
He and Du Fixed Point Theory and Applications 2013, 2013:47
http://www.fixedpointtheoryandapplications.com/content/2013/1/47

RESEARCH Open Access

On hybrid split problem and its nonlinear
algorithms
Zhenhua He1 and Wei-Shih Du2*

*Correspondence:
wsdu@nknucc.nknu.edu.tw
2Department of Mathematics,
National Kaohsiung Normal
University, Kaohsiung, 824, Taiwan
Full list of author information is
available at the end of the article

Abstract
In this paper, we study a hybrid split problem (HSP for short) for equilibrium problems
and fixed point problems of nonlinear operators. Some strong and weak convergence
theorems are established.
MSC: 47J25; 47H09; 65K10

Keywords: fixed point problem; equilibrium problem; hybrid split problem; iterative
algorithm; strong (weak) convergence theorem

1 Introduction
Throughout this paper, we assume thatH is a real Hilbert space with zero vector θ , whose
inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty
subset of H and T : C → H be a mapping. Denote by F (T) the set of fixed points of T .
The symbols N and R are used to denote the sets of positive integers and real numbers,
respectively.
Let H be a Hilbert space and C be a closed convex subset of H . Let f : C × C → R be a

bi-function. The classical equilibrium problem (EP for short) is defined as follows.

Find p ∈ C such that f (p, y) ≥ , ∀y ∈ C. (EP)

The symbol EP(f ) is used to denote the set of all solutions of the problem (EP), that is,

EP(f ) =
{
u ∈ K : f (u, v) ≥ ,∀v ∈ K

}
.

It is known that the problem (EP) contains optimization problems, complementary prob-
lems, variational inequalities problems, saddle point problems, fixed point problems,
bilevel problems, semi-infinite problems and others as special cases and have many ap-
plications in physics and economics problems; for detail, one can refer to [–] and refer-
ences therein.
In last ten years or so, the problem (EP) has been generalized and improved to find a

common element of the set of fixed points of a nonlinear operator and the set of solutions
of the problem (EP). More precisely, many authors have studied the following problem
(FTEP) (see, for instance, [–]):

Find p ∈ C such that Tp = p and f (p, y) ≥ , ∀y ∈ C, (FTEP)
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where C is a closed convex subset of a Hilbert spaceH , f : C×C →R is a bi-function and
T : C → C is a nonlinear operator.
In this paper, motivated by the problems (EP) and (FTEP), we study the following math-

ematical model about a hybrid split problem for equilibrium problems and fixed point
problems of nonlinear operators (HSP for short).
Let E and E be two real Banach spaces. Let C be a closed convex subset of E and

K be a closed convex subset of E. Let f : C × C → R and g : K × K → R be two bi-
functions, A : E → E be a bounded linear operator. Let T : C → C and S : K → K be two
nonlinear operators withF (T) 	= ∅ andF (S) 	= ∅. The mathematical model about a hybrid
split problem for equilibrium problems and fixed point problems of nonlinear operators
(HSP for short) is defined as follows:

Find p ∈ C such that Tp = p, f (p, y) ≥ , ∀y ∈ C, and

u := Ap satisfying Su = u ∈ K , g(u, v) ≥ , ∀v ∈ K .
(HSP)

In fact, (HSP) contains several important problems as special cases. We give some ex-
amples to explain about it.

Example A If T is an identity operator on C, then (HSP) will reduce to the following
problem (P):

(P) Find p ∈ C such that f (p, y) ≥ , ∀y ∈ C, and u := Ap satisfying Su = u ∈ K , g(u, v) ≥ ,
∀v ∈ K .

Example B If S is an identity operator onK , then (HSP) will reduce to the following prob-
lem (P):

(P) Find p ∈ C such that Tp = p, f (p, y) ≥ , ∀y ∈ C, and u := Ap ∈ K satisfying g(u, v) ≥ ,
∀v ∈ K .

