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Abstract

In this paper, we propose and analyze some relaxed and hybrid viscosity iterative
algorithms for finding a common element of the solution set & of a general system
of variational inequalities, the solution set I" of a split feasibility problem and the
fixed point set Fix(S) of a strictly pseudocontractive mapping S in the setting of
infinite-dimensional Hilbert spaces. We prove that the sequences generated by the
proposed algorithms converge strongly to an element of Fix(S) N & N I" under mild
conditions.
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1 Introduction

Let H be a real Hilbert space with the inner product (-,-) and the norm || - ||. Let C be a
nonempty closed convex subset of 7. The (nearest point or metric) projection of H onto
C is denoted by P¢. Let S: C — C be a self-mapping on C. We denote by Fix(S) the set
of fixed points of S and by R the set of all real numbers. For a given nonlinear operator
A : C — H, we consider the variational inequality problem (VIP) of finding x* € C such
that

(Ax*,x - x*) >0, VxeC. 1.1)

The solution set of VIP (1.1) is denoted by VI(C, A). Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving and equilibrium problems. It is now well known that
variational inequalities are equivalent to fixed point problems, the origin of which can
be traced back to Lions and Stampacchia [1]. This alternative formulation has been used
to suggest and analyze a projection iterative method for solving variational inequalities
under the conditions that the involved operator must be strongly monotone and Lipschitz
continuous. Related to the variational inequalities, we have the problem of finding fixed
points of nonexpansive mappings or strict pseudo-contraction mappings, which is the
current interest in functional analysis. Several people considered a unified approach to
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solve variational inequality problems and fixed point problems; see, for example, [2—11]
and the references therein.

For finding an element of Fix(S) N VI(C,A) when C is closed and convex, S is nonex-
pansive and A is «-inverse strongly monotone, Takahashi and Toyoda [12] introduced the
following Mann-type iterative algorithm:

Xni1 = Uy + (1= ,)SPc(1 - 1,Ax,), VYn>0, (1.2)

where P¢ is the metric projection of H onto C, xy = x € C, {«,} is a sequence in (0,1) and
{1} is a sequence in (0, 2c). They showed that if Fix(S) N VI(C, A) # ¥, then the sequence
{x,} converges weakly to some z € Fix(S) N VI(C, A). Nadezhkina and Takahashi [13] and
Zeng and Yao [9] proposed extragradient methods motivated by Korpelevich [14] for find-
ing a common element of the fixed point set of a nonexpansive mapping and the solution
set of a variational inequality problem. Further, these iterative methods were extended in
[15] to develop a new iterative method for finding elements in Fix(S) N VI(C, A).

Let By, B, : C — H be two mappings. Recently, Ceng, Wang and Yao [5] introduced and
considered the problem of finding (x*,y*) € C x C such that

(1 By* +x* —y* ,x—x*) >0, VxeC(C, (1.3)
(UaBox™ +y* —x*,x—y*) >0, VxeC, .

which is called a general system of variational inequalities (GSVI), where j1; > 0 and 3 > 0
are two constants. The set of solutions of problem (1.3) is denoted by GSVI(C, By, By). In
particular, if B; = By, then problem (1.3) reduces to the new system of variational inequali-
ties (NSVI) introduced and studied by Verma [16]. Further, if x* = y* additionally, then the
NSVI reduces to VIP (1.1).

Recently, Ceng, Wang and Yao [5] transformed problem (1.3) into a fixed point problem
in the following way.

Lemma 1.1 (see [5]) For given x,y € C, (X,y) is a solution of problem (1.3) if and only if x
is a fixed point of the mapping G : C — C defined by

G(x) = Pc [Pc(x — paBox) — u1BiPc(x — Mszx)], Vx e C,

where )_/ = Pc(J_C - pLszJ_C).
In particular, if the mapping B; : C — H is B;-inverse strongly monotone for i = 1,2, then
the mapping G is nonexpansive provided u; € (0,28;) fori=1,2.

Utilizing Lemma 1.1, they introduced and studied a relaxed extragradient method for
solving GSVI (1.3). Throughout this paper, the set of fixed points of the mapping G is
denoted by =Z. Based on the extragradient method and viscosity approximation method,
Yao et al. [8] proposed and analyzed a relaxed extragradient method for finding a common
solution of GSVI (1.3) and a fixed point problem of a strictly pseudo-contractive mapping
S:C—C.

Theorem YLK (see [8, Theorem 3.2]) Let C be a nonempty bounded closed convex subset
of a real Hilbert space H. Let the mapping B; : C — H be u;-inverse strongly monotone for
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i=1,2.Let S: C — C be a k-strictly pseudocontractive mapping such that Fix(S)N & # (.
Let Q: C — C be a p-contraction with p € [0, %). For xy € C given arbitrarily, let the se-
quences {x,}, {y,} and {z,} be generated iteratively by

Zn = Pc(x, — 12 Bax,),
Yn = aann + (1 - O5;’1)PC(Z;1 - MlBlzn)r (14)
Xn+l = ,ann + VnPC(Zn - MlBlzn) + 5nSym Vn > 0,

where w; € (0,28;) for i = 1,2, and {a,}, {Bn}, {vu}, {84} are four sequences in [0,1] such
that
(D) Bu+Vu+8u=1and (v, +8,)k < yu < (1=2p)3, for all n > 0;

(i) lim, o0, =0 and Y oo, = 00;

(iii) 0 <liminf,_ o By <limsup,_ ., Bx <1 and liminf,_, o 8, > 0;

(iv) ]imnﬁoo(li/;:il - 11/;}1) =0.
Then the sequence {x,} generated by (1.4) converges strongly to X = Prixs)nz Qx and (x,y) is
a solution of GSVI (1.3), where y = Pc(x — 19 Byx).

Subsequently, Ceng, Guu and Yao [17] further presented and analyzed an iterative
scheme for finding a common element of the solution set of VIP (1.1), the solution set
of GSVI (1.3) and the fixed point set of a strictly pseudo-contractive mapping S: C — C.

Theorem CGY (see [17, Theorem 3.1]) Let C be a nonempty closed convex subset of a
real Hilbert space H. Let A : C — H be a-inverse strongly monotone and B; : C — H be
Bi-inverse strongly monotone for i =1,2. Let S : C — C be a k-strictly pseudocontractive
mapping such that Fix(S) N E N VI(C,A) # . Let Q : C — C be a p-contraction with
o €10, %). For xy € C given arbitrarily, let the sequences {x,}, {y,} and {z,} be generated
iteratively by

Zn = PC(xn - )‘nAxn),
Yn =y Quy + (1= a,)Pc[Pc(zn — p2Bozy) — 1B1Pc(z, — h2Bazy)], (1.5)
Xn+l = ,ann + VuYVn + (Snsyn; Vn >0,

where p; € (0,28;) fori=1,2, {A,} C (0,2¢] and {a,}, {Bu}, {vu}, (8.} C [0,1] such that
(1) Bu+VYu+8y=1and (v, +38,)k <y, foralln>0;
(ii) limy—oo0t, =0 and Y 2o, = 00;
(iii) 0 <liminf,_ o B, <limsup,_, . Bx <1 and liminf,_, . 8, > 0;
(iv) Tim, o225 — {20 = 0;
(v) 0<liminf,_ o Ay <limsup,,_, o Ay < 20 and limy_, o0 |Ays1 — Ay| = 0.

Then the sequence {x,} generated by (1.5) converges strongly to X = Prix(synznvi(c,a)Qx and
(%,) is a solution of GSVI (1.3), where y = Pc(x — jt2Bo ).

On the other hand, let C and Q be nonempty closed convex subsets of infinite-
dimensional real Hilbert spaces H; and H,, respectively. The split feasibility problem
(SEP) is to find a point x* with the property

x*eC and Ax*€Q, (1.6)
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where A € B(H1,H3) and B(H;, H,) denotes the family of all bounded linear operators
from H; to Ho.

In 1994, the SFP was first introduced by Censor and Elfving [18], in finite-dimensional
Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in
medical image reconstruction. A number of image reconstruction problems can be for-
mulated as the SFP; see, e.g., [19] and the references therein. Recently, it has been found
that the SFP can also be applied to study intensity-modulated radiation therapy; see, e.g.,
[20-22] and the references therein. In the recent past, a wide variety of iterative methods
have been used in signal processing and image reconstruction and for solving the SFP; see,
e.g., [19-29] and the references therein. A special case of the SFP is the following convex
constrained linear inverse problem [30] of finding an element x such that

x€C and Ax=bh. 1.7)

It has been extensively investigated in the literature using the projected Landweber itera-
tive method [31]. Comparatively, the SFP has received much less attention so far due to the
complexity resulting from the set Q. Therefore, whether various versions of the projected
Landweber iterative method [31] can be extended to solve the SFP remains an interesting
open topic. For example, it is not clear whether the dual approach to (1.7) of [32] can be
extended to the SFP. The original algorithm given in [18] involves the computation of the
inverse A~! (assuming the existence of the inverse of A) and thus has not become popular.
A seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne
[19, 24] which is found to be a gradient-projection method (GPM) in convex minimiza-
tion. It is also a special case of the proximal forward-backward splitting method [33]. The
CQ algorithm only involves the computation of the projections P¢ and P, onto the sets
C and Q, respectively, and is therefore implementable in the case where P¢ and Pg have
closed-form expressions, for example, C and Q are closed balls or half-spaces. However, it
remains a challenge how to implement the CQ algorithm in the case where the projections
Pc and/or P, fail to have closed-form expressions, though theoretically we can prove the
(weak) convergence of the algorithm.

Very recently, Xu [23] gave a continuation of the study on the CQ algorithm and its
convergence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ algo-
rithm which was proved to be weakly convergent to a solution of the SFP. He also estab-
lished the strong convergence result, which shows that the minimum-norm solution can
be obtained.

Furthermore, Korpelevich [14] introduced the so-called extragradient method for find-
ing a solution of a saddle point problem. She proved that the sequences generated by the
proposed iterative algorithm converge to a solution of the saddle point problem.

Throughout this paper, assume that the SFP is consistent, that is, the solution set I" of
the SFP is nonempty. Let f : H; — R be a continuous differentiable function. The mini-

mization problem
. 1 2
minf(x) := = ||Ax — PoAx|| (1.8)
xeC 2
isill-posed. Therefore, Xu [23] considered the following Tikhonov regularization problem:

1 1
minf, (x) := = [|Ax — PoAx||* + =a||x?, (1.9)
xeC 2 2
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where « > 0 is the regularization parameter. The regularized minimization (1.9) has a

unique solution which is denoted by x,,. The following results are easy to prove.
Proposition 1.1 (see [34, Proposition 3.1]) Given x* € H;, the following statements are
equivalent:

(i) x* solves the SFP;

(i) x* solves the fixed point equation

Pc(I - AVf)x* = x7,

where A >0, Vf = A*(I — Po)A and A* is the adjoint of A;
(ili) x* solves the variational inequality problem (VIP) of finding x* € C such that

(Vf(x*),x - x*) >0, VxeC. (1.10)
It is clear from Proposition 1.1 that
I' = Fix(Pc(I - AVf)) = VI(C, V)

for all A > 0, where Fix(Pc(I — AV(f)) and VI(C, Vf) denote the set of fixed points of Pc(I —
AVf) and the solution set of VIP (1.10), respectively.

Proposition 1.2 (see [34]) The following statements hold:
(i) the gradient

Vfy = Vf +al = A*(I - PQ)A + al

is (a + ||A||?)-Lipschitz continuous and a-strongly monotone;

(i) the mapping Pc(I — AVfy) is a contraction with coefficient

\/1 — (20 = A(IA]12 +@)?) (5 Vi—ar<1- %ak),

where 0 < A < m;
(iii) if the SFP is consistent, then the strong limy_.¢ X, exists and is the minimum-norm

solution of the SFP.

Very recently, by combining the regularization method and extragradient method due
to Nadezhkina and Takahashi [13], Ceng, Ansari and Yao [34] proposed an extragradient
algorithm with regularization and proved that the sequences generated by the proposed

algorithm converge weakly to an element of Fix(S)N I", where S : C — C is a nonexpansive
mapping.

Theorem CAY (see [34, Theorem 3.1]) Let S: C — C be a nonexpansive mapping such
that Fix(S) N I" # V. Let {x,} and {y,} be the sequences in C generated by the following
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extragradient algorithm:

xo=x€ C chosen arbitrarily,
Yn = PC(xn - }‘nvfun (xn)): (111)
Xn+1 = BnXn + 1- ,Bn)SPC(xn - )anﬁxn ()’n))r Vn >0,

where Yy < 00, {A,} C [a,b] for some a,b € (0, W) and {B,} C [c,d] for some c,d €

(0,1). Then both the sequences {x,} and {y,} converge weakly to an element x € Fix(S)N I'.

Motivated and inspired by the research going on in this area, we propose and analyze
some relaxed and hybrid viscosity iterative algorithms for finding a common element
of the solution set & of GSVI (1.3), the solution set I" of SFP (1.6) and the fixed point
set Fix(S) of a strictly pseudocontractive mapping S : C — C. These iterative algorithms
are based on the regularization method, the viscosity approximation method, the relaxed
method in [8] and the hybrid method in [10]. Furthermore, it is proven that the sequences
generated by the proposed algorithms converge strongly to an element of Fix(S)N EZ N I
under mild conditions.

Observe that both [23, Theorem 5.7] and [34, Theorem 3.1] are weak convergence re-
sults for solving the SFP and that our problem of finding an element of Fix(S)N & N I is
more general than the corresponding ones in [23, Theorem 5.7] and [34, Theorem 3.1],
respectively. Hence there is no doubt that our strong convergence results are very interest-
ing and quite valuable. It is worth emphasizing that our relaxed and hybrid viscosity iter-
ative algorithms involve a p-contractive self-mapping Q, a k-strictly pseudo-contractive
self-mapping S and several parameter sequences, they are more flexible, more advanta-
geous and more subtle than the corresponding ones in [23, Theorem 5.7] and [34, The-
orem 3.1], respectively. Furthermore, relaxed extragradient iterative scheme (1.4) and hy-
brid extragradient iterative scheme (1.5) are extended to develop our relaxed viscosity it-
erative algorithms and hybrid viscosity iterative algorithms, respectively. In our strong
convergence results, the relaxed and hybrid viscosity iterative algorithms drop the re-
quirement of boundedness for the domain in which various mappings are defined; see,
e.g., Yao et al. [8, Theorem 3.2]. Therefore, our results represent the modification, sup-
plementation, extension and improvement of [23, Theorem 5.7], [34, Theorem 3.1], [17,
Theorem 3.1] and [8, Theorem 3.2] to a great extent.

2 Preliminaries
Let H be a real Hilbert space, whose inner product and norm are denoted by (-, -) and || - ||,
respectively. Let K be a nonempty, closed and convex subset of H. Now, we present some
known results and definitions which will be used in the sequel.

The metric (or nearest point) projection from A onto K is the mapping Px : H — K
which assigns to each point x € # the unique point Pxx € K satisfying the property

llx — Pxxll = inf [lx - yl| =: d(x, K).
yeK

The following properties of projections are useful and pertinent to our purpose.

Proposition 2.1 (see [35]) For givenx € H and z € K,
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(i) z=Pxx < (x—2z,y—2) <0,VyeK;
(i) z=Prx & llx—z|*> < lx=ylI*> - lly - 21>, ¥y € K;
(iii) (Pxx — Pxy,x —y) > ||Pxx — Pxyl|?, Yy € H, which hence implies that Py is
nonexpansive and monotone.

Definition 2.1 A mapping T : H — H is said to be
(a) nonexpansive if

ITx =Tyl < llx=yll, Vx,y€H;
(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently,
(x—y, Tx—Ty) > | Tx - Ty||?>, Vx,yeH;
alternatively, T is firmly nonexpansive if and only if T’ can be expressed as
1
T==(+S),
)

where S: H — H is nonexpansive; projections are firmly nonexpansive.

