By given assumption, gnx ∈ C(F , gn–) for all n≥  and gnx ∈ F(gn–x). Now, we prove
that p(Fu, gu) = . Suppose that this is not true, then p(Fu, gu) > . Using (.), since f is
nondecreasing and sublinear, we obtain

f
(
p(gu,Fu)

) ≤ f
(
p
(
gu, gnx

))
+ f

(
p
(
gnx,Fu

))
≤ f

(
p
(
gu, gnx

))
+ f

(
H

(
F
(
gn–x

)
,F(u)

))
≤ f

(
p
(
gu, gnx

))
+ψ

(
f
(
Mg

(
gn–x,u

)))
, (.)

where

Mg
(
gn–x,u

)
=max

{
p
(
gnx, gu

)
,p

(
Fgn–x, gnx

)
,p(Fu, gu),

p(Fu, gnx) + p(Fgn–x, gu)


}

=max

{
p
(
gnx, gu

)
,p

(
gnx, gnx

)
,p(Fu, gu),

p(Fu, gnx) + p(gnx, gu)


}
.

On taking limit as n→ ∞, we have

Mg
(
gn–x,u

)
= p(Fu, gu),

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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which further implies

f
(
p(gu,Fu)

) ≤ f
(
p
(
gu, gnx

))
+ψ

(
f
(
p(Fu, gu)

))
< f

(
p
(
gu, gnx

))
+ f

(
p(Fu, gu)

)
.

On taking limit as n→ ∞,

f
(
p(gu,Fu)

)
< f

(
p(Fu, gu)

)
, (.)

a contradiction, so d(gu,Fu) =  and hence gu ∈ Fu. Consequently, u = gu ∈ Fu. Hence,
u is a common fixed point of F and g . Suppose now that (ii) holds. As x ∈ C(F , g), so
gx ∈ gFx ⊂ Fgx. Now, gx = gx ∈ Fgx implies that gx is a common fixed point of F and g .
Suppose now that (iii) holds. The result is obvious. Suppose that (iv) holds. As x ∈ C(g,F)
and for some u ∈ X, limn→∞ gnu = x. By the continuity of g at x, we get x = gx ∈ Fx. Hence,
x is a common fixed point of F and g . Finally, suppose that (v) holds. Let g(C(F , g)) = {x}.
Then {x} = {gx} = Fx. Hence, x is a common fixed point of F and g . �

Similarly, we have following theorem.

Theorem  Suppose that g is a nondecreasing self-map on X and F : X → X is g-LCAV
and the following holds:

f
(
Hp(Fx,Fy)

) ≤ ψ
(
f
(
Mg(x, y)

))

for any (x, y) ∈ �g , where f ∈�s and ψ ∈ � and

Mg(x, y) =max

{
d(gx, gy),d(gx,Fx),d(gy,Fy),

d(gx,Fy) + d(gy,Fx)


}
.

If X has the sequential limit comparison property and g(X) is closed, then F and g have a
coincidence point x in X. Moreover, F and g have a common fixed point if any one of the
conditions (i)-(v) holds as in Theorem .

Example  Let X = {} ∪ [,∞) with p(x, y) =max{x, y}. Define g : X → X, F : X → X by

gx =

{
, x = ,
x + ,  ≤ x < ∞

and

Fx =

{
{x}, x = ,
[,x + ],  ≤ x < ∞.

It is clear that F is g-UCAV, also g(X) is closed and X has the property of limit compar-
ison. We can see easily that g is F-weakly commuting at x = . Besides, g is coincidently
idempotent with respect to F at x = . In this case, these functions satisfy the condition of
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(iii) in Theorem . Also, we can define f (t) = t,ψ(t) = t
 , then f ∈�s andψ ∈	� . If x = y = ,

we have gx = gy =  and Fx = {x}, Fy = {y}

f
(
Hp(Fx,Fy)

)
= Hp(Fx,Fy) =max

{
sup
z∈{x}

p
(
z, {y}), sup

t∈{y}

{
p
({x}, t)}}

= max
{
sup
z∈{}

inf
t∈{}p(z, t), supp∈{}

inf
k∈{}

p(p,k)
}
= 

=
max{p(gx, gy),p(gx,Fx),p(gy,Fy), p(gx,Fy)+p(gy,Fx) }


= ψ

(
f
(
Mg(x, y)

))
.

If x = , y ∈ [,∞), we have gx = , gy = y +  and Fx = {x}, Fy = [, y + ]

f
(
Hp(Fx,Fy)

)
= Hp(Fx,Fy) =max

{
sup
z∈{}

d
(
z, [, y + ]

)
, sup
t∈[,y+]

d
({}, t)}

= .

Also, we have

Mg(x, y) =max

{
y + , ,

y + 


}
= y + .

So, we satisfy the contractive condition. Finally, if x, y ∈ [,∞), we have gx = x+, gy = y+
and Fx = [,x + ], Fy = [, y + ]

f
(
Hp(Fx,Fy)

)
= Hp(Fx,Fy)

=
max{p(gx, gy),p(gx,Fx),p(gy,Fy), p(gx,Fy)+p(gy,Fx) }


≤ ψ

(
f
(
Mg(x, y)

))
.

Hence, all the conditions of Theorem  are satisfied. It is clear that  = x = gx ∈ Fx, that is,
x =  is a common fixed point of F and g .

