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1 Introduction with preliminaries
The concept of a w-distance was initiated by Kada, Suzuki and Takahashi [] and was pri-
marily utilized to improve Caristi’s fixed point theorem [], Ekeland’s variational principle
[] and nonconvex minimization theorems whose descriptions and details are available in
Takahashi []. Proving existence results of fixed points on partially ordered metric spaces
has been a relatively new development in metric fixed points theory. In [], an analogue
of Banach’s fixed point theorem in a partially ordered metric space has been proved be-
sides discussing some applications to matrix equations. Ran and Reurings have further
weakened the usual contraction condition but merely up to monotone operators.
Branciari [] established a fixed point result for an integral-type inequality, which is a

generalization of the Banach contraction principle. Vijayaraju et al. [] obtained a general
principle, which made it possible to prove many fixed point theorems for pairs of maps
satisfying integral-type contraction conditions.
Several fixed point and common fixed point theorems in metric and semi-metric spaces

for compatible, weakly compatible and owc mappings satisfying contractive conditions
of integral type were proved in [–] and in other papers. Later on, Suzuki [] proved
that integral-type contractions are Meir-Keeler contractions. He also showed that Meir-
Keeler contractions of integral type are still Meir-Keeler contractions. Jachymski [] also
proved that most contractive conditions of integral type given recently by many authors
coincidewith classical ones. But he gave a new contractive condition of integral typewhich
is independent of classical ones. Recently Popa and Mocanu [] obtained integral-type
contractions via an altering distance function and proved general common fixed point
results for integral-type contractive conditions.
In [], Razani et al. proved a fixed point theorem for (φ,ψ ,p)-contractive mappings

on X [i.e., for each x, y ∈ X , φp(T x,T y) ≤ ψφp(x, y)], which is a new version of the main
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theorem in [], by considering the concept of aw-distance. In fact, he proved the following
result.

Theorem [] Let p be aw-distance on a completemetric space (X ,d),φ be nondecreasing,
continuous and φ(ε) >  for each ε >  andψ be nondecreasing, right continuous andψ(t) <
t for all t > . Suppose T is a (φ,ψ ,p)-contractive map on X , then T has a unique fixed
point in X .Moreover, limn→∞ T nx is a fixed point of T for each x ∈X .

In [] Lakzian and Lin obtained some generalizations of fixed point theorems by Kada
et al. [], Hicks and Rhoades [] and several other results with respect to (φ,ψ ,p)-
contractive maps on a complete metric space.
In this paper, we use the concept of a w-distance to prove the fixed point theorems in

partially ordered metric spaces. Our results do not only generalize some fixed point the-
orems, but also improve and simplify the previous results.
Before presenting our results, we collect relevant definitions and results which will be

needed in our subsequent discussion.

Definition  Let X be a nonempty set. Then (X ,d,�) is called a partially ordered metric
space if

(i) (X ,�) is a partially ordered set and
(ii) (X ,d) is a metric space.

Definition  Let (X ,�) be a partially ordered set. Then
(a) elements x, y ∈X are called comparable with respect to ‘�’ if either x� y or y� x;
(b) a mapping T :X →X is called nondecreasing with respect to ‘�’ if x� y implies

T x � T y.

Definition  [] Let (X ,d) be a metric space. Then the function p : X × X → [,∞) is
called a w-distance on X if the following conditions are satisfied:
(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈X ,
(b) for any x ∈X , p(x, ·) :X → [,∞) is lower semi-continuous, i.e., if x ∈X and

yn → y in X , then p(x, y) ≤ lim infn p(x, yn),
(c) for any ε > , there exists δ >  such that p(x, z) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Example  [] Let (X ,d) be a metric space and let g be a continuous mapping from X
into itself. Then a function p :X ×X → [,∞) defined by

p(x, y) =max
{
d(gx, y),d(gx, gy)

}
for every x, y ∈X

is a w-distance on X .

Clearly, everymetric is aw-distance but not conversely. The following example substan-
tiates this fact.

Example  Let (X ,d) be a metric space. A function p : X × X → [,∞) defined by
p(x, y) = k for every x, y ∈X is a w-distance on X , where k is a positive real number. But p
is not a metric since p(x,x) = k �=  for any x ∈X .
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Example  Let X = {, , , } be a metric space with a metric

d(x, y) = |x – y| for all x, y ∈X .

Let p :X ×X → [,∞) be defined by

p(, ) = p(, ) = , p(, ) = p(, ) = p(, ) = p(, ) = ,

p(, ) = p(, ) = p(, ) = p(, ) = p(, ) = p(, ) = ,

and p(x,x) = . for every x ∈X .
Clearly, conditions (b) and (c) from the definition of w-distance are satisfied (for every

ε > , put δ = 
 ), while condition (a) is not satisfied as

p(, ) =  >  +  = p(, ) + p(, ).