Definition 2.2 Let T be anonlinear operator with domain D(T') C H and range R(T) C H.

(a) T is said to be monotone if
(x—y,Tx - Ty) >0, Vx,y€eD(T).
(b) Given a number 8 >0, T is said to be B-strongly monotone if

(x—y,Tx—Ty) > Blla—ylI>, Vx,y€D(T).

(c) Given a number v >0, T is said to be v-inverse strongly monotone (v-ism) if

(x—y, Tx = Ty) > v|| Tx — Ty|?, Vx,y € D(T).

It can be easily seen that if S is nonexpansive, then 7 — S is monotone. It is also easy to

see that a projection Py is 1-ism.

Inverse strongly monotone (also referred to as co-coercive) operators have been applied
widely to solving practical problems in various fields, for instance, in traffic assignment

problems; see, e.g., [36, 37].

Definition 2.3 A mapping T : H — 7 is said to be an averaged mapping if it can be

written as an average of the identity / and a nonexpansive mapping, that is,

T=(01-a) +as,

where « € (0,1) and S : ‘H — H is nonexpansive. More precisely, when the last equality
holds, we say that T is a-averaged. Thus, firmly nonexpansive mappings (in particular,

. . 1
projections) are ;-averaged maps.

Page 7 of 50
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Proposition 2.2 (see [24]) Let T : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement I — T is %—l’sm.
(i) If T is v-ism, then fory >0, y T is %-ism.
(i) T is averaged if and only if the complement I — T is v-ism for some v > 1/2. Indeed,
fora €(0,1), T is a-averaged if and only if - T is ﬁ—ism.

Proposition 2.3 (see [24, 38]) Let S, T,V : H — H be given operators.
(i) fT=Q0-a)S+aV forsomea € (0,1) and if S is averaged and V is nonexpansive,
then T is averaged.

(ii) T isfirmly nonexpansive if and only if the complement I — T is firmly nonexpansive.

(ili) If T =1 -a)S+aV forsomea € (0,1) and if S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the
mappings {Ti}Y | is averaged, then so is the composite Ty o Ty o -+~ 0 Ty. In
particular, if Ty is oy-averaged and T, is ay-averaged, where ay, oy € (0,1), then the
composite Ty o Ty is a-averaged, where o = o1 + g — 0103

(v) Ifthe mappings {T:}Y, are averaged and have a common fixed point, then

N

ﬂFix(T,-) =Fix(T; - - Ty).
i=1

The notation Fix(T) denotes the set of all fixed points of the mapping T, that is, Fix(T) =
{xeH:Tx =x}.

It is clear that, in a real Hilbert space H, S: C — C is k-strictly pseudo-contractive if
and only if the following inequality holds:

1-

k
(Sx=Spa=y) < =yl = —= U = S)x — (I - S)y 2

, Vx,yeC. (2.1)

This immediately implies that if S is a k-strictly pseudo-contractive mapping, then / — S
is %-inverse strongly monotone; for further details, we refer to [39] and the references
therein. It is well known that the class of strict pseudo-contractions strictly includes the
class of nonexpansive mappings.

In order to prove the main results of this paper, the following lemmas will be required.

Lemma 2.1 (see [40]) Let {x,} and {y,} be bounded sequences in a Banach space X and
let {B,} be a sequence in [0,1] with 0 < liminf,_, o B, <limsup,_, ., B, < 1. Suppose x,.1 =
(1= Bu)yn + Buxn for all integers n > 0 and limsup,,_, . (|¥n+1 = Yull = %41 — 24]l) < 0. Then

lim,,_, o0 lyn —xull = 0.

Lemma 2.2 (see [39, Proposition 2.1]) Let C be a nonempty closed convex subset of a real
Hilbert space H and S : C — C be a mapping.
(i) IfS is a k-strict pseudo-contractive mapping, then S satisfies the Lipschitz condition

1+k
IS —Syll < ﬁllx—yll, Vx,y € C.
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(i) IfS is a k-strict pseudo-contractive mapping, then the mapping I — S is semiclosed at
0, that is, if {x,} is a sequence in C such that x,, — x weakly and (I — S)x, — 0
strongly, then (I — S)x = 0.

(iti) IfS is k-(quasi-)strict pseudo-contraction, then the fixed point set Fix(S) of S is
closed and convex so that the projection Prix(s) is well defined.

The following lemma plays a key role in proving strong convergence of the sequences

generated by our algorithms.

Lemma 2.3 (see [35]) Let {a,} be a sequence of nonnegative real numbers satisfying the
property
Aps1 < (1 _Sn)an + Sntn + Ty Vn = 0:
where {s,} C (0,1] and {t,,} are such that
(D) 2020 8n =005
(ii) either imsup,,_, &, <0 or > oo [sutul < 00;
(ili) Yoo 7u < 00, where r, > 0,VYn > 0.

Then lim,_, o a,, = 0.

Lemma 2.4 (see [8]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S: C — C be a k-strictly pseudo-contractive mapping. Let y and § be two nonnegative
real numbers such that (y + 8)k < y. Then

lye=9 +8(Sx =Sy < (v +8)llx=yl, VxyeC. (2.2)

The following lemma is an immediate consequence of an inner product.

Lemma 2.5 [n a real Hilbert space H, the following inequality holds:
e+ 51> < llxl* + 20,2 +y), VxyeH.

Let K be a nonempty closed convex subset of a real Hilbert space  and let F: K — H
be a monotone mapping. The variational inequality problem (VIP) is to find x € K such
that

(Fx,y—x)>0, VyekK.
The solution set of the VIP is denoted by VI(K, F). It is well known that
x € VI(K,F) <& x=Pyg(x—AFx) forsomeA>O0.

A set-valued mapping T : H — 2% is called monotone if for all x,y € H, f € Tx and
g € Ty imply that (x —y,f —g) > 0. A monotone set-valued mapping T : H — 2™ is called
maximal if its graph Gph(T) is not properly contained in the graph of any other mono-

tone set-valued mapping. It is known that a monotone set-valued mapping T : H — 2™ is
maximal if and only if for (x,f) € H x H, (x—y,f —g) > 0 for every (y,g) € Gph(T) implies
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that f € Tx. Let F : K — H be a monotone and Lipschitz continuous mapping and let Nxv
be the normal cone to K at v € K, that is,

Ngv= {we?—l:(v—u,w} > O,VueK}.
Define

Fv+ Ngv ifvek,
] ifvéK.

Tv =

It is known that in this case the mapping T is maximal monotone and 0 € 7v if and only
if v € VI(K, F); for further details, we refer to [41] and the references therein.

3 Relaxed viscosity methods and their convergence criteria

In this section, we propose and analyze the following relaxed viscosity iterative algorithms
for finding a common element of the solution set of GSVI (1.3), the solution set of SFP (1.6)
and the fixed point set of a strictly pseudo-contractive mapping S: C — C.

Algorithm 3.1 Let u; € (0,28;) for i = 1,2, {a,} C (0,00), {*,,} C (O, W) and {o,}, {B.},
{yu}, {84} C [0,1] such that B, + y, + 8, =1 for all n > 0. For x, € C given arbitrarily, let
{x.}, {yu}, {zu} be the sequences generated by the Mann-type viscosity iterative scheme
with regularization

zn = Pc[Pc(xy — paBoxy) — p1BiPc(xy — waBaxy)l,
Yn = Uann + (1 - Un)PC(Zn - )anf(;tn (Zn))r
Xn+l = ﬁnxn + Vuln t SnSyn; Vn > 0.

Algorithm 3.2 Let p; € (0,28;) for i = 1,2, {a,} C (0,00), {*A,} C (0, W) and {0}, {B.},
{yu}, {6} C [0,1] such that B, + y, + §, =1 for all # > 0. For xy € C given arbitrarily, let
{xu}, {yu}, {zu} be the sequences generated by the Mann-type viscosity iterative scheme
with regularization

Zy = PC(xn - )anf;)tn (xn)))
Yn = Uann + (1 - an)PC[PC(Zn - PLZB2Z}1) - I’LIBIPC(ZVI - //L2BZZn)])
Xn41 = BuXn + VnYn + 0,8yu, Y1 >0.

Next, we first give the strong convergence criteria of the sequences generated by Algo-
rithm 3.1.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H;. Let
A € B(H1,Hy) and B; : C — H; be B;-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S)NENT #@. Let Q: C — C
be a p-contraction with p € [0, %). For xy € C given arbitrarily, let {x,}, {y.}, {z,} be the
sequences generated by Algorithm 3.1, where u; € (0,28;) for i =1,2, {a,} C (0,00), {1} C

(0, W) and {6}, {Bn}s {Vn}, {84} C [0,1] such that
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(i) D-n2pan < 00;

(i) Bu+yn+du=1and (y,+38,)k <y, foralln=>0;

(ili) limy— o0 0y =0 and Y e 0, = 00;

(iv) 0 <liminf,, B, <limsup,_, ., B, <1 and liminf,_, 8, > 0;

() Tim, o (221 = 22) = 0

(vi) 0 <liminfy_ 00 Ay <limsup,,_, ., Ay < W and lim,_, oo |Aps1 — Au| = 0.
Then the sequences {x,}, {yu}, {2z} converge strongly to the same point x = Prixsynznr Q¥
if and only if lim,_, ||y, — 2,|| = 0. Furthermore, (x,%) is a solution of GSVI (1.3), where

¥ =Pc(x — pnaBa%).

Proof First, taking into account 0 < liminf,_, », A, <limsup,,_, ., A, < W, without loss of

generality, we may assume that {A,} C [a, b] for some a,b € (0, W).
Now, let us show that Pc(I — AVf,) is { -averaged for each X € (0, a+H+II2)’ where

2+ Mo+ [JA]P)
=

Indeed, it is easy to see that Vf = A*(I — Pg)A is W—ism, that is,

1
IA]1?

(VF(x) - Vf ()2~ ) = Ve - Vo).

Observe that

(e + IAIP) (Vo) = Vo (3), 2~ )
= (a+ 1A1%) [ellx = yII* + {Vf (&) - Vf (), x - )]
= &Pl = yI* + a(Vf (%) = V()% - 3) + al|AlPlx - y]1°
+ IAIP(Vf () - V() x - y)
> ol - g2 + 2a(Vf (%) = V) x - y) + | V@) - V)|
= et =) + V@) - V)|
- | VA0 - VA

Hence, it follows that Vf, = ol + A*(I - Pg)A is -ism. Thus, A Vf, is v -ism ac-

1
a+[Al?)

cording to Proposition 2.2(ii). By Proposition 2.2(iii), the complement [ — AV, is M"‘%M”z) -

averaged. Therefore, noting that Pc is %-averaged and utilizing Proposition 2.3(iv), we

2
know that for each A € (0,

1
a+|Al?

m), Pc(I - AVfy) is ¢ -averaged with
Lo aMa+]AP) 1 Aa+AID) 2+ A+ A%
+ -— =

=— € (0,1).
¢ 2 2 2 2 4 ©0,1)

This shows that Pc(I — AVf,) is nonexpansive. Furthermore, for {%,} C [a,b] with a,b €

(0, W), we have

. . 2
a<infl, <supi,<b< — = lim — .
n=0 n>0 lAl* n—ooay + [|A]l
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Without loss of generality, we may assume that

. 2
a§1nf)\,,§sup)un§b<72, n>
n=0 120 oyt A

Consequently, it follows that for each integer n > 0, Pc(I — A, V) is ¢,-averaged with

1 Aylo, + ||A||2) 1 Ao, + ||A||2) 2+ Ay, + ”A”2)
+ —_ — . =

gn:_

€ (0,1).
2 2 2 2 4

This immediately implies that Pc(I — A, Vf,,,) is nonexpansive for all n > 0.
Next, we divide the remainder of the proof into several steps.
Step 1. {x,,} is bounded.
Indeed, take p € Fix(S) N & N I' arbitrarily. Then Sp = p, Pc(I - AVf)p = p for A €

(o, W), and
p =Pc[Pc(p - 112Bop) — uBiPc(p — naByp)].
For simplicity, we write
q=Pc(p—usBop),  Xu=Pc(xy— paBox,) and  u, = Pc(zy — 1y Ve, (24))

for each n > 0. Then y, = 6,Qx,, + (1 — 0,,)u,, for each n > 0. From Algorithm 3.1 it follows
that

Nl = |
= | Pc(I = 21V fo,)2n = Pl = 2,V f)p |
< |Pcll = 1nVfo)2n = Pc = 1 Vfo, )| + | Pl = 2 NVfer, )0 = PcI = 2,V f)p |
<llzw = pll + [ = 2 Vfar, )0 = (U = 14 V)|

<llzw = pl + Anealipll. (3.1)
Utilizing Lemma 2.5, we also have

N4 — plI?
= Pl = 2n V)2 = Pl = 2,V )|
= |Pcl = 3V foo, )2 — Pl = 2n Vo, )0 + Pell = 3n Vo, ) — Pell = 2nVf)p|
< | Pell = 1nVifo)2n = Peld = 2V o o
+2{PcI = 1y Ve, )0 = Pc = 2NV f )P,y — p)
< llzu = pII* + 2| P = 1,V fo, )0 = Pl = 1,V )p |l — p|
< 2w = pI* + 2[ (I = 24 VS, )0 = U = 2,V )p || Il — P
= llzu = pI* + 2xnctullp 4 - p|

< llzu = pI* + 2x50, Il |4 - p]- (3.2)
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Since B; : C — H,; is B;-inverse strongly monotone for i =1,2 and 0 < u; <28, fori =1,2,

we know that for all #» > 0,

llzn - pII?
= | Pc[Pc(n - 112Bstn) = tiBiPc(x — paBax)] - p|°
= | Pc[Pc (o — paBa%n) = i1 BiPc (%, — 112Boxy) ]
— Pc[Pc(p — naBop) — iiBiPc(p — naBop)] | 2
< | [Peen — naBaxn) — 11 BiPc (6 — p12Baxn) ]
— [Pc(p = 12Bap) — 1B Pc(p — 112B2p) | ?
= | [Pc(xn — 112B2%4) — Pc(p — paBap)]
— 1 [BiPc(xy — 2Baxn) — BiPc(p — 112Bap) || ?
< | Pe(n = 12Bax) = Pe(p - 12Bop) |
— 11(2B1 — 141) || BiPc (s — 112Ba%) — BiPc(p — paBop)|”
< || = 112Bo%n) = (p = p2Bop) | = 1121 = 1) 1B — Bugl®
= | @ = ) — 12 (Barty — Bop)|” — 111(2B1 = 1) | Biu — Bag|?
< |2 = pII* = 12(2B2 — 1)1 Boxy — Bop||* = 11(21 — 1) | Bi%s — Brg?

< |l - plI*. (3.3)
Hence it follows from (3.1) and (3.3) that

1y =PIl = [|0u(Qy = p) + (1= 0,)(u, - p) |
< 0ul|Qxy = pll + (1 = 0) |l = p|
< 0u(1Qx, — Qpll + 1Qp - pll) + A = ) (12w — pll + Anctallpll)
< ou(plxn—pll +11Qp - pll) + (1 = 0) (1% — Il + Anctulipl)
< (1= =p)on)lxn —pll +041Qp - pll + tuetupl

1Qr - pll

= (1= (1= p)on)ll%s — pll + A= p)oy, + Aty

IQp - pll
< max{nxn et ERRCHI (3.4)

Since (y, + 8,)k < y, for all n > 0, utilizing Lemma 2.4, we obtain from (3.4)
%641 —P|| = ”,Bn(xn —19) + Vn(yn —19) + 5n(Syn —P)H

< Bullxn = pll + | O — P) + 84(Syu — )|,

< Bullxn —pll + (Vn + 8n)||yn -l

1Qp—pl
< Bullwn = pll + (v + sn)[max{ I =l =+ Rl

Page 13 of 50
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< Bull%n = pll + (vu + 8n)maX{||xn -l ”Qp_ 2l } + Anltullpl
< maX{ % = pll, %} +bl|plict. (3.5)
Now, we claim that
%1 = pll < max{ llxo - pll, ——— ”Q” il } blpl Za, (3.6)

As a matter of fact, if # = 0, then it is clear that (3.6) is valid, that is,

0
1Qp - pll
llx1 = pll < maX{ %o — plI, 1, +b|pll Z%‘-

j=0

Assume that (3.6) holds for # > 1, that is,
I I
e - pll < max{ %o - pll Q” b } bllpl Za,. (3.7)

Then we conclude from (3.5) and (3.7) that

1Qp -pll
X0 —pll, ﬁ +blplla,

%1 — pll < max; |

1Qp - pll 1Qp - pll
<max max{llxo—pll, P ”} bllp ||Z o, —LP2L L piplla,

1-p
1Qp - pll -
< maxq |lxo — pll, ﬁ} + b”P"ZO‘j +b||plla,
j=0

:max{llxo -pll, ———— IIQp Pl } b||P||Za;

By induction, we conclude that (3.6) is valid. Hence, {x,} is bounded. Since Pc, Vf,,, Bi
and B, are Lipschitz continuous, it is easy to see that {u,}, {z,}, {y,} and {X,} are bounded,
where X,, = Pc(x, — o Box,,) for all 7 > 0.