Example C If T , S are all identity operators, then (HSP) will reduce to the following split
equilibrium problem (P) which has been considered in []:

(P) Find p ∈ C such that f (p, y) ≥ , ∀y ∈ C, and u := Ap ∈ K satisfying g(u, v) ≥ , ∀v ∈ K .

Example D If S is an identity operator and f (x, y) ≡  for all (x, y) ∈ C × C, then (HSP)
will reduce to the following problem (P) which has been studied in []:

(P) Find p ∈ C such that Tp = p and u := Ap ∈ K satisfying g(u, v) ≥ , ∀v ∈ K .

In this paper, we introduce some new iterative algorithms for (HSP) and some strong
and weak convergence theorems for (HSP) will be established.

2 Preliminaries
In what follows, the symbols ⇀ and → will symbolize weak convergence and strong con-
vergence as usual, respectively. A Banach space (X,‖ · ‖) is said to satisfy Opial’s condition
if for each sequence {xn} in X which converges weakly to a point x ∈ X, we have

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ X, y 	= x.

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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It is well known that any Hilbert space satisfies Opial’s condition. Let K be a nonempty
subset of realHilbert spacesH . Recall that amappingT : K → K is said to be nonexpansive
if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ K .
Let H andH be two Hilbert spaces. Let A :H →H and B :H →H be two bounded

linear operators. B is called the adjoint operator (or adjoint) of A if for all z ∈ H, w ∈H,
B satisfies 〈Az,w〉 = 〈z,Bw〉. It is known that the adjoint operator of a bounded linear op-
erator on a Hilbert space always exists and is bounded linear and unique. Moreover, it is
not hard to show that if B is an adjoint operator of A, then ‖A‖ = ‖B‖.

Example . ([]) Let H = R with the standard norm | · | and H = R
 with the norm

‖α‖ = (a + a)

 for some α = (a,a) ∈ R

. 〈x, y〉 = xy denotes the inner product of H

for some x, y ∈ H and 〈α,β〉 = ∑
i= aibi denotes the inner product of H for some α =

(a,a),β = (b,b) ∈ H. Let Aα = a – a for α = (a,a) ∈ H and Bx = (–x,x) for x ∈ H,
then B is an adjoint operator of A.

Example . ([]) LetH =R
 with the norm ‖α‖ = (a +a)


 for some α = (a,a) ∈R



and H =R
 with the norm ‖γ ‖ = (c + c + c)


 for some γ = (c, c, c) ∈R

. Let 〈α,β〉 =∑
i= aibi and 〈γ ,η〉 = ∑

i= cidi denote the inner product ofH andH, respectively, where
α = (a,a),β = (b,b) ∈ H, γ = (c, c, c),η = (d,d,d) ∈ H. Let Aα = (a,a,a – a)
for α = (a,a) ∈ H and Bγ = (c + c, c – c) for γ = (c, c, c) ∈ H. Obviously, B is an
adjoint operator of A.

Let K be a closed convex subset of a real Hilbert space H . For each point x ∈ H , there
exists a unique nearest point in K , denoted by PKx, such that ‖x – PKx‖ ≤ ‖x – y‖ ∀y ∈ K .
The mapping PK is called the metric projection from H onto K . It is well known that PK

has the following characteristics:
(i) 〈x – y,PKx – PKy〉 ≥ ‖PKx – PKy‖ for every x, y ∈H ;
(ii) for x ∈H and z ∈ K , z = PK (x)⇔ 〈x – z, z – y〉 ≥ , ∀y ∈ K ;
(iii) for x ∈H and y ∈ K ,

∥∥y – PK (x)
∥∥ +

∥∥x – PK (x)
∥∥ ≤ ‖x – y‖. (.)

Lemma . (see []) Let K be a nonempty closed convex subset of H and F be a bi-function
of K ×K into R satisfying the following conditions:
(A) F(x,x) =  for all x ∈ K ;
(A) F is monotone, that is, F(x, y) + F(y,x)≤  for all x, y ∈ K ;
(A) for each x, y, z ∈ K , lim supt↓ F(tz + ( – t)x, y)≤ F(x, y);
(A) for each x ∈ K , y �→ F(x, y) is convex and lower semi-continuous.