Definition  Let T :X →X be a function.
(a) FT = {x ∈X |x = T (x)} (i.e., a set of fixed points of T ).
(b) The function T is called a Picard operator (briefly, PO) if there exists x* ∈X such

that FT = {x*} and {T n(x)} converges to x* for all x ∈X .
(c) The function T is called orbitally U -continuous for any U ⊂X ×X if the following

condition is satisfied:
For any x ∈X , T ni (x)→ a ∈X as i→ ∞ and (T ni (x),a) ∈ U for any i ∈N imply

that T ni+(x)→ T a as i → ∞.

Let (X ,�) be a partially ordered set. Let us denote by X� the subset of X ×X defined
by

X� =
{
(x, y) ∈X ×X |x� y or y� x

}
.

Definition  A map T :X → X is said to be orbitally continuous if x ∈ X and T ni (x) →
a ∈X as i → ∞ implies that T ni+(x)→ T a as i→ ∞.

Suppose

� =
{
φ|φ : [,∞) → [,∞) is nondecreasing, continuous and

φ(ε) >  for each ε > 
}
.

Moreover, let

� =
{
ψ |ψ : [,∞)→ [,∞) is nondecreasing, right continuous and

ψ(t) < t for all t > 
}
.

Also, let

� =
{
γ |γ : [,∞) → [,∞) is nondecreasing, continuous and

γ (t) =  iff t = 
}

(cf. []).
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Example  Let {an}∞n= and {cn}∞n= be two non-negative sequences such that {an} is strictly
decreasing and converging to zero, and (for each n ∈ N) cn–an > an+, where  < cn– < .
Define ψ : [,∞) → [,∞) by ψ() = , ψ(t) = cnt, if an+ ≤ t < an, ψ(t) = ct if t ≥ a,
then ψ is in � .

Now, we prove the following two lemmas.

Lemma  If ψ ∈ � , then limn→∞ ψn(t) =  for each t > .

Proof Owing to the monotonicity of ψ , for each t > , {ψn(t)} is non-increasing and also
non-negative. Thus, there exists α ≥  such that α+ = limn→∞ ψn(t). Suppose on the con-
trary that α > . As ψ is right continuous, therefore

 < α = lim
n→∞ψn+(t) = ψ(α),

which is a contradiction as ψ(t) < t. Thus α = . �

Lemma  If φ ∈ �(γ ∈ �), {an} ⊂ [,∞) and limn→∞ φ(an) =  (limn→∞ γ (an) = ), then
limn→∞ an = .

Proof If there exists ε >  and {nk}∞k= such that

ank ≥ ε > ,

then

lim sup
n→∞

φ(an) ≥ lim sup
k→∞

φ(ank ) ≥ φ(ε) > 

yielding thereby limn→∞ φ(an) �= . �

The following two lemmas are crucial in the proofs of our main results.

Lemma  [, ] Let (X ,d) be a metric space equipped with a w-distance p. Let {xn} and
{yn} be sequences in X whereas {αn} and {βn} be sequences in [,∞) converging to zero.
Then the following conditions hold (for x, y, z ∈X ):
(a) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for n ∈ N , then y = z. In particular, if p(x, y) =  and

p(x, z) = , then y = z;
(b) if p(xn, yn)≤ αn and p(xn, z) ≤ βn for n ∈ N , then limn→∞ d(yn, z) = ;
(c) if p(xn,xm)≤ αn for n,m ∈N with m > n, then {xn} is a Cauchy sequence;
(d) if p(y,xn)≤ αn for n ∈N , then {xn} is a Cauchy sequence.

Lemma  [] Let p be a w-distance on a metric space (X ,d) and {xn} be a sequence in X
such that for each ε > , there exists Nε ∈ N such that m > n > Nε implies p(xn,xm) < ε (or
limm,n p(xn,xm) = ). Then {xn} is a Cauchy sequence.

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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2 (φ,ψ ,p)-contractivemaps
Now, we present our main result as follows.

Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist ψ ∈ � and φ ∈ � such that

φ
(
p(Sx,Sy)

) ≤ ψφ
(
p(x, y)

)
for all (x, y) ∈X�,

(c) either S is orbitally continuous at x or
(c′) S is orbitally X�-continuous and there exists a subsequence {Snk x} of {Snx} converg-

ing to x* such that (Snk x,x*) ∈X� for any k ∈N .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Proof If x = Sx for some x ∈X , then there is nothing to prove. Otherwise, let there be
x ∈ X such that x �= Sx, and (x,Sx) ∈ X�. Owing to the monotonicity of S , we can
write (Sx,Sx) ∈X�. Continuing this process inductively, we obtain

(
Snx,Smx

) ∈X�

for any n,m ∈ N . Now, we proceed to show that

lim
n→∞p

(
Snx,Sn+x

)
= . ()

By using condition (b) and the properties of φ, ψ , we get

φ
(
p
(
Snx,Sn+x

)) ≤ ψφ
(
p
(
Sn–x,Snx

))
≤ ψφ

(
p
(
Sn–x,Sn–x

))
≤ · · ·
≤ ψn–mφ

(
p
(
Smx,Sm+x

))
≤ · · ·
≤ ψnφ

(
p(x,Sx)