Step 2. limy,— o0 || X1 — %] =0

Indeed, define x,,,; = B,x, + (1 — B,)w, for all n > 0. It follows that

Xn42 = Bral¥nsl  Xne1 — Bukn

Wyl — Wy = -
1-Bun 1- By
_ YY1 t 81 SYnn _Yunt 8nSyn
1P 1B
_ Vet Vst = Vi) + 811 (SYni1 — Syn) + ( Vsl Vn )y
1-Bun 1=Bua 1-B, )"

6n+ 871
; (7 - _)Syn. 38)
1- ﬂnﬂ 1- ,Bn

Page 14 of 50


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43 Page 15 of 50
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Since (y, + 8,)k <y, for all n > 0, utilizing Lemma 2.4, we have

||yn+1(yn+l _yn) + 8n+1(syn+1 - Syn)“ =< (Vn+1 + 8n+1)”yn+1 _yn”' (39)
Next, we estimate ||y,11 — y»||. Observe that

lttns1 = thull = | P (2ns1 = Ani1 Vayy (Zni1)) = Pc(2n = 2n Ve, (20)) |
< || Pc = A1V )zni = Pel = hnir Va1 )2n||
+ | P = 2n1 ooy )20 = Pl = 20 Vo, )z |
< Nzwa = zull + [T = 2wt Ves)2n = T = 2 Vo, )2 |
= 1zne1 = Zull + [|Ansr (@il + Vf)zn = knletud + V)24

< Nz = zull + [Ans1 = Anl ||Vf(zn) ” + [ Ane1@ui1 = AnQul |2 (3.10)

and

IZns1 = Zull> = | Pc[Pc@mi1 — t2Ba%nin) = 11BIPC (X1 — 2Bt |
— Pe[Pe(n — paBay) — juBiPe(x — taBox) ||
< || [Pc@u1 — 12Boxnin) = 111BLPc (X1 — 112Bo%in) |
= [Pc(%n — p2Baxn) — 11BLPc (6 — 112 Boy) ] ||2
= | [Pc(®ni1 — 2Boxni1) — Pl — paBaxy)]
— 1 [BiPc(%n41 — 12BoXni1) — BiPc(, — paBoxy) | ||2
< || Pc(®ni1 = 12Boxni1) — Pc(®n — pa2Baxy) ||2
— w1(2B1 — 1) | BLPc (i1 — 142Bo%i1) — BiPc (s — paBan) ||2
< || Pc(®ni1 = 12Boxni1) — Pc(®n — paBaxy) ||2
< | Gonar — m2Bainar) — (0 — 142Box) H2
= || @1 = %) = 2 (Bar — Box) ||
< w1 = %ull® = 12(2B2 = 12) 1 Batnss — Boiu|*

=< "xn+l _xn”z- (311)
Combining (3.10) with (3.11), we get

||u}’l+1 - un” =< ”Zn+1 - Zn” + |)"r1+1 - )\'VI| H Vf(zn) || + |)"n+1an+1 - )"nan| ”Zn”

S ”xn+l _xn” + |)"n+1 - )"n| || Vf(zn)H + |)\n+1an+1 - )\nan| ”Zn”’ (312)
which hence implies that

lyns1 = yull = ”un+1 + 0141 (Qn41 = Ups1) — Uy — 0, (Qy — un)“

< Nttt = thn |l + 0 |QXps1 — Ut || + 01| Qi — 14 ||
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< s = %all + [Aps1 = Al ” vf(zn)” + [An1@ns1 — Ant| (|24 |

+ Opel ”an+1 — Upsl ” + onllen — Uy ” (313)

Hence it follows from (3.8), (3.9) and (3.13) that

Wis1 = will
”Vn+1(yn+1 _yn) + 8n+1(5yn+1 - Syn)” ‘ Yn+1 _ n ”y ”
1- ﬁn+1 1_,3n+1 l_ﬁn "
671 1 ‘Sn
+ ‘—+—— 1yl
1_:3;4+1 l_ﬂn
Vel + Oi1 Vn+l
< ——yus n||+‘ Yl + 115yl
1- :3n+1 17 1_/3;1+1 1 ,Bn(y ) )
VYn+l
= Vn+1 = Vn - n S n
Iy =yl + |37 — =7 - (Iyull + 1Sy 1l)

< %1 = Xnll + (A1 — Al H Vf(zn)H + [ Ans10e1 = Au0tn| 24|

Y+l
1- ﬁn+1

Vn
+ 041 Q1 — U || + 0 || Qo — un || + P (”yn” + ”Syn”)
n

Since {x,}, {y.}, {z,} and {u,} are bounded, it follows from conditions (i), (iii), (v) and (vi)

that

lim Sup(llwn+1 = Wall = I%n41 = xn”)
n—0o0

<lim Sup{ et = Al | VF @) || + 12ms10ne1 = Antal |z |
n—00

)4
+ Un+1||an+1 — Ups1 || + Un”an - un” + B (”_yn” + ”Syn”)} =
1- ﬁn+1 1- lgn
Hence by Lemma 2.1, we get lim,,_, o || W, — %, || = 0. Thus,
lim {21 — %, [ = lim (1 = B,)l|wy, — x4 = 0 (3.14)
n—00 n—00

Step 3. lim,,  ||B1%, — B1g|| = 0 and lim,,_, o || Box, — Bop|| = 0, where g = Pc(p — 12 Bop).
Indeed, utilizing Lemma 2.4 and the convexity of | - |2, we obtain from Algorithm 3.1

and (3.2)-(3.3) that

2
”xn+1 —-p ”

= ngn(xn —17) + Vn(yn —P) + 3n(syn —P)Hz
2

Sﬂn||xn—19||2+()/n+5n) [Vn(yn_ +8 Syn )]

Vn + 0y

< Bull%n = pI* + (Y + )y — pII?
< Bullxn —P||2 +(yn + 5;1)[@4”an —P||2 + (1 —0y)lluy, —P||2]

< Bullxn =PI + 0ull Q= pII* + (v + 82) |l — plI*
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< Bulln — I + 01 Qtn — P> + (v + 82) (120 — P + 20t Pl 4 — )

< Bull%n = pII* + 0ullQxy = pII* + (v + 8) 1% — pII* = 142(2B2 — 112) | Boxu — Bop||?
- w1281 = 1) 1 Bi&n = Bigll* + 2hnctyl|p|l |4 - pll]

< 1% = pII” + 0l Qe — pII> = (¥ + ) [ 142(2B2 — 12) | Boxs — Bop|)?

+ 2B — ) IBi%, — Bigl®] + 20,liplllln - p1-

Therefore,

(Y + 8u)[142(2B2 = 12) | Box — Bop 1> + 1 (281 — 1) | Bi%n — Brg|*]
< Nl%n =PI = %01 = pI* + 04l Qs — pI* + 2100t llp |l — P

< (1% = pll + 1%ns1 = P %0 = %t | + 0ull Qs — pII* + 200021 1280 = pI.

Since o, — 0, 0, = 0, ||x, — %,41]] = 0, liminf,_, o (y,, + 8,) > 0 and {A,,} C [a, b] for some

a,be (0, W), it follows that

lim ||Bix, —Biq||=0 and lim |[Byx, —Byp| =0.

Step 4. lim,,—, » ||Sy, — yull = 0.
Indeed, by firm nonexpansiveness of Pc, we have

1%, — 411
= | Pc(n — maBaxa) = Pe(p — 12Bap)||*

< ((®n — 2Box) — (0 — n2Bap), %n — q)

= Ui B~ Bap) | + 13— al?
[ Gen = ) — 2 (Bay — Bap) — G — @) |°]

(1%, = pI? + %0 — qlI? = || (@ — %) — 2(Box — Bop) — (0 — @) ]

=<

(1%, = pI1% + 1% — qlI® = |20 = %0 — 0 - @)

N = o) =

+ 22(%y — X — (P — @), Baxtn — Bop) — 13| Baxy — Bop|*]
1 - -
< E[Hxn —pIP? + 1E gl - |2 - % - 0 - 9|

+ 202 ”xn ~%,—(p-q) ” | B2xx _BZP”]’
that is,

= 2
1%, — 4l

<ot = pI? = || %0 = Fn = (0 = | + 2182 |6 = — (0 — @) | I B — Bopll.  (3.15)
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Moreover, using the argument technique similar to the above one, we derive

Iz~ pII>
= | Pc(@n — p1Bi%n) — Pclq — 11B1g) ”2
< (& — m1Bi%y) — (g — 1B19), 20 — P)
= U —a- B B + 1z -l
~ | Gn =~ @) — 11 (Bi ~ Brg) — (20— )]

< ~[1Fn =gl + 12 =PI = |G — 2) — p1 (BiFw = Big) + (0 — )| *]

N o) =

(1% = g1 + 12 = I = |Zn = 20 + 0 = @] + 201(% — 24 + (0 — q), Bis - Br)

~ 1| Bi%, — Bigl*]
1, _ -
< S [0 —al® + law—p I~ [~ 2 + w-9)|

+ 241 | &0 — zn + (p — @)|| | Bi&n — Brgll],
that is,

Iz - plI?
<1 =gl = | Fn — 20+ @ - @) + 201 |Zn — 20+ 0 - D[ IBFn — Brgll.  (3.16)

Utilizing (3.2), (3.15) and (3.16), we have

et =PI < 1z =PI + 20t 14— P
< & =gl = % — 20+ (0~ )| + 2001 | — 20 + (0 — )] 1 BrF — Bug]
+ 20,0 Pl 14—
< 1% =PI = [0 = T = 0~ )| + 2022 s — % — (0 — @) | 1B2xs — Bopl|
| En =20+ =D + 201 |F — 20 + (0~ @) | 1BiFn — Bug]

+ 20,0, || pllllu, - pll. (3.17)

So, from Algorithm 3.1 and (3.17), it follows that

”xn+1 —P||2
= “,Bn(xn = D)+ ¥YuOn = p) + 84(Syn _P)”Z
< Bullxn =PI + (¥ + ) lyn — pII>
= Bullw — pII* + (L = B)lyw — pII?
2 2 2
< Bullxn = plI* + (1 - lgn)[gn”an -plI” + (L= ou)llu, - pll ]

< Bullxn =PI + 0ullQxy — plI* + (1= Bl — plI


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43 Page 19 of 50
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

< Balltn = P12 + 0l1Qus — pII> + (U= ) [ — I — |2 — o — (0 — @) |
2005 [ — B — (0 — @) | 1B2 — Bopll — | Fn — 20+ (0 - )|
+ 20| — 20 + (0~ D[ 1B1F — Bigll + 2hncalp |22 — ]

= % =PI + 0l Qs = pI> = (L= B[ |50 = Fn = 0 = D[ + [T =20 + (0 - D)|]
+ (1= Bu)[2u2 %0 — Zu — (p — @) I1B2xs — Bop|

+ 201 | %y — 20 + (p = @)|| IB1&n — Brgll + 2hnetullpll lun — pll],

which hence implies that

A= B[00 = Fn = @ =) + |[Fu— 20 + 0 - D|]
< 120 = pII* = [ %ns1 = pII* + 0,11 Qx - pII®
+ (1= B[ 212 | %0 — %u — (0 — @) || 1B2%s — Bap|
+ 2011 |&n = 2 + (2 = @)||1BrZn — Bagll + 22net |l 16 — pI]
< (Ilew = Il + 19061 = 211) 190 = %o [| + 04| Q= plI?
+ 243 |2y = % = (p = @[ 1Bax = Bop|
+ 21|\ %0 — 20 + (p = @ |1 BiZn — Bagll + 21 lIpll |4 — plI.

Since lim SUp,_, o Bn <L {X,} Cla,b], 0, = 0,0, — 0, || Box, -Byp| — 0, | B1%, -Big|l —
0 and ||x,+1 — x| — 0O, it follows from the boundedness of {x,}, {¥,.}, {z,} and {u,,} that

lim %, %, - (p-¢)|| =0 and lim [%, -z, +(p-q)| =0.

Consequently, it immediately follows that lim,_, « ||x, — z,|| = 0. Also, since y, = 0,,Qx,, +

(1-0,)u, and ||y, — z,|| = 0, we have
(I—0)llun—zull = “yn_zn_an(an_zn)|| < yn—=zull +0ullQxy =24l = 0 (1 — 00).

Thus, we have

lim ||u, —z,|=0 and lim |x,—y,| =0. (3.18)
n—0oQ n— 00
Note that

Hsn(syn _xn)” < %ner = %ull + Vullyn = xull.

It hence follows that
lim ||Sy, —x,|=0 and lim ||Sy, —y,| =0.
n— o0 n— 00

Step 5. limsup,,_, . (QX — X, %, — X) < 0, where ¥ = Prixs)nznr QX.
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Indeed, since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

lim sup(Qx — %, %, — X) = lim (Qx — X, x,, — X). (3.19)

n—00 =00

Also, since H is reflexive and {y,} is bounded, without loss of generality, we may assume
that y,, — p weakly for some p € C. First, it is clear from Lemma 2.2 that p € Fix(S). Now,
let us show that p € &. We note that

%2 = G@w)|| = |0 — Pc[Pc(n — 12Baxn) — i1 BiPc(%y — paBax) ]|
=%y —2zu > 0 (n— 00),
where G : C — C is defined as that in Lemma 1.1. According to Lemma 2.2, we obtain

P € &.Further, let us show that p € I'. As a matter of fact, since ||x,, —z,|| = 0, ||u, —z,|| —
0 and ||x, — 4|l = 0, we deduce that z,, — p weakly and u,, — p weakly. Let

Vf(v)+Ncv ifveC,
@ ifve C,

Tv =

where Ncv={we H;:{(v-—u,w) > 0,Vu € C}. Then T is maximal monotone and 0 € Tv if
and only if v € VI(C, Vf); see [41] for more details. Let (v, w) € Gph(T'). Then we have

we Tv=Vf(v) + Ncv
and hence
w—Vf(v) € Ncv.
So, we have
(v—u,w— Vf(v)) >0, VYueC.
On the other hand, from
tn =Pc(2n — AVfe,(z,)) and veC,
we have
(&0 = 2n Vi (20) =t 0y = v) = 0

and hence,

<v —u, ”XJ + VL, (z,,)> > 0.

n

Therefore, from

w—-Vf(v)eNcv and u, €C,
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we have

(V - uni: W) Z (V - unir Vf(V))

> (v - Uy, Vf(v)) - <V — Up,» Mni)t_lzn" + Vfa,, (z,,,.)>

i

= (v — Uy, Vf(v)) - <v — Up,» Mni): Zni + Vf(zni)> — 0 (V= Uy Zn;)

1

= (v — Uy, VF(v) - Vf(uni)> + <V — Uy, VI () — Vf(zni)>

MVI,' _Z}’li
- V—I/tnl., _ani(v_uni;zni)
A,

= (V — Up;» Vf(un,') - Vf(zn,'» - <V — Up;»

un,' —Zn
An

i

>_an,'<V_ Mn,-;an-)~

i

Hence, we get
(v—p,w)>0 asi— oo.