Let r >  and x ∈ H . Then there exists z ∈ K such that F(z, y) + 
r 〈y – z, z – x〉 ≥  for all

y ∈ K .

Lemma . (see []) Let K be a nonempty closed convex subset of H and let F be a bi-
function of K × K into R satisfying (A)-(A). For r > , define a mapping TF

r :H → K as
follows:

TF
r (x) =

{
z ∈ K : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ K

}
(.)
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for all x ∈ H . Then the following hold:
(i) TF

r is single-valued and F (TF
r ) = EP(F) for ∀r >  and EP(F) is closed and convex;

(ii) TF
r is firmly non-expansive, that is, for any x, y ∈ H ,

‖TF
r x – TF

r y‖ ≤ 〈TF
r x – TF

r y,x – y〉.

Lemma . (see, e.g., []) Let H be a real Hilbert space. Then the following hold:
(a) ‖x + y‖ ≤ ‖y‖ + 〈x,x + y〉;
(b) ‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉 for all x, y ∈H ;
(c) ‖αx + ( – α)y‖ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖ for all x, y ∈H and

α ∈ [, ].

Lemma . Let FF
r be the same as in Lemma .. If F (TF

r ) = EP(F) 	= ∅, then for any x ∈ H
and x* ∈F (TF

r ), ‖TF
r x – x‖ ≤ ‖x – x*‖ – ‖TF

r x – x*‖.

Proof By (ii) of Lemma . and (b) of Lemma .,

∥∥TF
r x – x*

∥∥ ≤ 〈
TF
r x – x*,x – x*

〉
=


(∥∥TF

r x – x*
∥∥ +

∥∥x – x*
∥∥ –

∥∥TF
r x – x

∥∥),

which shows that ‖TF
r x – x‖ ≤ ‖x – x*‖ – ‖TF

r x – x*‖. �

Lemma . ([, ]) Let the mapping TF
r be defined as in Lemma .. Then, for r, s > 

and x, y ∈H ,

∥∥TF
r (x) – TF

s (y)
∥∥ ≤ ‖x – y‖ + |s – r|

s
∥∥TF

s (y) – y
∥∥.

In particular, ‖TF
r (x) –TF

r (y)‖ ≤ ‖x– y‖ for any r >  and x, y ∈ H , that is, TF
r is nonexpan-

sive for any r > .

Remark . In fact, Lemma . is motivated by a proof of [, Theorem .]. In order to
the sake of convenience for proving, we restated the fact and gave its proof in Lemma .
[, ].

Lemma . ([]) Let {an} be a nonnegative real sequence satisfying the following condi-
tion:

an+ ≤ ( – λn)an + λnbn, ∀n≥ n,

where n is some nonnegative integer, {λn} is a sequence in (, ) and {bn} is a sequence in R
such that

(i)
∑∞

n= λn = ∞;
(ii) lim supn→∞ bn ≤  or

∑∞
n= λnbn is convergent. Then limn→∞ an = .

Lemma. ([]) Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn}
be a sequence in [, ]with  < lim infβn ≤ lim supβn < . Suppose xn+ = βnyn+(–βn)xn for
all integers n ≥  and lim supn→∞(‖yn+ –yn‖–‖xn+ –xn‖) ≤ , then limn→∞ ‖yn–xn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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3 Weak convergence iterative algorithms for (HSP)
In this section, we will introduce some weak convergence iterative algorithms for the hy-
brid split problem.