)
. ()

Now, using Lemma , limn→∞ φ(p(Snx,Sn+x)) = , which due to Lemma  gives rise to

lim
n→∞p

(
Snx,Sn+x

)
= 

so that () is established.
Similarly, we can show

lim
n→∞p

(
Sn+x,Snx

)
= . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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Next, we proceed to show

lim
n,m→∞p

(
Snx,Smx

)
= . ()

Suppose () is untrue. Then we can find a δ >  with sequences {mk}∞k=, {nk}∞k= such that

p
(
Snk x,Smkx

) ≥ δ, for all k ∈ {, , , . . .}, ()

whereinmk > nk . By () there exists k ∈N such that nk > k implies

p
(
Snk x,Snk+x

)
< δ. ()

Notice that in view of () and (), mk �= nk+. We can assume that mk is a minimum index
such that () holds so that

p
(
Snk x,Srx

)
< δ, for r ∈ {nk+,nk+, . . . ,mk – }. ()

Now (), () and () imply

o < δ ≤ p
(
Snk x,Smkx

)
≤ p

(
Snk x,Smk–x

)
+ p

(
Smk–x,Smkx

)
< δ + p

(
Smk–x,Smkx

)

so that

lim
k→∞

p
(
Snk x,Smkx

)
= δ. ()

If ε = lim supk p(Snk+x,Smk+x) ≥ δ, then there exists {kr}∞r= such that

lim
r→∞p

(
Snkr+x,Smkr+x

)
= ε ≥ δ.

Since φ is continuous and nondecreasing and also (Snkr x,Smkr x) ∈ X�, by using con-
dition (b) and (), one gets

φ(δ) ≤ φ(ε) = lim
r→∞φ

(
p
(
Snkr+x,Smkr+x

)) ≤ ψφ(δ).

Notice that

φp
(
Snkr x,Smkr x

) → φ(δ)+

and ψ is right continuous, therefore φ(δ) = . This is indeed a contradiction and

lim sup
k

p
(
Snk+x,Smk+x

)
< δ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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so we have

δ ≤ p
(
Snk x,Smkx

)
≤ p

(
Snk x,Snk+x

)
+ p

(
Snk+x,Smk+x

)
+ p

(
Smk+x,Smkx

)
≤ lim

k→∞
p
(
Snk x,Snk+x

)
+ lim sup

k
p
(
Snk+x,Smk+x

)
+ lim

k→∞
p
(
Smk+x,Smkx

)
= lim sup

k
p
(
Snk+x,Smk+x

)
< δ

(
on using ()

)
,

which is a contradiction. Thus, () is proved.
Owing to Lemma , {Snx} is a Cauchy sequence in X . Since X is a complete metric

space, there exists x* ∈X such that Snx → x* as n→ ∞.
Now, we show that x* is a fixed point of S . If (c) holds, then Sn+x → Sx* (as n → ∞).

By the lower semi-continuity of p(Snx, ·), we have

p
(
Snx,x*

) ≤ lim inf
m→∞ p

(
Snx,Smx

)
= αn (say),

p
(
Snx,Sx*

) ≤ lim inf
m→∞ p

(
Snx,Sm+x

)
= βn (say).

By using (), we have αn,βn →  as n→ ∞. Now, in view of Lemma , we conclude that

Sx* = x*.

Next, suppose that (c′) holds. Since {Snk x} converges to x*, (Snk x,x*) ∈ X� and S is
X�-continuous, it follows that {Snk+x} converges to Sx*. As earlier, by the lower semi-
continuity of p(Snx, ·), we conclude that Sx* = x*.
If Sx = x, we have

φp(x,x) = φp(Sx,Sx)≤ ψφ
(
p(x,x)

)
< φp(x,x).

This is a contradiction which amounts to say that φp(x,x) =  so that p(x,x) = . This
completes the proof. �

The following example substantiates the fact that the condition of a partial ordering on
the underlying metric space is necessary in Theorem .

Example  Consider X = [, ] which is indeed a complete metric space under a usual
metric d(x, y) = |x – y| (for all x, y ∈X ) wherein by defining p(x, y) = |x – y|, we are in the
receipt of a w-distance p on (X ,d). We consider X� as follows:

X� =
{
(x, y) ∈X ×X : x = y or x, y ∈ {} ∪

{

n
: n = , , , . . .

}}
,

where ‘�’ is the usual ordering.
Let S :X →X be given by

S(x) =

⎧⎪⎨
⎪⎩
, if x = ,


n– , if x = 

n ,
√
 , otherwise.

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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Obviously, S is a nondecreasingmap. Also, there is x =  inX such that  = x � Sx = ,
i.e., (x,Sx) ∈X�, and S satisfies condition (c′).We now show that S satisfies (b) wherein
φ,ψ : [,∞)→ [,∞) are defined as

φ(t) = t

 and ψ(t) =



t
(
t ∈ [,∞)

)
.