Since T is maximal monotone, we have p € T~10, and hence p € VI(C, Vf). Thus it s clear
that p € I'. Therefore, p € Fix(S) N & N I". Consequently, in terms of Proposition 2.1(i),
we obtain from (3.21) that

limsup(Qx — %, %, — %) = lim (QX — X,%,, — %) = (Qx - %,p — X) <O0.

— 00 11— 00

Step 6. lim,,_, o ||, — X|| = 0.
Indeed, from (3.2) and (3.3) it follows that

") ") - - ") - -
lletn = 2N < |z — 2N + 20 n0 | X[ 267 — X|| < N0 — 2[° + 2200, 1% |22, — ]I
Note that

<an _Q_Cryn _9_C> = <an _&’xn _9_C> + (an _J_C’yn _xn>
= <ert - Q’z’xn _9_C> + (QQ_C—J_C,.?C” _9_C> + <an _k’yn _xn>
< pllxn = X|* + (QX — &, x, — &) + | Qs — Zl[ [y — %l

Utilizing Lemmas 2.4 and 2.5, we obtain from (3.2) and the convexity of || - ||

=12
”xn+1 _x”

= || Bun = 2) + Yuyn = E) + 84(Syu — D)
2

L[Vn(}’n —X) + 8,(Syn _7_5)]

=< Bullxx _3_5”2 + (Y + 64)
Vn + 6

< Bullxn _3_5”2 + (Vu + 8)lym _9_5”2
=< Bullxn _9_C||2 +(Vu + 5,,)[(1 - Gn)2||un _9_5”2 +20,(Quxy — %, Y _7_5)]

< Bullxn =21 + (v + 8)[(1 = 0) (60 = ZII* + 22000, | %] [|28,, — XI|)
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+ 20, (Qy — %,y — %) |

= (1= (v + 82)00) %0 — XI” + (Y + 82)205(Qux — X,y — %)
+ (Vi + 80)20 000 | X |11 — X

< (1= (Y + 80)0) %0 — ZII* + (Vi + 81)20,( QX — %,y — X)
+ 2200 | |24, — |

< (1= (Y + 80)00) %0 = EII> + (v + 80)20u[ pl|1%, — %]
+(Q% — %%, — %) + [ Q= & 1y — %ull] + 2200 |% | |24, — ]

= (1= (1= 20) (¥ + 8)0n | %5 = E[1* + (v + 8,)200[ (Q& — &, %, — %)
+11Qn = Xl 1y — %nll] + 2Anctn X1l |18 — Xl

=[1- (1 =20)(yu + 820 llxs — &>

2[(Qx — X, %, — %) + | Qxn = X[y = x4ll]
1-2p

+ (1 - 2,0)(%1 + (Sn)an

+ 2hn0 || || — X[

Note that liminf,_, o (1 — 2p)(y, + 8,) > 0. It follows that Y2 (1 = 2p)(ys + 8,)0, = 00. It is

clear that
tmsup 2L(QF =80 =) + Qa0 =l = 0ll] _
n—00 1—2,0

because limsup,,_, .. (QX — X,x, — X) < 0 and lim,,_, « [|*, — ¥x| = 0. In addition, note also
that {A,} C [a,b], Doy otn < 00 and {u,} is bounded. Hence we get > -0 24,0, 1% ||| 22, —
x|| < oo. Therefore, all conditions of Lemma 2.3 are satisfied. Consequently, we immedi-
ately deduce that %, — x| = 0 as # — oo. This completes the proof. (]

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(H1,Hz) and B; : C — H; be B;-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S)N & N I" # (. For fixed u € C
and xy € C given arbitrarily, let the sequences {x,}, {y.}, {z.} be generated iteratively by

zy = Pc[Pc(xy — aBaxy) — 1 B1Pc(xy — naBaxy)],
Yn =0pd + (1 - Un)PC(Zn - )\nvfan (Zn))7 (320)
Xpil = Bukn + VYnYn t (SnSym Vn >0,

where ; € (0,28:) for i = 1,2, {a,} C (0,00), {1,} C (0, W) and {0}, {Bu} {vn}: {6n} C
[0,1] such that
(i) Yool an <00
(i) Bu+ Yu+8s=1and (v, +Su)k <y, foralln=>0;
(ili) limy— o0 0y =0 and Y . 0, = 00;

(V hmnaoo(li/?;;il - 11/?371) =0;

)
)
(iv) 0 <liminf,_, o B, <limsup,_, ., Bx <1 and liminf,_, « 8, > O;
)
(vi) 0 <liminfy,_ 00 Ay <limsup,_, ., Ay < W and lim,_, oo |Aps1 — Au| = 0.
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Then the sequences {x,}, {yn}, {z.} converge strongly to the same point x = Prixs)nznrit
if and only if lim,_,  ||yn — zu|| = 0. Furthermore, (x,5) is a solution of GSVI (1.3), where
¥ = Pc(X — 2 BaX).

Next, utilizing Corollary 3.1, we give the following result.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(H1,Hy) and S : C — C be a nonexpansive mapping such that Fix(S) N I" # (). For
fixedu € C and x, € C given arbitrarily, let the sequences {x,}, {y.} be generated iteratively

by

Y = 0nth + (1 = 0,)Pc(®y — Ay Vfa, (X)),
Xps1 = Py + (1 - ,Bn)Syn; Vn>0,

(3.21)

where {a,} C (0,00), {A,} C (0, W) and {o,},{Bn} C 0,1] such that
(1) Do an < 00;
(ii) limy—oo 0, =0andy 2,0y = 00;
(iii) 0 <liminf,_ B, <limsup,_, . Bn < 1;
(iv) 0 <liminf,_, A, <limsup, , A, < W and limy,_ o0 |Ays1 — Ayl = 0.
Then the sequences {x,}, {yn} converge strongly to the same point X = Prixs)nru if and only

l‘flimn—wo I, = yull = 0.

Proof In Corollary 3.1, put B =B, =0and y, =0. Then £ =C, 8, + 3, =1forall n >0,
and the iterative scheme (3.20) is equivalent to

Zy = Xp,
Yn =0y + (1 - O'n)PC(Zn - )‘nvfan (Zn))r

Xptl = lgnxn + SnSyn: Vn>0.

This is equivalent to (3.21). Since S is a nonexpansive mapping, S must be a k-strictly
pseudo-contractive mapping with k = 0. In this case, it is easy to see that conditions (i)-
(vi) in Corollary 3.1 all are satisfied. Therefore, in terms of Corollary 3.1, we obtain the
desired result. d

Now, we are in a position to present the strong convergence criteria of the sequences
generated by Algorithm 3.2.

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(H1,Hz) and B; : C — H; be B;-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S)NE NT #P. Let Q:C — C
be a p-contraction with p € [0, %) For xy € C given arbitrarily, let {x,}, {y.}, {z.} be the
sequences generated by Algorithm 3.2, where u; € (0,28;) for i =1,2, {o,,} C (0,00), {1} C
(0, W) and {0y}, {Bn} {yu}, {6n} C [0,1] such that
(i) Yool an <00
(ii) B+ Vu+ 8, =1and (y, +8,)k <y, for all n > 0;
(ili) limy— o0 0y =0 and Y - 0, = 00;
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(iv) 0 <liminf,_, o B, <limsup,_, ., B, <1 and liminf,_, 8, > 0;

V) Timye oo (505 = £25,) = 0;

(vi) 0<liminfy,_, o X, <limsup,_, A, < W and lim,,_, o | A1 — Ayl = 0.

Then the sequences {x,}, {yn}, {z.} converge strongly to the same point x = Prixsynznr Q%
if and only if lim,_, ||yn — zull = 0. Furthermore, (x,5) is a solution of GSVI (1.3), where

¥ = Pc(x — n2Bax).

Proof First, taking into account 0 < liminf,_, o A, <limsup,_, . A, < W, without loss of

generality, we may assume that {1,} C [a, b] for some a,b € (0, W). Repeating the same
argument as that in the proof of Theorem 3.1, we can show that Pc(I — A Vf,) is ¢ -averaged

2
foreach A € (0, m), where ¢ = w. Further, repeating the same argument as that

in the proof of Theorem 3.1, we can also show that for each integer n > 0, Pc(I — 1, Vf,,)
is ¢,-averaged with ¢, = w €(0,1).

Next, we divide the remainder of the proof into several steps.

Step 1. {x,,} is bounded.

Indeed, take p € Fix(S) N & N I' arbitrarily. Then Sp = p, Pc(I - AVf)p = p for A €
(o, W), and

P = Pc[Pc(p — 112Bop) — i1 BiPc(p — 112 Bop) |-
For simplicity, we write
q=Pc(p—p2Bop),  Zp=Pc(zy — 2B2z,) and  u, = Pc(Z, — u1Bi1zy)

foreach n > 0. Then y, = 0,Qx, + (1-0,)u, for each n > 0. Utilizing the arguments similar
to those of (3.1) and (3.2) in the proof of Theorem 3.1, from Algorithm 3.2 we can obtain

lzn = pll < %0 = pll + Anetulipll (3.22)
and

lzn =PI < lIl%n = pII* + 20nctullpll 120 - plI. (3.23)
Since B, : C — H, is B;-inverse strongly monotone and 0 < u; < 28; for i = 1,2, utilizing
the argument similar to that of (3.3) in the proof of Theorem 3.1, we can obtain that for

alln >0,

letw = pI* < 2w = PII* = 112(2B2 — 12) |1 Bazn — Bop|l* — 111281 — 111) | BiZ,, — Bigl*
< llzu - pII*. (3.24)

Hence it follows from (3.22) and (3.24) that

s =l = [ 04(Qxn — p) + A = 0,) (w0 — p) |
< 0u(IIQx, — Qpll + 1Qp - pll) + A = 0)llzs — Il

< ou(pllxn = pll + 1Qp = pll) + (1 = 0,) (% =PIl + Anctullpll)
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< (1= = p)an) % = pll + 04l Qp = pll + dnatnlp

IIQP pll}

< maX{ llx. - pll, + Ao |pll. (3.25)

Since (y, + 8,)k <y, for all n > 0, by Lemma 2.4 we can readily see from (3.25) that

I pp” } +blplan. (3.26)

[%n1 =PIl = maX{ % = pll,

Repeating the same argument as that of (3.6) in the proof of Theorem 3.1, by induction
we can prove that

1Qp - pl
||xn+1—p||smax{||x ~pll, Q”_ 4 } 2b||p||Za, (327)

Thus, {x,} is bounded. Since Pc, Vf,,, B; and B, are Lipschitz continuous, it is easy to see
that {z,}, {u.}, {#tx}, {4} and {Zz,} are bounded, where z,, = Pc(z, — n2Bsz,) for all n > 0.
Step 2. limy— o0 [|Xp41 — %] =0
Indeed, define x,,,1 = By, + (1— Bn)wy, for all n > 0. Then, utilizing the arguments similar
to those of (3.8)-(3.11) in the proof of Theorem 3.1, we can obtain that

Wyl — Wy
_ yn+1(yn+1 _yn) + 8n+1(Syn+1 - Syn) " ( VYn+1 _ Yn )y
1- ﬂn+1 1- ﬁnﬂ 1- ,Bn "
O Oy
; ( o )Sy,,, (3.28)
1- IBn+1 1 lgn
||Vn+1(y;'1+l _yn) + 8n+1(syn+1 - Syn)H < (yVH-l + 5n+1)||yn+1 _yn” (329)
(due to Lemma 2.4)

1Zns1 = Zull < 1%0s1 = %Xl + [Ans1 — Anl ”Vf(xn) ” + [Ans1®ni1 = 20| 12| (3.30)

and

lttni1 = nll* < | Pc(Znt — m2Bazuin) — Pc(zn — 112Bazn) H2
— w1281 — 1) | BiPc(zna1 — 2Bazui1) — BiPc(2y — 112B2zn) H2
= ” (zns1 = m2Bazus1) = (20 — H2Bazy) ||2
< N1z = 2all® = 1222 = w2) 1 Baznsr = Bozull”

< |z — 2zl (3.31)
So, from (3.30) and (3.31), we get

||yn+1 _yn” = ||un+1 + 0n+1(an+1 - un+1) — Uy — Gn(an - un)“

< N thpe1 = thn |l + 01 |QXps1 — Ut || + 01| Qi — 14 ||


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

< s = %all + [Aps1 = Al ” vf(xn)” + A1 @i — Ant| |||l

+ 041 | QX1 — Upia || + 041 Qe — 1. (3.32)
Hence it follows from (3.28), (3.29) and (3.32) that

Wii1 = wall
< %1 = Zull + [Ansa = Al ” vf(xn)” + A1 @i — Ant| |24l

VYn+1 Yn

n+ n+l — Yn+ n n— Yn - n S nll ).
+ 0111 Qxps1 — Uit || + 0 [| Qe — || + - By 1-B, (Ilyall + 11Syull)
Since {x,}, {y.}, {z,} and {u,} are bounded, it follows from conditions (i), (iii), (v) and (vi)
that
lim sup(||wn+1 = Wall = [|%n41 _xn”)

<lim Sup{ [Ans1 = Al ”Vf(xn) ” + [ Ans10e1 — Aot || % |
n—0oQ

Y+l Vn
+ 01| QX1 — Upia || + 0| Qe — 1 || + -

1_,3;1+1 1_/371

(gl + IISanI)} =0.

Hence by Lemma 2.1, we get lim,,_, o || W, — %, || = 0. Thus,
lim [0 — %, = lim (1= B,)[[wy, — %, = 0. (3.33)
n—00 n—0o0

Step 3. lim,,_, o ||B1Z,, — B1¢|| = 0 and lim,,_, o || B2z, — Bop|| = 0, where g = Pc(p — 2 Bop).

Indeed, utilizing the arguments similar to those of Step 3 in the proof of Theorem 3.1,
we can obtain the desired conclusion.

Step 4. lim,,_, o ||Sy, — yull = 0.

Indeed, utilizing the arguments similar to those of Step 4 in the proof of Theorem 3.1,
we can obtain the desired conclusion.

Step 5. limsup,,_, .. (Qx — X, %, —X) <0, where x = Prix(s)nznr Qx.

Indeed, utilizing the arguments similar to those of Step 5 in the proof of Theorem 3.1,
we can obtain the desired conclusion.

Step 6. lim,,_,  [|x, — %] = 0.

Indeed, utilizing the arguments similar to those of Step 6 in the proof of Theorem 3.1,
we can obtain the desired conclusion. This completes the proof. 0

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(H1,Hz) and B; : C — H, be Bi-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S)N & N I" # (. For fixed u € C
and xy € C given arbitrarily, let the sequences {x,}, {y.}, {z.} be generated iteratively by

zy = Pc(x, — )\nvfan (%)),
Y = 0yt + (1 — 0,)Pc[Pc(zy — aBaz,) — 1B1Pc (2, — p2Bozy)l, (3.34)
Xpsl = BuXn + VuVn + 6,Syn, VYn >0,
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where ; € (0,2p:) for i = 1,2, {a,} C (0,00), {1,} C (0, W) and {0}, {Bu}, {vn} {84} C
[0,1] such that
(i) Yool an <00
(i) Bu+yn+du=1and (y,+3,)k <y, foralln=>0;
(ili) limy— o0 0y =0 and Y e 0, = 00;

(iv) 0 <liminf,_, o B, <limsup,_, ., Bn <1 and liminf,_, 8, > O;

(V) hmn—>oo 11,;5;11 - 13/:;") =0;
2

(vi) 0<liminf,_ oA, <limsup,_, . A, < A and lim,,_, oo | A1 — Ayl = 0.
Then the sequences {x,}, {yu}, {2z} converge strongly to the same point x = Prixsynznr Q¥
if and only if lim,_, » ||yn — zu|| = 0. Furthermore, (x,5) is a solution of GSVI (1.3), where

¥ = Pc(X — p2BaX).