Theorem . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let T : C → C and S : K → K be non-expansive mappings
and f : C ×C → R and g : K ×K →R be bi-functions satisfying the conditions (A)-(A).
Let A :H → H be a bounded linear operator with its adjoint B. Let x ∈ C, {xn} and {un}
be sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = Tf
rnxn,

yn = ( – α)un + αTun,

wn = Tg
rnAyn,

xn+ = PC(yn + ξB(Swn –Ayn)), ∀n ∈N,

(.)

where α ∈ (, ), ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projection

operator from H into C. Suppose that 
 = {p ∈ F (T) ∩ EP(f ) : Ap ∈ F (S) ∩ EP(g)} 	= ∅,
then xn,un ⇀ q ∈ 
 and wn ⇀ Aq ∈F (S)∩ EP(g).

Proof Let p ∈ 
, the following several inequalities can be proved easily:

‖yn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖, ‖wn –Ap‖ ≤ ‖Ayn –Ap‖. (.)

By Lemma ., ‖Tg
rnAyn –Ayn‖ ≤ ‖Ayn –Ap‖ – ‖Tg

rnAyn –Ap‖, hence

‖Swn –Ap‖ = ∥∥STg
rnAyn –Ap

∥∥ ≤ ∥∥Tg
rnAyn –Ap

∥∥

≤ ‖Ayn –Ap‖ – ∥∥Tg
rnAyn –Ayn

∥∥. (.)

By (b) of Lemma . and (.), for each n ∈N, we have

ξ
〈
yn – p,B

(
STg

rn – I
)
Ayn

〉
= ξ

〈
A(yn – p) +

(
STg

rn – I
)
Ayn –

(
STg

rn – I
)
Ayn,

(
STg

rn – I
)
Ayn

〉

= ξ
(


∥∥STg

rnAyn –Ap
∥∥ +



∥∥(
STg

rn – I
)
Ayn

∥∥

–


‖Ayn –Ap‖ – ∥∥(

STg
rn – I

)
Ayn

∥∥
)

≤ ξ
(
–


∥∥Tg

rnAyn –Ayn
∥∥ +



∥∥(
STg

rn – I
)
Ayn

∥∥ –
∥∥(
STg

rn – I
)
Ayn

∥∥
)

= –ξ
∥∥(
STg

rn – I
)
Ayn

∥∥ – ξ
∥∥Tg

rnAyn –Ayn
∥∥. (.)

On the other hand, ‖B(STg
rn – I)Ayn‖ ≤ ‖B‖‖(STg

rn – I)Ayn‖, so from (.)-(.), we have

‖xn+ – p‖ =
∥∥PC

(
yn + ξB

(
STg

rn – I
)
Ayn

)
– p

∥∥ ≤ ∥∥yn + ξB
(
STg

rn – I
)
Ayn – p

∥∥

= ‖yn – p‖ + ∥∥ξB
(
STg

rn – I
)
Ayn

∥∥ + ξ
〈
yn – p,B

(
STg

rn – I
)
Ayn

〉
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≤ ‖yn – p‖ + ξ ‖B‖∥∥(
STg

rn – I
)
Ayn

∥∥ – ξ
∥∥(
STg

rn – I
)
Ayn

∥∥

– ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥

= ‖yn – p‖ – ξ
(
 – ξ‖B‖)∥∥(

STf
rn – I

)
Ayn

∥∥ – ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥

≤ ‖xn – p‖ – ξ
(
 – ξ‖B‖)∥∥(

STf
rn – I

)
Ayn

∥∥ – ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥. (.)

Since ξ ∈ (, 
‖B‖ ), ξ ( – ξ‖B‖) > , by (.) and (.), we have

‖xn+ – p‖ ≤ ‖yn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖ (.)

and

ξ
(
 – ξ‖B‖)∥∥(

STg
rn – I

)
Ayn

∥∥ + ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥ ≤ ‖xn – p‖ – ‖xn+ – p‖. (.)

The inequality (.) implies limn→∞ ‖xn – p‖ exists. Further, from (.) and (.), we get

lim
n→∞‖xn – p‖ = lim

n→∞‖yn – p‖ = lim
n→∞‖un – p‖,

lim
n→∞

∥∥(
STg

rn – I
)
Ayn

∥∥ = lim
n→∞

∥∥(
Tg
rn – I

)
Ayn

∥∥ = lim
n→∞‖wn –Ayn‖ = .