Clearly, φ ∈ � and ψ ∈ � . If x = y, condition (b) is satisfied.
Let x =  and y = 

n , then

φp(Sx,Sy) = φ

(


n – 

)
=

(


n – 

) 
 ≤ 



(

n

) 


=


φ
(
p(x, y)

)
= ψφ

(
p(x, y)

)
,

as for any n ∈N, ( n
n– )


 ≤ 

 .
Next, let x = 

n and y = 
m withm > n. Then we have

φp(Sx,Sy) = φ

(
(m – n)

(n – )(m – )

)

=
(

(m – n)
(n – )(m – )

) 
 ≤ 



(
(m – n)

mn

) 


=


φ
(
p(x, y)

)
= ψφ

(
p(x, y)

)
,

as for any n ∈N, ( mn
(n–)(m–) )


 ≤ 

 . Hence condition (b) is satisfied.
Thus, all the conditions of Theorem  are satisfied implying thereby the existence of a

fixed point of the map S , which are indeed two in number, namely: x = , √
 .

Here, it can be pointed out that this example will not work in a metric space equipped
with a w-distance without a partial ordering as condition (b) of Theorem  will not be
satisfied. To substantiate this claim, choosing x =

√
 and y =  in condition (b), we get

φp(S
√
,S) =

(

√




) 
 �≤ ψφ

(
p(

√
, )

)
=
(

√
) 


,

which is a contradiction.

In Theorem , if S :X →X is a continuous map, we deduce the following corollary.

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a continuous and nondecreasing mapping. Suppose that
(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist φ ∈ � and ψ ∈ � such that

φp(Sx,Sy)≤ ψφ
(
p(x, y)

)
for all (x, y) ∈X�.

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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In Theorem , setting φ = I , the identity mapping, we deduce the following corollary.

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exists φ ∈ � such that

p(Sx,Sy) ≤ ψ
(
p(x, y)

)
for all (x, y) ∈X�,

(c) either S is orbitally continuous at x or
(c′) S is orbitally X�-continuous and there exists a subsequence {Snk x} of {Snx} which

converges to x* such that (Snk x,x*) ∈X� for any k ∈N .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Choosing φ = I , the identity mapping and ψ(t) = αt (for all t ∈ [,∞) and α ∈ [, )) in
Theorem , we deduce the following corollary.

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) if

p(Sx,Sy) ≤ αp(x, y)

for all (x, y) ∈X�, where α ∈ [, ) and
(c) either S is orbitally continuous at x or
(c′) S is orbitally X�-continuous and there exists a subsequence {Snk x} of {Snx} which

converges to x* such that (Snk x,x*) ∈X� for any k ∈N .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Suppose, ω : R+ → R
+ is a Lebesgue-integrable mapping which is summable and∫ ε

 ω(ξ )dξ >  for each ε > .Now, in the next corollary, setφ(t) =
∫ t
 ω(ξ )dξ andψ(t) = αt,

where α ∈ [, ) in Theorem . Clearly, φ ∈ � and ψ ∈ � . Hence, we can derive the fol-
lowing corollary as a special case.

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) for all (x, y) ∈X�,

∫ p(Sx,Sy)


ω(ξ )dξ ≤ α

∫ p(x,y)


ω(ξ )dξ ,

(c) either S is orbitally continuous at x or

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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(c′) S is orbitally X�-continuous and there exists a subsequence {Snk x} of {Snx} which
converges to x* such that (Snk x,x*) ∈X� for any k ∈N .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

The following simple example demonstrates Theorem .

Example  Consider X = {(, ), (, )}, which is a complete metric space with d((x,x),
(y, y)) = |x – y| + |x – y|. Define g :X →X by g(, ) = (, ) and g(, ) = (, ), which
is a continuous map. Moreover, by defining

p
(
(x,x), (y, y)

)
=max

{
d
(
g(x,x), (y, y)

)
,d

(
g(x,x), g(y, y)

)}
,

p is a w-distance on (X ,d). For (x, y) and (z, t) in X , define ‘�’ as follows: (x, y) � (z, t) ⇔
x ≤ z and y ≤ t (‘≤’ is the usual ordering) so that

X� =
{(
(, ), (, )

)
,
(
(, ), (, )

)}
.

Let S :X →X be given by

S(x, y) =
{
(, ), if (x, y) = (, ),
(, ), if (x, y) = (, ).

Clearly, S is a nondecreasing and continuous map. Also, (, ) ≤ S(, ) = (, ), i.e.,
((, ),S(, )) ∈X�.
We now show that S satisfies (b) with φ,ψ : [,∞)→ [,∞) which are defined as

φ(t) = t and ψ(t) =


t
(
t ∈ [,∞)

)
.

Clearly, φ ∈ � and ψ ∈ � . Let ((, ), (, )) in X�

p
(
S(, ),S(, )

)
= p

(
(, ), (, )

)
=max

{
d
(
g(, ), (, )

)
,d

(
g(, ), g(, )

)}
= ,

and for ((, ), (, )) ∈X�, we have

p
(
S(, ),S(, )

)
= p

(
(, ), (, )

)
= 

and

p
(
(, ), (, )

)
=max

{
d
(
g(, ), (, )

)
,d

(
g(, ), g(, )

)}
= .