Remark 3.1 In Corollary 3.3, let S be a nonexpansive mapping and put B; = B, = 0 and
Ya=0.Then & = C, B, + 6, = 1, Pc[Pc(z, — n2B224) — 1B1Pc(zn — 12B2z4)] = 24, and the

iterative scheme (3.34) is equivalent to

Zy = PC(xn - )anf;)tn (xn)))
Yn = 0uth + (1 - 0,)zy, (3.35)
Xpil = By + 8,8y, Yn>0.

This is equivalent to (3.21) in Corollary 3.2. In this case, it is easy to see that Corollary 3.3
reduces to Corollary 3.2. Thus Corollary 3.3 includes Corollary 3.2 as a special case.

Remark 3.2 Our Theorems 3.1 and 3.2 improve, extend and develop [23, Theorem 5.7],
[34, Theorem 3.1], [8, Theorem 3.2] and [17, Theorem 3.1] in the following aspects:

(i) Compared with the relaxed extragradient method in [8, Theorem 3.2], our relaxed
viscosity iterative algorithms (i.e., Algorithms 3.1 and 3.2) drop the requirement of bound-
edness for the domain in which various mappings are defined.

(ii) Because both [23, Theorem 5.7] and [34, Theorem 3.1] are weak convergence results
for solving the SFP, beyond question, our Theorems 3.1 and 3.2, as strong convergence
results, are very interesting and quite valuable.

(iii) The problem of finding an element of Fix(S) N & N I" in our Theorems 3.1 and 3.2
is more general than the corresponding problems in [23, Theorem 5.7] and [34, Theo-
rem 3.1], respectively.

(iv) The hybrid extragradient method for finding an element of Fix(S) N & N VI(C,A)
in [17, Theorem 3.1] is extended to develop our relaxed viscosity iterative algorithms (i.e.,
Algorithms 3.1 and 3.2) for finding an element of Fix(S)N & N TI".

(v) The proof of our results is very different from that of [17, Theorem 3.1] because our
argument technique depends on Lemma 2.3, the restriction on the regularization param-
eter sequence {a,} and the properties of the averaged mappings Pc(I — 1, Vf,,) to a great
extent.

(vi) Because Algorithms 3.1 and 3.2 involve a contractive self-mapping Q, a k-strictly
pseudo-contractive self-mapping S and several parameter sequences, they are more flex-
ible and more advantageous than the corresponding ones in [23, Theorem 5.7] and [34,

Theorem 3.1], respectively.
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4 Hybrid viscosity methods and their convergence criteria

In this section, we propose and analyze the following hybrid viscosity iterative algorithms
for finding a common element of the solution set of GSVI (1.3), the solution set of SFP
(1.6) and the fixed point set of a strictly pseudo-contractive mapping S: C — C.

Algorithm 4.1 Let ; € (0,28;) for i = 1,2, {@,} C (0,00), {X4} C (0, 152) and (o), {w},
{Bn} {yu}, {64} € [0,1] such that o, + 7, <1land B, + y, + 8, =1 for all n > 0. For xy € C
given arbitrarily, let {x,}, {y,} and {z,} be the sequences generated by

Zn = Pc(%n — 2n Ve, (%)),
Yn = 02 Quy + TuPc(2n — i Ve, (1))

+ (1 =0y — 1) Pc[Pc(zy — 12 Bazn) — 1 BiPc(zy — aBaz)l,
X1 = BrXn + VuYn + 8uSyn, V1= 0.

Algorithm 4.2 Let u; € (0,28;) for i = 1,2, {«,} C (0,00), {*A,} C (0, W) and {o,},{B.},
{yu}, {64} C [0,1] such that B, + y, + 8, =1 for all n > 0. For x, € C given arbitrarily, let
{x.}, {u,} and {#,,} be the sequences generated by

Uy = Pc[Pc(xy — p2Baxy) — 1 B1Pc (%, — 12 Baxy)],
Uy = Pc(ty — Vo, (Un)),

Vn = 02 Quy + (1= 04)Pc(thy — An Vo, (itn)),

Xnil = Py + VnYn + 8nSyn, V1> 0.

Next, we first give the strong convergence criteria of the sequences generated by Algo-
rithm 4.1.

Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(Hy,Hz) and B; : C — H; be B;-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S)NE N T #@. Let Q: C— C
be a p-contraction with p € [0, 1). For xy € C given arbitrarily, let {x,}, (y,}, {z,} be the
sequences generated by Algorithm 4.1, where p; € (0,28;) fori=1,2, {a,} C (0,00), {X,} C
(0, ﬁ) and {0y}, {Tu}, {Bu}, (v}, {8n} C [0,1] such that
(D) 5o on < 005
(i) op+1y <1, B+ Yu+du=1and (y, +8,)k <y, foralln>0;
(ili) limy— o0 0y =0 and Y e 0, = 00;
(iv) limsup,,_, o 7x <1 and lim,_, o [Ty — Tl = 0;
(v) 0<liminf,_o B, <limsup,_, . Bn <1 and liminf,_, . 8, > 0;
(vi) 1imn»oo(lf;;1+1 - 11/#) =0;
(vii) 0 <liminf,_, o A, <limsup,_, A, < W and lim,_, oo |Ays1 — Ayl = 0.

Then the sequences {x,}, {yu}, {2z} converge strongly to the same point x = Prixsynznr Q¥
if and only if lim,,_,  ||x, — z,|| = 0. Furthermore, (x,) is a solution of GSVI (1.3), where
¥ =Pc(x — p2ByXx).

Proof First, taking into account 0 < liminf,_, A, <limsup,,_, . A, < W, without loss of
2

generality, we may assume that {A,} C [4, b] for some a,b < (0, AT ). Repeating the same
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argument as that in the proof of Theorem 4.1, we can show that Pc(I — A Vf,) is { -averaged

2
M. Further, repeating the same argument as that

foreach A € (0, m), where ¢ =
in the proof of Theorem 3.1, we can also show that for each integer n > 0, Pc(I — 1, Vf,,)
is ¢,-averaged with ¢, = w € (0,1).
Next, we divide the remainder of the proof into several steps.
Step 1. {x,,} is bounded.
Indeed, take p € Fix(S) N & N I' arbitrarily. Then Sp = p, Pc(I — AVf)p = p for 1 €
2
(0, W)’ and
P =Pc[Pc(p - uaBop) — BiPc(p — 112Bap) |-
For simplicity, we write ¢ = Pc(p — uaBaop), zy = Pc(zy — 2B2zy),
Un = Pc[Pc(zy — naBozn) — 1B1Pc(zn — n2Bozs)| and i, = Pc(zn — An Vi, (2n))

for each n > 0. Then y, = o,x, + Ty, + (1 — 0, — T,)u,, for each n > 0. Utilizing the argu-
ments similar to those of (3.1), (3.2) and (3.3) in the proof of Theorem 3.1, we deduce from

Algorithm 4.1 that
Iz =PIl < %0 =Pl + 2netallpll, (4.1)
2 = plI* < 1% = pII* + 2Anen Pl 20 — P (4.2)
and
lltn - plI*
<|lzy = pI* = 12(2B2 — w2) |1 Bazn — Bopl|* — 111281 — 1) 1Bz, — Bugll*. (4.3)

Furthermore, repeating the same arguments as in (4.1) and (4.2), we can obtain that

ln = pll < llzn =PIl + Anctulpll (4.4)

and

i = pI* < 20 = pII* + 22ncallpll |2 = . (4.5)

Hence it follows from (4.1), (4.3) and (4.4) that

lyn =PIl = [ 04(Qxy = p) + Tulity — p) + (1 — 0 = T)(n — p) |
< 0oullQxy = pll + Tullthn = pll + (1 = 0y — T) |1t = P
< 0u(11Qx, — Qpll + 1Qp = plI) + Tu(llzw — pIl + Anctulipll)
+ (1 -0, - 1)llzs - pl
<ou(pllxn—pl +11Qp - pl) + 1= 6,)llzs — pll + Auctsllpll

< 0upllxn = pll + 0,l1Qp = pll + (1 = ) (I1%n = pll + ntnlIpll) + Anctullpl
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< (1= = p)an) % = pll + 0,1Qp = pll + 22,0, ||pl

1Qp-pl
= (1= (= p)on) I, =PIl + (L= poy =22 + 22,

1Qp - pl
= max{ llxn = Pl ? + 20,0, Pl (4.6)

Since (y, + 8,)k <y, for all n > 0, utilizing Lemma 2.4, we obtain from (4.6)

||xn+1 —P|| = ”,Bn(xn —P) + Vn(yn —P) + 5n(syn —P)H
< Bullxn — pll + ”Vn(yn —-p)+6,(Syn —p) H

< Bullxn = pll + (vu + 8u)lyn — Pl

1Qp - p
< Bullty = pll + (i + M[max{ It~ pll, le%pp + 20
1Qp —pli
< Bultn = pl + (v + %)max{ o = pll = 1+ 2l
IQp - pl
5max{||xn—p||,% +2bl|plle. (4.7)
By induction, we can derive
1Qp -l -
st~ snm{||xo—j,n||,ﬁ +2bpl Y o (4.8)

Jj=0

Hence, {x,} is bounded. Since Pc, Vf,,, B; and B, are Lipschitz continuous, it is easy to

see that {z,}, {u,}, {4}, {y,} and {z,} are bounded, where

Zy = Pclzy — n2Baz,), VYn>0. (4.9)

Step 2. lim,— oo [| %41 — %] = 0.
Indeed, define x,,,; = B,x, + (1 — B,)w, for all n > 0. It follows that

Vn+1(yn+1 - yn) + 8n+1(5yn+1 - S_yn) ( Vn+1 Yn )
Whpel — Wy = + - YV
1- ﬂwrl 1- ﬁn+1 1- ,Bn
8n+1 8;1 )
+ - Syn. (4.10)
(1 - ﬁn+1 1- ,Bn y

Since (y, + 8,)k < y, for all n > 0, utilizing Lemma 2.4, we have

||7/n+1()/n+1 — V) + 8,01(SYns1 — Syn)n < Va1 + S 1Yms1 = Yull- (4.11)

Next, we estimate ||y,41 — ¥ ||. Utilizing the arguments similar to those of (3.10) and (3.11)

in the proof of Theorem 3.1, we obtain that

1Znr1 = Zull < %01 = Xl + [Ans1 = An ”Vf(xn) || + [ Ae1Qus1 = AnQul [|% | (4.12)
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and
l2£41 — un”z
2
< | Pc(zm1 — p2Bazui1) — Pe(zn — 2Bozy) |
2
— 11(2B1 — 1) | BiPc(zns1 — 2Bazun) — BiPc(zn — 112Bazy) ||
< llzne1 = 2ull* = 12282 — 142) | Bazns1 — Bzl (4.13)
Thus,
”11n+1 - ljtn ”

< Nzni = znll + [Ans1 = Anl “Vf(zn)n + [ An1@ni1 — Ant| |24

IA

||xn+1 _xn” + |)\n+1 - )"nl || Vf(xn)” + |)"n+lan+1 - )"nan| ”xn”
+ |)\n+1 - )"nl || vf(zn)” + |)\n+lan+1 - )\nan| ”Zrl”
%ns1 = %nll + |Ape1 = )Ln|(||vf(xn)” + ”Vf(zn)”)

+ A1 @1 — }\nan|(”xn” + ”Zn”) (4.14)

This together with (4.12) implies that

1Yns1 = Yull
= ||Un+1(an+1 — Ups1) + Turper + (1= Tpa1) Unin

- an(an - Z/t,,) - fnﬁn - (1 - Tn)un H

IA

I Tnsritnir = Tuitull + (1 = Tnsr) st — (1= Ta)th|
+ 041 QX1 — U || + 0| Qxy — 14|
<t = Tulll @ | + Tull e = Bl + 1 Tnir = Tallser |+ (1= T) b1 = 14
+ 041 | QX1 — U || + 0, | Qe — 14|
< T 191 = | + s = Al (| V@) | + | VF20)])
+ | Ano1@ner = M| (1] + 1211)]
+ (1= Tzt = Zull + 1Tnar = Tl (st | + Nt ])
+ 031 | QX1 — U || + 0, | Qe — 14|
< Ta[ 1 = Xall + Dot = 2l (| V@) | + || V) |)
+ | Ano1@ner = Al | (1] + 1211 ]
+ (1= ) [ %1 = %ull + [Anar = Aal | V@) || + [Aar@tmar = Al 14]l]
+ 1Tt = Tl (Nt |+ 11 11) + 01 | Qa1 = tmat | + 0| Qs — |
< Wtnar = Xull + 1hnas = 2l (| V@) | + |V @a)|) + IMnsr0tmir = Anctl (I%all + 11 l)

+ [ Tys1 = T (”ljlnﬂ I+ ||un+1||) + 01 QX1 — Upaa || + 0 || Q. — 1 . (4.15)

Page 31 of 50


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Hence it follows from (4.10), (4.11) and (4.15) that

Wit — wyll
< ”)/wrl(ynﬂ _yn) + 8n+1(syn+1 _Syn)“ + ‘ Vn+1 _ Vn 1yl
1- /3n+1 1- ,3n+1 1- ﬂn
8r1+1 (Sn
+ - [l Synll
1- ﬁn+1 1- ﬁn
Vne1 t 8n+1 Vn+l Vn
S ————Vn+1—Vn L, T T Y
< op wall ‘l—ﬂm =g, (Iyull + 1Syall)
Y+l Yn
= lyns1 - n||+‘ - I n||+”S nll
Tt =) 1_:3;'1+1 l_ﬂn(y ) )

< Wtnar = Xull + 1has = 2l (| V@) | + |V @a)|) + IMns10tmir = Anctl (I%all + 112 l)

+ [ Ths1 — Tn|(||ljln+1” + ||un+1||) + 041 QX1 — U || + 0 || Qxy — 1|

Y Vn
+ ‘ LN (I7all + 1Syl1)-

1_:3n+1 l_ﬁn

Since {x,}, {yu}, {zu}, {un} and {u1,,} are bounded, it follows from conditions (i), (iii), (iv),
(vi) and (vii) that

lim sup (/W1 = wall = %1 = xall)
n—00

<lim Sup{p‘rﬂrl - )Ln|(||vf(xn)” + ”Vf(zn)”) + A 1041 — )\nan|(”xn” + ”Zn”)
n—>00

+ [ Ths1 — Tn'(”ﬁml” + ||Lt,,+1||) + 041 Q1 — U || + 0 || Qxy — 1|

+ ’ Vn+1 _ Vn
1- :Bn+1 1- ﬂrz

(llyall + ||Syn||)} =0.

Hence by Lemma 2.1, we get lim,,, o ||W, — %, || = 0. Thus,
lim [[%y41 — %, = lim (1= B,)llw, — x|l = 0. (4.16)
n—00 n—00

Step 3. 1im,,_, || B2z, — Bop|| = 0 and lim,,_, o || B12,, — B1g/|| = 0, where g = Pc(p — 2 Bop).

Indeed, utilizing Lemma 2.4 and the convexity of || - ||?

and (4.2), (4.3), (4.5) that

, we obtain from Algorithm 4.1

2
”xn+1 4 ”

2

< Bullxn —P||2 + (Y + 8n) [Vn(yn —p) +8,(Syn _p)]

Y+ On
< Bulxn = pI* + (v + ) lyn — pII?