Corollary  Suppose that g is a nondecreasing self-map onX and F : X → X and g : X → X
are self-mappings which satisfy

f
(
p(Fx,Fy)

) ≤ ψ
(
f
(
Mg(x, y)

))

for any (x, y) ∈ �g , where f ∈�s, ψ ∈ � and

Mg(x, y) =max

{
p(gx, gy),p(Fx, gx),p(Fy, gy),

p(Fx, gy) + p(Fy, gx)


}
.

Then F , g have a unique coincidence point x ∈ X.Moreover, F and g have a unique common
fixed point if any one of the conditions (i)-(v) holds as in Theorem .
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Proof Theorem  ensures the existence of a coincidence point. To prove the uniqueness,
let y be another coincidence point of F and g . If x 	= y, then p(gx, gy) > . Thus,

Mg(x, y) =max

{
p(gx, gy),p(Fx, gx),p(Fy, gy),

p(Fx, gy) + p(Fy, gx)


}
= p(gx, gy).

This yields

f
(
p(gx, gy)

)
= f

(
p(Fx,Fy)

) ≤ ψ
(
f
(
Mg(x, y)

))
= ψ

(
f
(
p(gx, gy)

))
< f

(
p(gx, gy)

)
,

a contradiction, therefore p(gx, gy) = . The result follows. �

Theorem  Suppose that g is a nondecreasing self-map on X and F : X → X is g-AV and
the following holds:

f
(
Hp(Fx,Fy)

) ≤ ψ
(
f
(
Mg(x, y)

))
for any (x, y) ∈ �g , where f ∈�s and ψ ∈ � and

Mg(x, y) =max

{
p(gx, gy),p(gx,Fx),p(gy,Fy),

p(gx,Fy) + p(gy,Fx)


}
.

If g(X) is closed and there exists x ∈ X such that {gx} ≤ Fx, then F and g have a coin-
cidence point x ∈ X. Further, an iterative sequence {gxn} with gxn ∈ Fxn– converges to gx,
where x ∈ C(F , g).Moreover, F and g have a common fixed point if any one of the conditions
(i)-(v) holds as in Theorem .

Proof If gx ∈ Fx, then the proof is finished. Otherwise, for any gx ∈ Fx, one has gx ≥
gx. As F has a g-approximative multivalued map, for x ∈ X, there exists gx ∈ Fx with
gx ≥ gx and

p(gx, gx) = p(Fx, gx).

Similarly, for x ∈ X, there exists gx ∈ Fx with gx ≥ gx and

p(gx, gx) = p(Fx, gx).

We continue the process of constructing a sequence {gxn} such that for xn ∈ X, one obtains
gxn ∈ Fxn– with gxn ≥ gxn– such that

p(gxn–, gxn) = p(Fxn–, gxn–), n = , , . . . .

On the other hand, we have

p(Fxn–, gxn–) = sup
x∈Fxn–

p(x,Fxn–) ≤ Hp(Fxn–,Fxn–).

http://www.fixedpointtheoryandapplications.com/content/2013/1/36
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So,

p(gxn–, gxn) ≤Hp(Fxn–,Fxn–) for n = , , . . . .

The rest of this proof is the same as that of Theorem . �

Theorem  Suppose that g is a nondecreasing self-map on X, F : X → X is g-CAV and
the following holds:

f
(
Hp(Fx,Fy)

) ≤ ψ
(
f
(
Mg(x, y)

))
for any (x, y) ∈ �g , where f ∈�s and ψ ∈ � and

Mg(x, y) =max

{
p(gx, gy),p(gx,Fx),p(gy,Fy),

p(gx,Fy) + p(gy,Fx)


}
.

If X has the subsequential limit comparison property and g(X) is closed, then F and g have a
coincidence point.Moreover, F and g have a common fixed point if any one of the conditions
(i)-(v) holds as in Theorem .

Proof Following similar arguments to those given in Theorem  and assuming F is g-CAV,
we obtain a sequence {gxn}whose consecutive terms are comparable, satisfy (.) and (.),
and the following hold:

gxn+ ∈ Fxn, lim
n→∞ gxn = gx.

Since X has the subsequential limit comparison property, so {gxn} has a subsequence
{gxnk } whose every term is comparable to gx. Now, we prove gx ∈ Fx. Obviously,

p(gxnk+,Fx) ≤ p(gxnk+, gxnk+) + p(gxnk+,Fx)

≤ p(gxnk+, gxnk+) + sup
t∈Fxnk

p(t,Fx)

≤ p(gxnk+, gxnk+) +Hp(Fxnk ,Fx)

for k = , , , . . . . For ε > , there exists k such that

f
(
p(gxnk+, gxnk+)

)
< ε

for all k > k. As

lim
k→∞

f
(
p(gxnk+, gxnk+)

)
= .

Since gxnk is comparable to gx for each k, therefore

f
(
p(gxnk+,Fx)

) ≤ f
(
p(gxnk+, gxnk+) +Hp(Fxnk ,Fx)

)
≤ f

(
p(gxnk+, gxnk+)

)
+ f

(
Hp(Fxnk ,Fx)

)
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≤ ψ
(
f
(
Mg(xnk ,x)

))
+ ε

< f
(
Mg(xnk ,x)

)
+ ε.

Note that f is continuous and limk→∞ p(gxnk ,Fx) = p(gx,Fx).We obtain, by letting k → ∞,

f
(
p(gx,Fx)

)
< f

(
p(gx,Fx)

)
+ ε.

This implies that p(gx,Fx) = , so we have gx ∈ Fx. By similar arguments to those in The-
orem , we can show the existence of a common fixed point. �
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