Therefore, for every ((x,x), (y, y)) ∈X�, we have

φp
(
S(x,x),S(y, y)

) ≤ ψφ
(
p
(
(x,x), (y, y)

))
.

Thus, all the conditions of Theorem  are satisfied implying thereby the existence of a fixed
point of S which is indeed (x, y) = (, ).
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Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist ψ ∈ � and φ ∈ � such that

φ
(
p(Sx,Sy)

) ≤ ψφ
(
p(x, y)

)
for all (x, y) ∈X�, and

(c′′) for every y ∈X with y �= Sy,

inf
{
p(x, y) + p(x,Sx) : x ∈X

}
> .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Proof Observe that the sequence {Snx} is a Cauchy sequence (in view of the proof
of Theorem ), and so there exists a point x* in X such that limn→∞ Snx = x*. Since
limm,n→∞ d(Snx,Smx) = , therefore for each ε > , there exists Nε ∈ N such that n >Nε

implies p(SNεx,Snx) < ε. Since limn→∞ Snx = x* and p(x, ·) is lower semi-continuous,
therefore

p
(
SNεx,x*

) ≤ lim inf
n

p
(
SNεx,Snx

) ≤ ε.

Therefore, p(SNε ,x*) ≤ ε. Set ε = 
k , Nε = nk so that

lim
k→∞

p
(
Snk x,x*

)
= .

Now, assume that x* �= Sx*. Then due to hypothesis (c′′), we have

 < inf
{
p
(
x,x*

)
+p(x,Sx) : x ∈X

} ≤ inf
{
p
(
Snk x,x*

)
+p

(
Snk x,Snk+x

)
: n ∈N

} → 

as n→ ∞. This is a contradiction. Hence x* = Sx*.
If Sx = x, we have

φp(x,x) = φ
(
p(Sx,Sx)

) ≤ ψφ
(
p(x,x)

)
< φp(x,x),

which is a contradiction implying thereby φp(x,x) =  so that p(x,x) = . This completes
the proof. �

Corollary  Replacing condition (c′′) by hypothesis (c) or (c′) of Corollary  (also of Corol-
lary  or Corollary ) the fixed point of S continues to exist.

In what follows, we give a sufficient condition for the uniqueness of a fixed point in
Theorem  which runs as follows:
(A) for every x, y ∈X , there exists a lower bound or an upper bound.
In [], it is proved that condition (A) is equivalent to the following one:
(B) for every x, y ∈X , there exists z = c(x, y) ∈X for which (x, z) ∈X� and (y, z) ∈X�.

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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Theorem  With the addition of condition (B) to the hypotheses of Theorem  (or Theo-
rem ), the fixed point of S turns out to be unique.Moreover,

lim
n→∞Sn(x) = x*

for every x ∈X provided x* ∈FS , i.e., the map S :X →X is a Picard operator.

Proof Following the proof of Theorem , FS �= ∅. Suppose there exist two fixed points x*

and y* of S in X . We prove that

p
(
y*,x*

)
= . ()

We distinguish two cases.
Case : If (y*,x*) ∈ X�. Suppose that p(y*,x*) > , then by using condition (b) and the

property of ψ , we get

φp
(
y*,x*

)
= φp

(
Sy*,Sx*

) ≤ ψφ
(
p
(
y*,x*

))
< φp

(
y*,x*

)
,

which is a contradiction. Therefore we have ().
Also, in view of Theorem , we have

p
(
y*, y*

)
= . ()

On using (), () and Lemma , we have y* = x*, i.e., the fixed point of S is unique.
Case : If (x*, y*) /∈X�, then owing to condition (B), there exists z ∈X such that (x*, z) ∈

X� and (y*, z) ∈X�. As (z,x*) ∈X� and (y*, z) ∈X�, proceeding along the lines of the proof
of Theorem , we can prove

lim
n→∞p

(
Snz,x*

)
=  and lim

n→∞p
(
Snz, y*

)
= .

By using Lemma , we infer that y* = x*, i.e., the fixed point of S is unique. Now, we prove

lim
n→∞Sn(x) = x*

for every x ∈X provided x* ∈FS .
Let x ∈ X and (x,x) ∈ X�. Proceeding along the lines of the proof of Theorem , we

can prove limn→∞ p(Snx,Snx) = , and owing to x* ∈ FS and p is a w-distance (lower
semi-continuous), then limn→∞ p(Snx,x*) = , by Lemma , we get

lim
n→∞Snx = x*.

Suppose x ∈ X and (x,x) /∈ X�. Owing to condition (B), there exists some z in X such
that (x, z) ∈X� and (x, z) ∈X�.
Since (x, z) ∈ X� and (x, z) ∈ X�, by using condition (b) (proceeding along the lines

of the proof of Theorem ), we can prove limn→∞ p(Snx,Snz) =  and limn→∞ p(Snz,
Snx) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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By the triangular inequality, we can write

p
(
Snx,Snx

) ≤ p
(
Snx,Snz

)
+ p

(
Snz,Snx

)
.