< Bullxn = pI* + (Y + 82) [0l Qn = pII* + Tulltn — p1I* + A = 0 — T) 11t — pII?]
< Bullxn = pII” + (v + 8){0ull Q= p1I* + Tu[ 20 — pII* + 21t | P 18 — pII]

+ (L= 0y = t)[llzn = pII* = 12(2B2 = 12)1Bazs — Bop |
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- (281 — 1) 1BiZy — BiglI* ]}

< Bull%n = pI* + (v + 8){0ull Qun = pII* + T [l — pII* + 240t Pl 120 —
+ 2xn0tullpl 1 — ] + A = 0 = T) [0 = PII* + 2000l |20 — P
- u2(2B2 — 142) 1 Bazn — Bop 1> — 11(2B1 — 1) |B1Z, — Bagll*]}

= Bullxn = pII” + (Vu + 80){0ull Qx — pII> + A = 03) %4 — pI?

+2(1= )l lpllz - pl
+ 200 Py — Il = (L= 0 = 7)[112(2 — 12) | Bz — Bop

+ w1281 — m1)|Bizy — Big*]}
< l%n = pII* + 0,1Qun — pII* + 2200 Pl (24 — pll + N1t — pII)

= (Y + 8)(1 = 0 — T) [ 12(2B2 — 142) |Baz — Bap|®

+ w1281 — w1)|BiZy — Bag*]-

Therefore,

(Y + 8)(L = 0 — ) [ 12(2B2 — 142) 1Bazs — Bop|* + 1 (21 — 111) 1 BiZ — Brq|*]
< l%n =PI = %041 = PI* + 0ull Qi = pI* + 24 n0tullpll (120 = P + llitn — pII)
< (I%n = pll + %51 = PI) 120 = Xpa | + 04l Qx — pI*

+ 2xn0tullp Nl (124 = P + llit = pll)-

Sincea,, = 0, ||[%,—%y11]| = 0,liminf,_.» 8, > 0, {A,} C [4,b],0, — Oandlimsup,_, . 7, <

1, it follows that

lim ||Biz, —Biq||=0 and lim ||Byz, — Bypll =0.
n—0o0 n—0o0

Step 4. limy,— o [|Sy, — yull = 0.
Indeed, observe that

lt, — zull = ”PC(I_}‘nVﬁIn)Zn —Pc(I = 7y Vfa,)%n ” < llzn = xull.
This together with ||z, — x,|| — 0 implies that lim,_ o |[#, — z4|| = 0 and hence

lim,,—, o |4, — %,|| = 0. By firm nonexpansiveness of P¢, we have

120 — g1
= | Pczy — 12Baza) - Pelp - 12Bop) ||
<((zn — 12B2zs) — (p — 112Bop), Zn — q)
= 5[l —p = 2oz~ Bap) | + 10— al?
|21 = p) = 12(Boz = Bop) - Gu - @) |*]

(12 = pI? + 120 — qlI% = | (20 — Z0) = p2(Bozs — Bop) — (0 — )|*]

N =

=
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1 - -

= 5 [len =21 + 120~ gl = |20~ 2~ (0 - @)
+2u2(2u — Zn — (P — q), Bazu — Bap) — 143 | Bazn — Bop|*]
1 - -

= Sl = + 120 - ql* = |2~ 2 ~p-9|

+2u ”Zn ~Zn—(p—-9q) ” | B2z, _BZP”]’

that is,
12, — qll®
<Nz =P = | 2u =20~ (0~ D +2102] 20 ~ 20~ (0~ D[ 1Bz = Bopll.  (4.17)
Moreover, using the argument technique similar to the above one, we derive
llun - pII?
= | Pc(zn — mBizs) - Pclq - mBig) |
S ((271 - MlBlzn) - (q - Mlqu)r Uy _p>
1. -
= E[”Zn —q- Bz, - Big)| + lun - pI?
~|Gn - @) - 111(Bizs - Big) (- p)|]
1
< (120 = q11? + llttn = p11? = | G — 1) — 11 (BiZw = Bi) + (0 — 9) |’ ]
1l
1. . -
= 5[ = all” + s = pI = |0~ 0 + 0 - @)
+ 2#1(2;1 — Uy + (P - (/I)rBlén _qu> - Mf”Bl%n - qu”2]
1. . -
< [z = g+l =pI = |2 =00+ 0= 0|
+ 21|20 — thn + (0 — 9)|| 1B120 — Brgll],
that is,
llun - pI?
<z - 61||2 - ”2;1 —uy+(p-q) ”2 +21 ”2}1 —u,+(p _Q)“ 1 B1z, — Biqll. (4.18)

Utilizing (4.2), (4.5), (4.17) and (4.18), we have

lly, - pI?
= 0u(Qn = p) + Tl — p) + (1 = 0 — 1)t — )|
< 0l Q= pII? + Tallitn —pI* + (1= 0 — T) |t — I
< 0| Qs = pII + T (1124 — PI* + 20nctullp N 172 — 1)

+(1=0p =)z =g = |20 —ttn + - )|


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Page 35 of 50

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

+2u ”2;1 —u,+(p —6])” 1B1z, —3161||]
< 6llQxy = pII* + T2 — pII* + 20 lpll 120 — Pl + 200t Pl — p1))
+(1=0p—t){lzu—pI? = |20 =2 - 0 -

+212 |20 = Zu — (p — 9)|| 1 B2z = Bap|
20— tn+ =@ + 2101 ]|Zn — 1 + (0 - D] 1B1Z0 - Bigl}

< 0ull Q=PI + Tl 1% — I + 20m0 121 (12 =PIl + 12— )
+ (L= 0y = T){ 100 = pII* + 200t I |2 — P
—2u =2~ 0~ D + 202 ] 24 ~ 20 — (0 — @) | 1B22s — Bopl|
| = tn+ @ = @)||* + 21|70 — 1 + (0 — @) | I1B1Z — Bugll}
< 0ull Q=PI + 1% =PI + 20m00n 21 (120 = Il + 0 — )

+ 24 ”Zn -Zi—(p-q) ” |B2zy — Bapll + 2111 ”z'n ~up+(p-q) ” 1Bz, — Biql|
(4.19)

-(1-0,- r,,)(”z,, -zy—-p-9q) ||2 + ||2,, —u,+(p —q)HZ).
Thus, from Algorithm 4.1 and (4.19), it follows that

”xn+1 —P”Z
= [ Ba@n = D) + Va O = D) + 84(Syu = D) |

< Balltn = pI* + (v + 8:)llyw - pII>
= Bullxn —P||2 +(1- ﬂn)”yn —P||2
= ﬂn”xn —19||2 + (1 - ﬁn){”xn —P||2 + O',,||an —P||2

+ 20 Pl (1120 = Pl + Nt — plI)
+ 24|20 = Zu — (p = @) | | B2z = Bopll + 2411 |20 — t + (0 — 9)|| I B1Z — Brq|

-(1-o0y, _Tn)(Hzn -2y - (P—q)”2 + ||2n —Up + (P—CI)Hz)}
< 1%y = pII* + 0| Qs = pII* + 20l (20 = Il + it — p1I)
+ 22| 2n = 20 — (p = Q|| IBazn — Bopll + 21 ||Zn — i + (p — @) | 1 B1Z — Bugll

~A=B)A =0y =) (|2n =2 = = D|* + |2 -t + 0 - D)),

which hence implies that

1-B,)1-0,~ Tn)(”Zn -z, - (P—Q)”z + ”2;1 —Unt (P—Q)Hz)
< 1% = pI* = [1%ns1 = pII* + 0, [1Qx = plI* + 20, l|pll (1125 = 1| + 172, — pII)

+ 23|20 = Zu — (p = @) | | B2z = Bopll + 241 | 24 — s + (0 — 9)||1B1Z — Brq|
< (Ilen = 2l + 01 = P 1% = X | + 01| Qe — pII*

+ 20,0ullpll (20 = Pl + lli2n = pII)
+ 242\ 2n = 20 — (p = Q|| IBazn — Bopll + 211 ||Zn — s + (p — @) | 1 B1Z — Bugll
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Since limsup,,_, ., Bx <1, limsup,,_, ., ©, <1, {X,} C [a,b], @, = 0,0, — O, ||Baz,, — Bop|| —
0, ||B1z, — Biqll = 0 and ||x,41 — x,]| = O, it follows from the boundedness of {x,}, {u,},
{#tn}, {24} and {z,} that
lim ”z,, -Zy - (p—q)“ =0 and lim H%n — U, + (p—q)” =0.
n— 00 Hn— 00
Consequently, it immediately follows that
lim ||z, —u,l|=0 and lim |, —u,| =0. (4.20)
n—0o0 n—0o0
Also, note that
yn = tnll < 0ullQup — 1yl + (1 -0y, — Tty — ull — 0.
This together with ||x,, — i, || — 0 implies that
lim ||x, —y,|l = 0.
n—0oQ
Since
“(Sn(syn - xn) || =< ||xn+1 - xn” + yn”yn _xn”:
it follows that
lim || Sy, —x,4]=0 and lim ||Sy, -yl =0.
n—00 n—0o0

Step 5. limsup,,_, . (QX — X, %, — X) < 0, where ¥ = Prixs)nznr QX.
Indeed, since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

lim sup(Qx — %, x,, — X) = lim (Qx — X, x,,, — X). (4.21)
n—00 =00

Also, since H is reflexive and {x,} is bounded, without loss of generality, we may assume
that x,, — p weakly for some p € C. Taking into account that ||x, — y,I| — 0 and ||x, —
zy|l = 0 as n — oo, we deduce that y,, — p weakly and z,, — p weakly.

First, it is clear from Lemma 2.2 and ||Sy, — y.|| — 0 that p € Fix(S). Now, let us show
that p € Z. Note that

”Zn - G(Zn) H = ”Zn - PC[PC(ZVI - HQBZZn) - MIBIPC(zn - H2B2zn)] ”

=|lzs—tull = 0 (n— 00),

where G : C — C is defined as in Lemma 1.1. According to Lemma 2.2, we get p € &.
Further, let us show that p € I'. As a matter of fact, define

Vf(v)+Ncv ifveC,
] ifvéeC,


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43 Page 37 of 50
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

where Ncv={we H;:(v—u,w) > 0,Vu € C}. Then T is maximal monotone and 0 € Tv
if and only if v € VI(C, Vf); see [41] for more details. Utilizing the arguments similar to
those of Step 5 in the proof of Theorem 3.1 and the relations

zy = Pc (%4 — 2 Vfa,(x,)) and veC,
we can derive
(v—p,w)>0 asi— oo.

Since T is maximal monotone, we have p € T7!0 and hence p € VI(C, Vf). Thus it is clear
that p € I'. Therefore, p € Fix(S) N & N I'. Consequently, in terms of Proposition 2.1(i),
we obtain from (4.21) that

lim sup(Qx — X, x, — %) = lim (Qx — X,%,, —X) = (Qx —x,p — &) < 0.
n—00 =00

Step 6. lim,,_, , ||x, — X|| = 0.
Indeed, observe that

(an —56,)’;« -x) = (an — X, Xy — X) + (an —J_C:J/n —Xn)
= (Quy — Qx, %, — X) + (QX — X, 2, — %) + (Qxy — X, Yy — %)
< pllay = ZII* + (Qx — X, 2, — %) + (| Qo — X[[ 175 — %nll.

Utilizing Lemmas 2.4 and 2.5, we obtain from (4.2), (4.3) and (4.5) and the convexity of
- 11? that

=12
141 = X||

= ”,Bn(xn _7_6) + Vn(yn _9_5) + Sn(syn _J_C) ”2
2

;[Vn(yn - Q_C) + 8n(Syn _9_6)]

< Bullxn _7_6”2 + (Vn +38,)
Yn + 8

< Bulltn = 1%+ (i + 8,) 19 — %12

< Bullt = %12 + v + 8[| @t = 2) + (1 = 0 — 7)1t = D))
+ 20, {Qty — %, Y — %)

< Bulln = &1 + v + 8 [Talltn = ZI + (L= 0 = 7)1ty — X
+20,(Qy — X, — 7) ]

< Bull = &1 + (v + 8) [Talltn = Z + (L= 0 — T) 12 — %I
+20,(Qxy — X,y — %) |

< Bulltn = F12 + W + 8 [T l120 = RN + 2kt IZ (112 = ZI| + 12, — ZI1))
+ (1= 0 = ) (120 = U1 + 20t |E ] 12 — %) + 20, Q6 — %, 3 — %)}

< Bulln = X + (v + 8:){ (0 = 0) (26 = ZII> + 225, I% ] (2 — %] + 12, - X1I))
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+20,(Qxty — X,y — X) |
= (L= v + 80 len = X% + (v + 8,) A = 0) 2000t 1% (112 — X1 + 1l — X11)
+ (Vn + 81)20,(Qxy — X,y — X)
< (L= W+ 80)0u) 0 = ZII* + (v + 81)20u[ pll6n — %I
+(QX = %, %, — X) + 1| Qxty = Xy — %l ]| + 200X (112 — X + 18, — X))
= [1- @ =20)(Yu + 8)ou] % — %I

2[(Qx =%, %0 = %) + 1Qxn = Xl llyn — %ull]
1-2p

+(1=20)(V + 8u)on
+ 2000 1% (1120 — X1l + |20 — X[]).

Note that liminf,, o (1 — 2p)(, + 8,) > 0. It follows that Y o> (1 = 2p)(yy, + 8,,)0, = 00. It is

clear that
, 2[(Qx — X, %, — %) + [|Quyy — X[ |y — %]
imsup <0
n— 00 1 - 2p

because limsup,,_, .. (QX — ¥,x, —X) < 0 and lim,,_, o [|%,, — ¥x|| = 0. In addition, note also
that {A,} C [a,b], Y .-y ax < o0 and {z,} is bounded. Hence we get Y - 24,0, [|%| |2, —
x| < oo. Therefore, all conditions of Lemma 2.3 are satisfied. Consequently, we imme-
diately deduce that ||x, — X|| — 0 as # — co. In the meantime, taking into account that
|2, — ynll = 0 and ||x,, — z,,|| — 0 as n — o0, we infer that

lim ||y, —x| = lim ||z, — x| =0.
H— 00 Hn— 00
This completes the proof. d

Corollary 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(H1,Hz) and B; : C — H; be B;-inverse strongly monotone fori=1,2. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S) N & N I" # (. For fixed u € C
and x € C given arbitrarily, let the sequences {x,}, {yn}, {z.} be generated iteratively by

Zp = PC(xn - )‘nvﬁxn (xn))r

= o + T, Pc(zy — An Vi, (2,
In n C( n f ( )) (4'22)

+ (1 -0y — 1,)Pc[Pc(z, — n2Bazy) — piB1Pc(z, — 2Brz4)],
Xns1 = BuXn + Yn)n + Snsyn; Vn>0,

where j1; € (0,28;) fori=1,2,{a,} C (0,00), {1} C (0, W) and {0y}, (T}, {Bub iy} (8} C
[0,1] such that
(i) Yool an <00

(i) op+1, <1, By + Yp + 8, =1 and (y, + 8,)k <y, foralln> 0;

(i) lim,— o0, =0andy -0, = 00;

(iv) limsup,,_,  7x <1 and lim,_, o [Ty — Tl = 0;

(v) 0<liminf,_ o B, <limsup,_, ., Bs <1 and liminf,_, . 8, > 0;

(vi) limy,_ oo (7225 — %) =0;

1—ﬂn+1
(vii) 0 <liminf,_, o Ay <limsup,_, Ay < W and lim,_, oo |Aps1 — Ayl = 0.
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Then the sequences {x,}, {yn}, {z.} converge strongly to the same point x = Prixs)nznrit
if and only if lim,_, » ||%, — z,|| = 0. Furthermore, (x,) is a solution of GSVI (1.3), where
¥ = Pc(X — paBaX).

Next, utilizing Corollary 4.1, we give the following improvement and extension of the
main result in [34] (i.e., [34, Theorem 3.1]).