(.)

The inequality (.) also implies that

lim
n→∞‖Swn –wn‖ = . (.)

Using Lemma . and (.), we have

‖un – xn‖ =
∥∥Tf

rnxn – xn
∥∥ ≤ ‖xn – p‖ – ∥∥Tf

rnxn – p
∥∥

= ‖xn – p‖ – ‖un – p‖ → . (.)

Notice that

‖yn – p‖ = ( – α)‖un – p‖ + α‖Tun – p‖ – α( – α)‖Tun – un‖

≤ ‖un – p‖ – α( – α)‖Tun – un‖,

hence,

lim
n→∞‖Tun – un‖ = . (.)

From (.) and (.), we also have

‖yn – xn‖ ≤ ‖yn – un‖ + ‖un – xn‖
= α‖Tun – un‖ + ‖un – xn‖ →  as n→ ∞. (.)

The existence of limn→∞ ‖xn – p‖ implies that {xn} is bounded, hence {xn} has a weak
convergence subsequence {xnj}. Assume that xnj ⇀ q for some q ∈ C, then ynj ⇀ q,Aynj ⇀
Aq ∈ K and wnj = Tg

rnj Aynj ⇀ Aq by (.) and (.).

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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We say q ∈ 
, in other words, q ∈ F (T) ∩ EP(f ) and Aq ∈ F (S) ∩ EP(g). By (.), we
also obtain unj ⇀ q. If Tq 	= q, then, by Opial’s condition and (.), we get

lim inf
j→∞ ‖unj – q‖ < lim inf

j→∞ ‖unj – Tq‖
≤ lim inf

j→∞ ‖unj – Tunj + Tunj – Tq‖
≤ lim inf

j→∞ ‖unj – q‖,

which is a contradiction. Hence Tq = q or q ∈F (T). On the other hand, from Lemma .,
we know EP(f ) =F (Tf

r ) for any r > . Hence, if Tf
r q 	= q for r > , then by Opial’s condition

and (.) and Lemma ., we have

lim inf
j→∞ ‖xnj – q‖ < lim inf

j→∞
∥∥xnj – Tf

r q
∥∥

= lim inf
j→∞

∥∥xnj – Tf
rnj
xnj + Tf

rnj
xnj – Tf

r q
∥∥

≤ lim inf
j→∞

{∥∥xnj – Tf
rnj
xnj

∥∥ +
∥∥Tf

r q – Tf
rnj
xnj

∥∥}

≤ lim inf
j→∞

{∥∥xnj – Tf
rnj
xnj

∥∥ + ‖xnj – q‖ + |r – rnj |
rnj

∥∥Tf
rnj
xnj – xnj

∥∥}

= lim inf
j→∞ ‖xnj – q‖,

which is also a contradiction. So, for each r > , Tf
r q = q, namely q ∈ EP(f ). Thus, we have

proved q ∈F (T)∩ EP(f ). Similarly, we can also prove Aq ∈F (S)∩ EP(g). Hence, q ∈ 
.
Finally, we prove {xn} converges weakly to q ∈ 
. Otherwise, if there exists another sub-

sequence of {xn}, which is denoted by {xnl }, such that xnl ⇀ x̄ ∈ 
 with x̄ 	= q, then by
Opial’s condition,

lim inf
l→∞

‖xnl – x̄‖ < lim inf
l→∞

‖xnl – q‖ = lim inf
j→∞ ‖xnj – q‖ < lim inf

l→∞
‖xnl – x̄‖.