Letting n → ∞, we get limn→∞ p(Snx,Snx) = , and also p is a w-distance (lower semi-
continuous), we have limn→∞ p(Snx,x*) = , which due to Lemma  implies

lim
n→∞Snx = x*.

This completes the proof. �

The following example demonstrates Theorem .

Example  Let X = {} ∪ { 
n : n ≥ }, which (X ,d,�) is a complete partially ordered

metric space with the usual metric d and the usual order ‘�’. Clearly, condition (B) holds
in X . We define p : X × X → [,∞) by p(x, y) = y. Let φ and ψ be the mappings with
φ,ψ : [,∞)→ [,∞) defined by

φ(t) =

{
, if t > ,
t, if t ∈ [, ]

and ψ(t) = 
 t. Obviously, φ ∈ � and ψ ∈ � . Assume that S : X → X by Sx = x

 for any
x ∈ X . It is easy to see that S is nondecreasing. Also, there is x =  in X such that
(x,Sx) ∈ X�, and S satisfies (c′). Also, for any n ∈ N, we have 

n �= S( 
n ). So, for ar-

bitrary n ∈N, we have

inf

{
p
(


m

,

n

)
+ p

(

m

,


m+

)
:m ∈N

}
=


n

> .

Now, we show that S satisfies (b).

φp(Sx,Sy) = φ

(


y
)

= 
(
y


)

=
y


(since y < , y ∈X )

≤ y = ψ(y) = ψ
(
φ(y)

)
= ψ(φ

(
p(x, y)

)
.

Thus, all the conditions of Theorem are satisfied and x =  is the unique fixed point forS .
Moreover, limn→∞ Sn(x) = limn→∞ x

n = .

Corollary  With the addition of condition (B) to the hypotheses of Corollary  (or Corol-
laries , , , ) the fixed point of S turns out to be unique.Moreover,

lim
n→∞Sn(x) = x*

for every x ∈X provided x* ∈FS , i.e., the map S :X →X is a Picard operator.

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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Our next example highlights the role of condition (c′′) in Theorem .

Example  Consider X = [, ], which is a complete metric space with the usual metric
d(x, y) = |x– y| for all x, y ∈X . Moreover, by defining p(x, y) = |x– y|, p is a w-distance on
(X ,d). We consider X� as follows:

X� =
{
(x, y) ∈X ×X : x = y or x, y ∈

{

n

: n = , , , . . .
}}

,

where � is the usual ordering.
Let S :X →X be given by

S(x) =
{


n+ , if x = 

n ,

 , otherwise.

Obviously, S is a nondecreasing map. Also, there is x = 
 in X such that (x,Sx) ∈X�.

We now show that S satisfies (b) with φ,ψ : [,∞)→ [,∞) which are defined as

φ(t) =

{
, if t > ,
t 
 , if t ∈ [, ],

and ψ(t) =

 


t

(
t ∈ [,∞)

)
.

Clearly, φ ∈ � and ψ ∈ � . If x = y, condition (b) is satisfied.
Now, let x = 

n and y = 
m (m > n). Then we have

φp(Sx,Sy) = φ

(
(m – n)
m+n+

)

= φ

( – n
m

n

)

=
( – n

m

n

) 


= ψφ
(
p(x, y)

)

so that condition (b) is satisfied.
Since  �= S, we have

inf

{
p
(


n

, 
)
+ p

(

n

,


n+

)
: n ∈N

}
= inf

{

n

+


n+
: n ∈N

}
= .

Thus, all the conditions of Theorem  are satisfied except (c′′).
Clearly, S has got no fixed point in X .

3 (γ ,ψ ,p)-contractivemaps
In this section we state some results in a partial ordered metric space with (γ ,ψ ,p)-
contractivemaps. In Section we considered the condition nondecreasing for the function
S , but in this section wewill prove some theorems by replacing the condition nondecreas-
ing to monotonicity for the function.

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a monotone mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist ψ ∈ � and γ ∈ � such that

γ
(
p
(
Sx,Sx

)) ≤ ψγ
(
p(x,Sx)

)
for all (x,Sx) ∈X�,

(c) either S is orbitally continuous at x or
(c′) S is orbitally X�-continuous and there exists a subsequence {Snk x} of {Snx} converg-

ing to x* such that (Snk x,x*) ∈X� for any k ∈N .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Proof If x = Sx for some x ∈X , then there is nothing to prove. Otherwise, let there be
x ∈X such that x �= Sx, and (x,Sx) ∈X�. Owing to monotonicity of S , we can write
(Sx,Sx) ∈X�. Continuing this process inductively, we obtain

(
Snx,Sn+x

) ∈X�

for any n,m ∈ N . Now, we proceed to show that

lim
n→∞p

(
Snx,Sn+x

)
= . ()