Corollary 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(H1,Hy) and S : C — C be a nonexpansive mapping such that Fix(S) N I" # ). For
fixed u € C and xo € C given arbitrarily, let the sequences {x,}, {z,} be generated iteratively

by

Zy = PC(xn - )anfan (xn))y
Xps1 = By + (1- ,Bn)S[O'nu + 1, Pc(z, — )anfotn (z4) + (1 — 0y — Tw)zs], (4.23)
Vn>0,

where {a,} C (0,00), {A,,} C (0, W) and {o,},{t,}, {Bn} C [0,1] such that
() Yool an <00

(i) op+ 1y <1lforalln>0;

(ili) limy— o0 0y =0 and Y e 0, = 00;

(iv) limsup,,_, 7, <1 and lim,_, o [Ty — Tl = 0;

(v) 0<liminf,_ B, <limsup,_, . Bn < 1;

(vi) 0<liminfy,_, o X, <limsup,_, A, < W and lim,_, oo |Aps1 — An| = 0.
Then the sequences {x,}, {z,} converge strongly to the same point x = Prixs)nru if and only
iflimy, o ||, — 2|l = O.

Proof In Corollary 4.1, put B; =B; =0 and y, = 0. Then & = C, B, + 8, =1, Pc[Pc(z, —
UaBrz,) — u1B1Pc(z, — waBazy)] = z,,, and the iterative scheme (4.22) is equivalent to

Zy = PC(xn - )\nvf;{n (xn))r
Y = Onth + TuPc(2n — My Vi, (2n) + (1 — 04 — Tn)2zn,

Xn+l = ﬁnxn + Snsym Vn > 0.

This is equivalent to (4.23). Since S is a nonexpansive mapping, S must be a k-strictly
pseudocontractive mapping with k = 0. In this case, it is easy to see that conditions (i)-
(vii) in Corollary 4.1 all are satisfied. Therefore, in terms of Corollary 4.1, we obtain the
desired result. O

Now, we are in a position to present the strong convergence criteria of the sequences
generated by Algorithm 4.2.

Theorem 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(Hy,Hy) and B; : C — H; be B;-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudo-contractive mapping such that Fix(S\NENT #P.LetQ:C — Cbhea
p-contraction with p € [0, %). For xy € C given arbitrarily, let the sequences {x,}, {u,}, {it,}
be generated by Algorithm 4.2, where j1; € (0,28;) fori =1,2, {o,} C (0,00), {*,,} C (0, W)
and {0y}, {Bu} {vu}, {6n} C [0,1] such that
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(D) Don0 on < 003
(i) By + Yn+6y=1and (y, +38,)k <y, forall n > 0;
(ili) limy— o0 0y =0 and Y e 0, = 00;
(iv) 0 <liminf,_, B, <limsup,_, ., B, <1 and liminf,_, 8, > 0;

(V) hmnaoo(li/;g;il - 11/;") =0;

(vi) 0 <liminfy,_ 00 Ay <limsup,_, ., Ay < W and lim,_, oo |Aps1 — An| = 0.

Then the sequences {x,}, {4}, {1t} converge strongly to the same point x = Prixsynznr Q%
if and only if lim,_, « ||it, — uy|| = 0. Furthermore, (x,5) is a solution of GSVI (1.3), where

¥ =Pc(x — paBrkx).

Proof First, taking into account 0 < liminf,_, o A, <limsup,,_, A, < W, without loss of
generality, we may assume that {A,} C [4, b] for some a,b < (0, ﬁ). Repeating the same
argument as that in the proof of Theorem 4.1, we can show that Pc(I — AVf,) is ¢ -averaged
foreach A € (0, m), where ¢ = %”A”Z). Further, repeating the same argument as that
in the proof of Theorem 4.1, we can also show that for each integer n > 0, Pc(I — 1, Vf,,)
is ¢,-averaged with ¢, = %J'”A”Z) €(0,1).

Next, we divide the remainder of the proof into several steps.

Step 1. {x,,} is bounded.

Indeed, take p € Fix(S) N & N I' arbitrarily. Then Sp = p, Pc(I — AVf)p = p for 1 €

_2_
(0, i) and
p =Pc[Pc(p - 112Bop) — tuBiPc(p — naBsyp)].

For simplicity, we write

q=Pc(p — u2Byp), Xy = Pc(xy, — waBox,) and i, =Pc (Et,, - Aanan(ﬁn))

for each n > 0. Then y, = 0,x, + (1 — 0,)1,, for each n > 0. Utilizing the arguments similar
to those of (4.1) and (4.2) in the proof of Theorem 4.1, from Algorithm 4.2 we can obtain

2, = pll < lltn — pll + Anatulipll (4.24)
and

I, = pII* < lttn = pII* + 20netullpll 1 - pll. (4.25)
Since B; : C — H; is B;-inverse strongly monotone and 0 < p; < 28; for i = 1,2, utilizing
the argument similar to that of (4.3) in the proof of Theorem 4.1, we can obtain that for

allm >0,

2
ll, - pl

<% = pII* = w2 (282 = 12) 1By = Bop|l* — 11281 — w1) 1Bi&y — Bigll>.  (4.26)

Utilizing the argument similar to that of (4.4) and (4.5) in the proof of Theorem 4.1, from
(4.12) we can obtain

l#n =PIl < llitw = Pl + Anetn Pl (4.27)
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and
I = pI* < llitn — pII* + 22ne Pl 18 — pI. (4.28)
Hence it follows from (4.24), (4.26) and (4.27) that

s =l = [ 04(Qxn — p) + A = 0,) (it — p) |
< 0ullQxy —pll + A = 0) | 4n — pll
< 0u(1Qx, — Qpll + 1Qp = pll) + A = 6,) (Ilin — pll + Anctallpll)
< ou(pllxn—pll +11Qp = pll) + (1= 0) (1 — Il + Anctan Pl + Anctsllpll)
< 0uplxn —pll +041Qp - pll + A= 0,) (1% — Il + 21n0tullp]l)
< (1-0u(1-p))llxn = pll + 0411Qp — Pl + 21netllpl

IQz—pl
smax{nxn—pn,% + 2,0l (4.29)

Since (yy, + 8,)k <y, for all n > 0, by Lemma 2.4 we can readily see from (4.29) that

%1 =PIl < Bull®n = pll + (v + 8a) 7 = Pl

1Qp—pl
< max{ s =l = |+ 2Bl (4:30)
By induction, we can derive
n
v =1 < max{ = "L 210 Yo (@31

j=0

Hence, {x,} is bounded. Since P¢, Vf,,, Bi and B; are Lipschitz continuous, it is easy to see
that {u,}, {#,}, {#t.}, {*,} and {y,} are bounded, where ¥, = Pc(x, — w2Box,) for all n > 0.
Step 2. limy,— o0 [|Xns1 — %] = 0.
Indeed, define x,,,1 = B,x, + (1 — B,)w, for all n > 0. It follows that

w —w, = Vn+l(yn+l _yn) + 8n+l(Syn+l - Syn) + Vn+l _ VYn
i " 1- ,3n+1 1- ,Bn+1 1- Ign In
Oy Sn
. ( 0 )Syn. (4.32)
1- ,BVH—I 1- ,Bn

Since (y, + 8,)k < y, for all n > 0, utilizing Lemma 2.4, we have
”y’l+10/n+1 =) + 8ns1(SYni1 — Syn)H < Vst + ) Y1 = yull- (4.33)

Next, we estimate ||y,41 — ¥ ||. Utilizing the arguments similar to those of (4.12), (4.13)
and (4.14), we can obtain that

i1 = s ll < Nttns1 — tnll + [As1 = A ” Vf(un)H + A1 @i — Ant| |l (4.34)

”Mn+1 - un” = ||xn+1 _xn” (435)
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and hence

1111 — it |
< ltinsr = ol + s = 2l [ VF o) | + [i10tmer = At | |
< Nlttner = toull + s = Al | VF @) || + Mi101 = Al 2]l + hir = Al | Vf (22) |
+ [ Ap10e1 — At |8 |
< %1 = Xl + Poer = Al [ VF @) || + IMrnir = Al 2]l + 1 Anar = Al | Vf (i) |
1@t = At | |
= {1 = Zall + st = Al (| VF @) | + | VF i) )

+ A1 @i — }\nan|(”un” + ”Zin”) (4.36)
This together with Algorithm 4.2 implies that

1Yns1 =yl
= || tner + 001 (Qipar — tnar) — g — 00 (Qy — ) |
< Miter = | + i1 | Q1 = i | + 0l Qs — i |
< o1 =2 ll + Powr = 2| ([| VF ) | + || VS @) |)
+ 1@t = At (2t || + 12 )

+ Opnys1 ”an+1 - ﬁn+1 || + 0y ”an - ﬁn ” (437)

Hence it follows from (4.32), (4.33) and (4.37) that

[Wis1 — Wl
< ||yn+1(Yn+l _yn) + 8n+1(5yn+1 _Syn)” + ‘ Vn+1 _ Vn Iyl
1- ,Bn+1 1- ,3n+1 1- ,Bn
Sus 8y
+ ‘—1 = ISyl
1- ﬁn+1 1- ﬁn
Vn+l Yn
< _ - N
< yns1 = yull + o 1-5, (Ilyall + 1Sya 1)
< %1 = xull + [ Apa — )Lnl(” Vf(un)” + ” Vf(ﬁn)”)
+ [ Aps10uin — }\nan|(”un” + ”1271”)
- - ‘}/}’l+ y}’l
# Ot Qs = Tt |+ 01 Qay = il + | 75— = 7= (Il + Syl
Since {x,}, {un}, {11}, {#t} and {y, } are bounded, it follows from conditions (i), (iii), (v) and
(vi) that
lim Sup(||wn+1 = Wall = %41 = xn”)
n—00

= limsup{p‘wrl - )Ln|(||vf(un)” + ”Vf(iin)”) + [ Ap1 @i — )Lnanl(”un” + ||£‘n||)

n—00
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+ 01| QX1 — Upia || + 0| Queyy — 24y |

Vn+1 Yn

l_ﬂnﬂ l_ﬂn

(lyall + ||Syn||)} =0.

Hence by Lemma 2.1, we get lim,,_, o ||W), — %, || = 0. Thus,
lim [[%pe1 — %]l = lim (1- ,Bn)HWn — x|l = 0. (4.38)
n— 00 n— 00

SteP 3. 11mn—>oo ||B2xr1 _sz” =0and hmn—)oo ”BL;Cn _qu” =0, where q= PC(P - /'LZBZP)-

Indeed, utilizing Lemma 2.4 and the convexity of || - ||

and (4.25), (4.26), (4.28) that

, we obtain from Algorithm 4.2

%1 = pII>
< Bullxn =PI + (v + 82) lyu — pII?
< Bull%n = pI* + (v + 8)[0ul| Qan = P11 + (1 = 6 llik — pII*]
< Bull%n =PI + (v + 8)[ 04l Q= pII* + (1= 0) (llitn — pII* + 2hnet PN 8 — pII)]
< Bulln — 1% + (v + 84)[ 011 Qi — p1?
+ @ =) (It = pI* + 22n0t Pl (i — pIl + llitn — plI)) ]
< Bull%n = pI> + (v + 8)[ 041 Q- p1?
+ (L= 0,) (1% = pII*> = 12(2B2 — 112) || Baxy — Bop ||
- w1281 = u)1Bi&y = Bigll* + 20,0 PNl (130 = pll + Nt — plI) ) ]
< [l = pII* + 01 Qe — pII* = (¥ + 82)A = 0) [ 14228 — 2) | Boxs — Bop |

+ w1281 = ) |Bi%n — Bigl1*] + 22n0alpll (I3 = pll + llitn — pll).
Therefore,

(Y + 80) (1 = 02)[ 12(2B2 — 12) 1 Baxn — Bop||* + 1 (281 — 1) | B — Bag*]
< 1% = pII” = 1%na1 = 2I* + 00| Qtw = P11 + 20t 2| (1172 — Pl + 122 - pll)
< (Ien = 2l + 11 = I 160 = K || + 04| Qs — pII>

+ 2)‘-nan||p”(”ﬁn =pl +u, —P||)~
Since a,, — 0, ||x; — %11/ = O, liminf,_, o 8, > 0, {A,} C [a, b] and 0, — 0, it follows that
lim ||BiX, —Bigqll=0 and lim ||Byx, — Bypl|| =0.
n— o0 n— 00

Step 4. lim,,_, o ||Sy, — yull = 0.
Indeed, utilizing the Lipschitz continuity of Vf, , we have

ity — iinll = | Pc = AnVfoon)itn = P = 2y Voo, Ytk || < Nt — 1.

Page 43 of 50
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This together with | %, — u,|| — 0 implies that lim, . ||#, — #,|| = 0 and hence
lim,, o ||#, — uy|l = 0. Utilizing the arguments similar to those of (4.17) and (4.18) in
the proof of Theorem 4.1, we get

~ 2
1% — gl

< oy =Pl = |0 = Fn— (0= @)||” + 2082 |60 = % — (0 — | IBoxs — Bopll  (4.39)
and

2
|, - p

~ ~ 2 ~ ~
<& —gl* = |Fn —ttn + = @)|” + 201 ||%n — n + (0 - Q)| IB1%s — Brgll.  (4.40)
Utilizing (4.28), (4.39) and (4.40), we have

ity = plI* = llitn = p + by — itnl|®

< Nitn = P + 2tk — thyy it - p)

< Nty = pI* + 2|ty = it | | 2 — p|

< lln = P11 + 2200t | Pl 17t — pI| + 21l — itall |2 — pll

< & =gl = % = tn + (0= D[ + 20| % — 1 + (0 — @) [ B1s - Bug|
+ 20ul|pll|7n = Pl + 21l = il |20 — p|

< 10 = pI% = %0 =% — (0 = @) + 2022]|% — % — (0 — @) || | Baxs - Bop
& = tn+ = @)|” + 201 | % — 10 + 0 - D 1B — Brg]

+ 2hn0nl|pIitn = Pl + 21|ty — |l || = plI. (4.41)
Thus, utilizing Lemma 2.1, from Algorithm 4.2 and (4.41) it follows that

%41 = pII?
< Bullww = pI? + (v + )10 — pI?
< Bulltn =PI + (v + )[04l Qs — pI* + (1 = 3) |2 — 1]
< Bulln = P17 + (v + 8) {0l Qs — pII? + A= ) 160 = pII* ~ 60— T — (0~ D)
200 % — Fn — (0~ @[ 11Ba%n — Bopll — | %n — 1w + (0 — )|
+ 20| Fn — 1t + (0~ )| 1B1 — Bugll + 2200 P12 —
+ 20 ity — i 80 — 11 ]}
< 1t = P11 + 0 1Qs =PI = (¥ + 8,) (1 = 0) (|2 = — (0 - )|
+ =+ 0 - 9)])
+ 242 | %0 = %n — (2 — @)|| |1 Baxn — Bop|l + 241 | % — s + (p — @) | 1 Bi&n — Bug|

+ 20t |P12n = Pl + 20| itn = || |22 = P,
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which hence implies that

W+ 8)A = 0)([n = Fn = (0 = )| + &0~ sn + (0 - 0)[)
< %0 = P11 = 11 = PII” + 0ul| Qan — pII* + 2hncts Il | 2n — p
+ 2415 |, =% — (p = @) || I1Boxs — Bopll + 2411 |2y — 14 + (p = @) | 1B, — Bug
+ 2l ity = it |8 — p|
< (bt = 21l + 19001 = 21 1% = % | + 0| Qi — pII* + 220t |2 — |
+ 2442 | %0 — & = (p = q) | 1 Boxn = Bopll + 21 || % — s + (p = @) | 1B — Brgl

+ 2y — syl | = pl.-

Since liminf,_, o 8, >0, 0, — 0, {A,} C [a, b], o, — O, || Box,, — Bap|| — O, || BiX,, — Bigl| —
0, ||, — it,]| — O and ||x;,, — x,,41]| = O, it follows from the boundedness of {x,,}, {X,}, {..},
{t1,,} and {u,,} that

lim ||x,,—5c,, —(p—q)” =0 and lim ||5c,,—un + (p—q)” =0.

n—00 n—00
Consequently, it immediately follows that

lim ||x, —u,||=0 and lim |x, —u,| =0. (4.42)

n—00 n—00
This together with ||y, — i, || < 0,,||Qx,, — i, || — O implies that

lim ”xn _yn” =0.