On using condition (b) and the properties of γ , ψ , we get

γ
(
p
(
Snx,Sn+x

)) ≤ ψγ
(
p
(
Sn–x,Snx

))
≤ ψγ

(
p
(
Sn–x,Sn–x

))
≤ · · ·
≤ ψn–mγ

(
p
(
Smx,Sm+x

))
≤ · · ·
≤ ψnγ

(
p(x,Sx)

)
. ()

By using Lemma , we have limn→∞ γ p(Snx,Sn+x) =  so that by Lemma , we have

lim
n→∞p

(
Snx,Sn+x

)
= ,

which establishes ().
Similarly, we can show

lim
n→∞p

(
Sn+x,Snx

)
= . ()

Now, we proceed to show that {Snx} is a Cauchy sequence. By the triangle inequality, the
continuity of γ and (), we have

γ p
(
Snx,Sn+x

) ≤ γ
(
p
(
Snx,Sn+x

)
+ p

(
Sn+x,Sn+x

)) → 

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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as n→ ∞ so that limn→∞ γ p(Snx,Sn+x) = , which amounts to say that

lim
n→∞p

(
Snx,Sn+x

)
= .

By induction, for any k > , we have

lim
n→∞p

(
Snx,Sn+kx

)
= .

So, by Lemma , {Snx} is a Cauchy sequence and due to the completeness of X , there
exists x* ∈X such that limn→∞ Snx = x*.
If (c) or (c′) holds, then proceeding along the lines of the proof of Theorem , we can

show that

Sx* = x*.

If Sx = x, we have

γ p(x,x) = γ
(
p
(
Sx,Sx

)) ≤ ψγ
(
p(x,Sx)

)
< γ p(x,x),

which is a contradiction so that γ p(x,x) = , implying thereby p(x,x) = . This completes
the proof. �

Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a monotone mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist ψ ∈ � and γ ∈ � such that

γ
(
p
(
Sx,Sx

)) ≤ ψγ
(
p(x,Sx)

)
for all (x,Sx) ∈X�, and

(c′′) for every y ∈X with y �= Sy,

inf
{
p(x, y) + p(x,Sx) : x ∈X

}
> .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Proof Proceeding along the lines of the proof of Theorem , the sequence {Snx} is a
Cauchy sequence, and so there exists a point x* in X such that limn→∞ Snx = x*. Since
limm,n→∞ d(Snx,Smx) = , therefore for each ε > , there exists Nε ∈ N such that n >
Nε implies p(SNεx,Snx) < ε. As limn→∞ Snx = x* and p(x, ·) is lower semi-continuous,
therefore

p
(
SNεx,x*

) ≤ lim inf
n

p
(
SNεx,Snx

) ≤ ε.

Therefore p(SNεx,x*) ≤ ε. Setting ε = 
k , Nε = nk , we have

lim
k→∞

p
(
Snk x,x*

)
= .

http://www.fixedpointtheoryandapplications.com/content/2013/1/45
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Now, assume that x* �= Sx*. Then by hypothesis (c′′), we have

 < inf
{
p
(
x,x*

)
+ p(x,Sx) : x ∈X

} ≤ inf
{
p
(
Snx,x*

)
+ p

(
Snx,Sn+x

)
: n ∈ N

} → 

as n→ ∞. This is a contradiction so that x* = Sx*.
If Sx = x, we have

γ p(x,x) = γ
(
p
(
Sx,Sx

)) ≤ ψγ
(
p(x,Sx)

)
< γ p(x,x),

which is a contradiction so that γ p(x,x) = , yielding thereby p(x,x) = . This completes
the proof. �

Our next example demonstrates Theorem  which exhibits the utility of this theorem
over Theorems  and .

Example  Consider X = [, ], which is a complete metric space with the usual metric
d(x, y) = |x–y| for all x, y ∈X . Moreover, by defining p(x, y) = y, p is aw-distance on (X ,d).
We consider X� as follows:

X� =
{
(x, y) ∈X ×X : x = y or x, y ∈ {} ∪

{

n
: n = , , , . . .

}}
,

where � is the usual ordering.
Let S :X →X be given by

S(x) =

⎧⎪⎨
⎪⎩


n+ , if x = 

n ,
, if x = ,
, otherwise.

Obviously, S is a monotone map. Also, there is x =  in X such that  = x � Sx = ,
i.e., (x,Sx) ∈X�.
We now show that S satisfies (b) with ψ ,γ : [,∞) → [,∞) which are respectively

defined as ψ(t) = 
 t and

γ (t) =

{
t t , if t > ,
, if t = .

Clearly, ψ ∈ � and γ ∈ �. If x =  as (,S) ∈ X�, it is easy to show that condition (b) is
satisfied.
Suppose x = 

n as ( n ,S(

n )) ∈X�, one gets

γ p
(
Sx,Sx

)
= γ

(


n + 

)
=

(


n + 

) 


n+ ≤ 


(


n + 

) 


n+

=


γ

(
p
(

n
,S

(

n

)))
= ψγ

(
p(x,Sx)

)

as for any n ∈N, we have ( n+n+ )
n+ 

n+ ≤ 
 . Hence condition (b) is satisfied.
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If y > , we have y �= Sy so that

inf
{
p(x, y) + p(x,Sx) : x ∈X

}
= inf{y + Sx : x ∈X } > .

Thus, all the conditions of Theorem  are satisfied and x =  is a fixed point of S .
But if x = y �= , n is chosen, then γ p(Sx,Sy) =  and ψγ (p(x, y)) = 

y

y so that

γ p(Sx,Sy) > ψγ (p(x, y)). Hence, condition (b) of Theorems  and  does not hold.

Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a monotone mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist γ ∈ � and k ∈ [,  ) such that

γ
(
p(Sx,Sy)

) ≤ k
{
γ p(x,Sx) + γ p(y,Sy)

}
for all (x, y) ∈X�,

(c′′) for every y ∈X with y �= Sy,

inf
{
p(x, y) + p(x,Sx) : x ∈X

}
> .

Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .

Proof For x ∈ X , set y = Sx and α = k
–k . Then we have (x,Sx) ∈ X� and α ∈ [, ). On

using condition (b), we get

γ
(
p
(
Sx,Sx

)) ≤ k
{
γ p(x,Sx) + γ p

(
Sx,Sx

)}
,

or

γ
(
p
(
Sx,Sx

)) ≤ αγ p(x,Sx).

Therefore, by choosing ψ(t) = αt, all the conditions of Theorem  are satisfied ensuring
the conclusions of the theorem. �

The set of all subadditive functions γ in � is denoted by �′.

Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and S :X →X be a monotone mapping. Suppose that

(a) there exists x ∈X such that (x,Sx) ∈X�,
(b) there exist γ ∈ �′ and k ∈ [,  ) such that

γ
(
p
(
Sx,Sx

)) ≤ kγ
(
p
(
x,Sx

))
for all (x,Sx) ∈X�, and

inf
{
p(x, y) + p(x,Sx) : x ∈X

}
> 

for every y ∈X with y �= Sy. Then FS �= ∅.Moreover, if x = Sx, then p(x,x) = .
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Proof Set α = k
–k , then α ∈ [, ). On using condition (b) (as γ ∈ �′), we have

γ
(
p
(
Sx,Sx

)) ≤ kγ
(
p
(
x,Sx

)) ≤ kγ
(
p(x,Sx) + p

(
Sx,Sx

))
≤ kγ p(x,Sx) + kγ p

(
Sx,Sx

)
.

Thus, γ (p(Sx,Sx))≤ αγ (p(x,Sx)).
Therefore, by choosing ψ(t) = αt, all the conditions of Theorem  are satisfied ensuring

the conclusions of the theorem. �

Our final example demonstrates Theorem .

Example  Consider X = {(, , ), (, , ), (, , )}, which is a complete metric space
with d((x,x,x), (y, y, y)) = |x –y|+ |x –y|+ |x –y|. Define g :X →X by g(, , ) =
(, , ) and g(, , ) = (, , ), and g(, , ) = (, , ), which is a continuous map. More-
over, by defining

p
(
(x,x,x), (y, y, y)

)
=max

{
d
(
g(x,x,x), (y, y, y)

)
,d

(
g(x,x,x), g(y, y, y)

)}
,

p is a w-distance on (X ,d). For (x, y) and (z, t) in X , define ‘�’ as follows: (x,x,x) �
(y, y, y) ⇔ x ≤ y and x ≤ y and x ≤ y, where ‘≤’ is the usual ordering and

X� =
{(
(, , ), (, , )

)
,
(
(, , ), (, , )

)
,
(
(, , ), (, , )

)}
.

Define S :X →X as

S(x, y) =

⎧⎪⎨
⎪⎩
(, , ), if (x, y) = (, , ),
(, , ), if (x, y) = (, , ),
(, , ), if (x, y) = (, , ).

Clearly, S is a monotone and continuous map. Also, (, , ) � S(, , ) = (, , ), i.e.,
((, , ),S(, , )) ∈X�.
We now show that S satisfies (b) with γ ,ψ : [,∞)→ [,∞) which are defined as

γ (t) = t and ψ(t) =


t
(
t ∈ [,∞)

)
.

Notice that γ ∈ � and ψ ∈ � . If ((, , ), (, , )) in X�, then

p
(
S(, , ),S(, , )

)
= p

(
(, , ), (, , )

)
=max

{
d
(
g(, , ), (, , )

)
,d

(
g(, , ), g(, , )

)}
= ,

and for ((, , ), (, , )) ∈X�, we have

p
(
S(, , ),S(, , )

)
= p

(
(, , ), (, , )

)
=max

{
d
(
g(, , ), (, , )

)
,d

(
g(, , ), g(, , )

)}
= .
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Therefore, for every ((x,x,x),S(x,x,x)) ∈X�, we have

γ p
(
S(x,x,x),S(x,x,x)

) ≤ ψγ
(
p
(
(x,x,x),S(x,x,x)

))
.

Thus, all the conditions of Theorem  are satisfied implying thereby the existence of fixed
points of the map S which are indeed (, , ) and (, , ).
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