H—0Q
Since

H‘Sn(syn _xn)” = || Vn(xn _yn) + 5n(xn _S_yn) + Vn(yn _xn)”

< %n = Xnaall + Vull®n = yull,

we have
lim |Sy, —x,|=0 and lim ||Sy,—y,| =0.
n—00 n—00

Step 5. limsup,,_, . (Qx — X,%, — X) < 0, where ¥ = Prixs)nznr QX.

Indeed, since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

lim sup(Qx — %, x,, — X) = lim (Qx — X, %, — X). (4.43)

n—00 i—00

Also, since H is reflexive and {y,} is bounded, without loss of generality, we may assume

that y,, — p weakly for some p € C. First, it is clear from Lemma 2.2 and [|Sy, — y|| = 0
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that p € Fix(S). Now, let us show that p € . Note that

%2 = G@w)|| = |0 — Pc[Pc(n — 112Baxn) — i1 BiPc(%y — 12 Bax) ]|
= [|%n = ttn]| > 0 (n — 00),
where G : C — C is defined as that in Lemma 1.1. According to Lemma 2.2, we get p € &.

Further, let us show that p € I'. As a matter of fact, since ||x, — u,|| — O, ||, — u,|| — O
and ||x, — y,|l — 0, we deduce that x,, — p weakly and #,,, — p weakly. Let

Vf(v)+Ncv ifveC,
Tv =
@ ifveC,

where Ncv={we H;:(v—u,w)>0,Vu € C}. Then T is maximal monotone and 0 € Tv
if and only if v € VI(C, Vf); see [41] for more details. Utilizing the arguments similar to
those of Step 5 in the proof of Theorem 4.1 and the relations

in = Pc(tty — A Ve, () and veC,
we can derive
(v—p,w)>0.

Since T is maximal monotone, we have p € 7710 and hence p € VI(C, Vf). Thus it is clear
that p € I'. Therefore, p € Fix(S) N & N I". Consequently, in terms of Proposition 2.1(i),
we obtain from (4.4:3) that

lim sup(Q& — %, &, — %) = lim (Q% — %%, — %) = (QX — %, p — ) < 0.
n—00 =00

Step 6. lim,,_,  [|x, — %] = 0.
Indeed, from (4.25), (4.26) and (4.28) it follows that

— - 2 ~ - 2 — - —
lltn = X1|° < llitw = X|1° + 2An00, %] |22 — X
- 2 - - - ~ -
< Nt = %1% + 2hnetn X (1138 — % + 132, — X1/

- 2 - - - ~ -
< Nl = %1% + 200 13N (N8 = X + N2 = XII).

Utilizing the arguments similar to those of Step 6 in the proof of Theorem 4.1, we can infer
that

(Qty = %,y — %) < pllxy — X% + (QX = %, %, — &) + [|Quy — X[ [y — %l
and

=12
”xn+l _x”

< Bullxn =1 + (v + 8a) 1y — X1
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< Bullxn = %> + (v + 8:)[(A = 0)* Nt — X* + 20, (Qy — X, ¥ — ) |
< Bulloen = X + (v + 8){ (A = o) [ 1% — %)
+ 2000 |Z]| (120 — EI| + 2 — Z]1)] + 200 [ [l — %]
+(Q& — %%, — %) + [|Qxy — [ 17 — %]}
<[1-@=20)¥n + 8n)0n] I — %I

2[(Qx =X, %0 — %) + 1Qxn = Xl llyn — %ull]
1-2p

+ (1 =20)(Vn + 84)0nu
+ 200 %I (1128, — XI| + Nl — X1]).

It is easy to see that all conditions of Lemma 2.3 are satisfied. Consequently, we immedi-
ately deduce that ||x, — x| — 0 as n — oo.

Finally, from |u, —x,| — 0 and ||z, — x,|| — O, it follows that ||u, — x| — 0 and ||z, —
x|| = 0. This completes the proof. d

Corollary 4.3 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let
A € B(Hy,Hy) and B; : C — H; be B;-inverse strongly monotone for i =1,2. Let S: C — C
be a k-strictly pseudo-contractive mapping such that Fix(S)N & N I" # . For fixed u € C
and xy € C given arbitrarily, let {x,}, {u,}, {it,} be the sequences generated iteratively by

uy = Pc[Pc(xy — paBoxy) — 1 B1Pc(x, — taBaxn)],
Uy = Pc(uy — An Ve, (n)),

Yn = 0nth + (1= 0,)Pc(thy — Ay Vfa, (i),

Xns1 = Bun + Yuln + 0uSyn, V=0,

(4.44)

where w; € (0,28;) for i = 1,2, {a,} C (0,00), {1,} C (0, W) and {0}, {Bu} {vu} {n} C
[0,1] such that
(i) Yool an <00
(i) Bu+yn+du=1and (y,+38,)k <y, foralln>0;
(ili) limy— oo 0y =0 and Y o) 0, = 00;
(iv) 0 <liminf,_, o B, <limsup,_, ., B <1 and liminf,_, 8, > O;
(V) limn—mo( Ynil . _Vn ) =0;

1-Bn+1 1-Bu
(vi) 0<liminfy,_, o X, <limsup,_, A, < W and lim,_, oo |Aps1 — An| = 0.

Then the sequences {x,}, {u,}, {1t,} converge strongly to the same point x = Prix(synanrit
if and only if im,_, « ||it,, — u,|| = 0. Furthermore, (x,) is a solution of GSVI (1.3), where
¥ = Pc(X — n2BaX).

In addition, utilizing Corollary 4.3, we derive the following result.

Corollary 4.4 Let C be a nonempty closed convex subset of a real Hilbert space H,. Let A €
B(Hi1,H3) and S : C — C be a nonexpansive mapping such that Fix(S) N I" # (). For fixed
u € C and xy € C given arbitrarily, let {x,}, {ii,} be the sequences generated iteratively by

I:ln = PC(xn - )\nvﬁxn (xn));
Xne1 = BnXn + 1- ,3,4)5[0',41/! +(1-0,)Pc(tt, - )anﬁxn (@), Vn=>0,

(4.45)
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where {a,} C (0,00), {A,} C (0, W) and {o,},{Bx} C [0,1] such that
(i) Do < 005
(ii) limy—oo 0, =0andy 2,0, = 00;
(iii) 0 <liminf,_ s B, <limsup,_, . Bn < 1;
(iv) 0 <liminf,_, oo Ay <limsup,_, . Ay < ﬁ and lim,_, oo |Aps1 — An| = 0.
Then the sequences {x,}, {i,} converge strongly to the same point X = Prixsnru if and only

lfhmn—>oo i, — %, = 0.

Proof In Corollary 4.3, put By =B, =0and y,=0. Then & =C, 8, + 6, =1forall n > 0,
and the iterative scheme (4.44) is equivalent to

Up = Xy,
Ztn = PC(un - )"nvﬁx,, (Mn))¢
Y = onth + (1 — 0)Pc(thy — Ay Ve, (i),

Xn+l = ﬁnxn + Snsyn, Vl’l Z 0.

This is equivalent to (4.45). Since S is a nonexpansive mapping, S must be a k-strictly
pseudo-contractive mapping with k = 0. In this case, it is easy to see that all the conditions
(i)-(vi) in Corollary 4.3 are satisfied. Therefore, in terms of Corollary 4.3, we obtain the
desired result. d

Remark 4.1 Theorems 4.1 and 4.2 improve, extend and develop [23, Theorem 5.7], [34,
Theorem 3.1], [8, Theorem 3.2] and [17, Theorem 3.1] in the following aspects:

(i) Compared with the relaxed extragradient iterative algorithm in [8, Theorem 3.2], our
hybrid viscosity iterative algorithms (i.e., Algorithms 4.1 and 4.2) remove the requirement
of boundedness for the domain C in which various mappings are defined.

(ii) Because both [23, Theorem 5.7] and [34, Theorem 3.1] are weak convergence results
for solving the SFP, beyond question, our results as strong convergence theorems are very
interesting and quite valuable.

(iii) The problem of finding an element of Fix(S)N & N I" in Theorems 4.1 and 4.2 is more
general than the corresponding problems in [23, Theorem 5.7] and [34, Theorem 3.1],
respectively.

(iv) The hybrid extragradient method for finding an element of Fix(S) N & N VI(C,A)
in [17, Theorem 3.1] is extended to develop our hybrid viscosity iterative algorithms (i.e.,
Algorithms 4.1 and 4.2) for finding an element of Fix(S)N & N I".

(v) The proof of our results is very different from that of [17, Theorem 3.1] because our
argument technique depends on Lemma 2.3, the restriction on the regularization param-
eter sequence {a,} and the properties of the averaged mappings Pc(I — 1, Vf,,) to a great
extent.

(vi) Because Algorithms 4.1 and 4.2 involve two inverse strongly monotone mappings B;
and By, a k-strictly pseudo-contractive self-mapping S and several parameter sequences,
they are more flexible and more subtle than the corresponding ones in [23, Theorem 5.7]
and [34, Theorem 3.1], respectively.

Competing interests
The authors declare that they have no competing interests.


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43 Page 49 of 50
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

Authors’ contributions
All authors take equal roles in deriving results and writing of this paper.

Author details

' Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China. ?Scientific Computing Key
Laboratory of Shanghai Universities, Shanghai, 200234, China. *Center for Fundamental Science, Kaohsiung Medical
University, Kaohsiung, 807, Taiwan. “Department of Mathematics, King Abdulaziz University, PO. Box 80203, Jeddah,
21589, Saudi Arabia.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The first author was partially supported by the National Science Foundation of China (11071169), Innovation Program of
Shanghai Municipal Education Commission (092Z133) and Ph.D. Program Foundation of Ministry of Education of China
(20123127110002). The second author was partially supported by the grant NSC 99-2115-M-037-002-MY3.

Received: 21 November 2012 Accepted: 31 January 2013 Published: 27 February 2013

References

1. Lions, JL, Stampacchia, G: Variational inequalities. Commun. Pure Appl. Math. 20, 493-512 (1967)

2. Bnouhachem, A, Noor, MA, Hao, Z: Some new extragradient iterative methods for variational inequalities. Nonlinear
Anal. 70, 1321-1329 (2009)

3. Ceng, LC, Ansari, QH, Yao, JC: Viscosity approximation methods for generalized equilibrium problems and fixed point
problems. J. Glob. Optim. 43, 487-502 (2009)

4. Ceng, LC, Huang, S: Modified extragradient methods for strict pseudo-contractions and monotone mappings.
Taiwan. J. Math. 13(4), 1197-1211 (2009)

5. Ceng, LC, Wang, CY, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system
of variational inequalities. Math. Methods Oper. Res. 67, 375-390 (2008)

6. Ceng, LC, Yao, JC: An extragradient-like approximation method for variational inequality problems and fixed point
problems. Appl. Math. Comput. 190, 205-215 (2007)

7. Ceng, LC, Yao, JC: Relaxed viscosity approximation methods for fixed point problems and variational inequality
problems. Nonlinear Anal. 69, 3299-3309 (2008)

8. Yao, Y, Liou, YC, Kang, SM: Approach to common elements of variational inequality problems and fixed point
problems via a relaxed extragradient method. Comput. Math. Appl. 59, 3472-3480 (2010)

9. Zeng, LC, Yao, JC: Strong convergence theorem by an extragradient method for fixed point problems and variational
inequality problems. Taiwan. J. Math. 10, 1293-1303 (2006)

10. Nadezhkina, N, Takahashi, W: Strong convergence theorem by a hybrid method for nonexpansive mappings and
Lipschitz-continuous monotone mappings. SIAM J. Optim. 16(4), 1230-1241 (2006)

11. Ceng, LG, Lin, YC, Petrusel, A: Hybrid method for designing explicit hierarchical fixed point approach to monotone
variational inequalities. Taiwan. J. Math. 16, 1531-1555 (2012)

12. Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings.

J. Optim. Theory Appl. 118, 417-428 (2003)

13. Nadezhkina, N, Takahashi, W: Weak convergence theorem by an extragradient method for nonexpansive mappings
and monotone mappings. J. Optim. Theory Appl. 128, 191-201 (2006)

14. Korpelevich, GM: An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metod. 12,
747-756 (1976)

15. Yao, Y, Yao, JC: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math.
Comput. 186(2), 1551-1558 (2007)

16. Verma, RU: On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res.
Hot-Line 3(8), 65-68 (1999)

17. Ceng, LC, Guu, SM, Yao, JC: Finding common solutions of a variational inequality, a general system of variational
inequalities, and a fixed-point problem via a hybrid extragradient method. Fixed Point Theory Appl. 2011, Article ID
626159 (2011).doi:10.1155/2011/626159

18. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8,
221-239(1994)

19. Byrne, C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441-453
(2002)

20. Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inversion problems in intensity-modulated
radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)

21. Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications for inverse
problems. Inverse Probl. 21, 2071-2084 (2005)

22. Censor, Y, Motova, A, Segal, A: Perturbed projections and subgradient projections for the multiple-sets split feasibility
problem. J. Math. Anal. Appl. 327, 1244-1256 (2007)

23. Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26,
105018 (2010)

24. Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse
Probl. 20, 103-120 (2004)

25. Qu, B, Xiu, N: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655-1665 (2005)

26. Xu, HK: A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22,
2021-2034 (2006)

27. Yang, Q: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261-1266 (2004)

28. Zhao, J, Yang, Q: Several solution methods for the split feasibility problem. Inverse Probl. 21, 1791-1799 (2005)

29. Sezan, M, Stark, H: Applications of convex projection theory to image recovery in tomography and related areas. In:
Stark, H (ed.) Image Recovery Theory and Applications, pp. 415-462. Academic Press, Orlando (1987)


http://www.fixedpointtheoryandapplications.com/content/2013/1/43
http://dx.doi.org/10.1155/2011/626159

Ceng and Yao Fixed Point Theory and Applications 2013, 2013:43
http://www.fixedpointtheoryandapplications.com/content/2013/1/43

30.

31
32.

33

34,

35.

36.

37.

38.

39.

40.

41.

Eicke, B: Iteration methods for convexly constrained ill-posed problems in Hilbert spaces. Numer. Funct. Anal. Optim.
13,413-429 (1992)

Landweber, L: An iterative formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615-624 (1951)
Potter, LC, Arun, KS: A dual approach to linear inverse problems with convex constraints. SIAM J. Control Optim. 31,
1080-1092 (1993)

Combettes, PL, Wajs, V: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4,
1168-1200 (2005)

Ceng, LC, Ansari, QH, Yao, JC: An extragradient method for solving split feasibility and fixed point problems. Comput.
Math. Appl. 64(4), 633-642 (2012)

Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am.
Math. Soc. 73, 591-597 (1967)

Bertsekas, DP, Gafni, EM: Projection methods for variational inequalities with applications to the traffic assignment
problem. Math. Program. Stud. 17, 139-159 (1982)

Han, D, Lo, HK: Solving non-additive traffic assignment problems: a descent method for co-coercive variational
inequalities. Eur. J. Oper. Res. 159, 529-544 (2004)

Combettes, PL: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization
53(5-6), 475-504 (2004)

Marino, G, Xu, HK: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math.
Anal. Appl. 329, 336-346 (2007)

Geobel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.
Cambridge University Press, Cambridge (1990)

Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)

doi:10.1186/1687-1812-2013-43
Cite this article as: Ceng and Yao: Relaxed and hybrid viscosity methods for general system of variational
inequalities with split feasibility problem constraint. Fixed Point Theory and Applications 2013 2013:43.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 50 of 50


http://www.fixedpointtheoryandapplications.com/content/2013/1/43

	Relaxed and hybrid viscosity methods for general system of variational inequalities with split feasibility problem constraint
	Abstract
	AMS Subject Classiﬁcation
	Keywords

	Introduction
	Preliminaries
	Relaxed viscosity methods and their convergence criteria
	Hybrid viscosity methods and their convergence criteria
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