This is a contradiction. Hence {xn} converges weakly to an element q ∈ 
. Together with
‖un – xn‖ →  (see (.)), we also get un ⇀ q.
Finally, we prove {wn = Tg

rnAyn} converges weakly to Aq ∈F (S)∩ EP(g). From (.), we
have yn ⇀ q, so Ayn ⇀ Aq. Thus, from (.) we have wn = Tg

rnAyn ⇀ Aq ∈ F (S) ∩ EP(g).
The proof is completed. �

If T = I or S = I , where I denotes an identity operator, then the following corollaries
follow from Theorem ..

Corollary . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets.Let S : K → K be anon-expansivemapping and f : C×C →R

and g : K×K →R be bi-functions satisfying the conditions (A)-(A). Let A :H →H be a
bounded linear operator with its adjoint B. Let x ∈ C, {xn} and {un} be sequences generated

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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by

⎧⎪⎪⎨
⎪⎪⎩
un = Tf

rnxn,

wn = Tg
rnAun,

xn+ = PC(un + ξB(Swn –Aun)), ∀n ∈N,

where ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projection operator

from H into C. Suppose that 
 = {p ∈ EP(f ) : Ap ∈F (S)∩ EP(g)} 	= ∅, then xn,un ⇀ q ∈ 


and wn ⇀ Aq ∈F (S)∩ EP(g).

Corollary . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let T : C → C be a non-expansive mapping and f : C ×C →
R and g : K × K → R be bi-functions satisfying the conditions (A)-(A). Let A :H → H

be a bounded linear operator with its adjoint B. Let x ∈ C, {xn} and {un} be sequences
generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = Tf
rnxn,

yn = ( – α)un + αTun,

wn = Tg
rnAyn,

xn+ = PC(yn + ξB(wn –Ayn)), ∀n ∈N,

where α ∈ (, ), ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projec-

tion operator from H into C. Suppose that 
 = {p ∈ F (T) ∩ EP(f ) : Ap ∈ EP(g)} 	= ∅, then
xn,un ⇀ q ∈ 
 and wn ⇀ Aq ∈ EP(g).

Corollary . Let C ⊂H andK ⊂H be two nonempty closed convex sets. Let f : C×C →
R and g : K × K → R be bi-functions satisfying the conditions (A)-(A). Let A :H → H

be a bounded linear operator with its adjoint B. Let x ∈ C, {xn} and {un} be sequences
generated by

⎧⎪⎪⎨
⎪⎪⎩
un = Tf

rnxn,

wn = Tg
rnAun,

xn+ = PC(un + ξB(wn –Aun)), ∀n ∈N,

where ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projection operator

from H into C. Suppose that 
 = {p ∈ EP(f ) : Ap ∈ EP(g)} 	= ∅, then xn,un ⇀ q ∈ 
 and
wn ⇀ Aq ∈ EP(g).

4 Strong convergence iterative algorithms for (HSP)
In this section, we introduce two strong convergence algorithms for (HSP); see Theo-
rem . and Theorem ..

Theorem . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let T : C → C and S : K → K be non-expansive mappings
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and f : C ×C → R and g : K ×K →R be bi-functions satisfying the conditions (A)-(A).
Let A :H → H be a bounded linear operator with its adjoint B. Let x ∈ C := C, {xn} and
{un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Tf
rnxn,

yn = ( – α)un + αTun,

wn = Tg
rnAyn,

zn = PC(yn + ξB(Swn –Ayn)),

Cn+ = {v ∈ Cn : ‖zn – v‖ ≤ ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), n ∈N,

(.)

where α ∈ (, ), ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projection

operator from H into C. Suppose that 
 = {p ∈ F (T) ∩ EP(f ) : Ap ∈ F (S) ∩ EP(g)} 	= ∅,
then xn,un → q ∈ 
 and wn → Aq ∈F (S)∩ EP(g).

Proof We claim that Cn is a nonempty closed convex set for n ∈ N. In fact, let p ∈ 
, it
follows from (.) that

ξ
〈
yn – p,B(Swn –Ayn)

〉 ≤ –ξ
∥∥(
Tg
rn – I

)
Axn

∥∥ – ξ‖Swn –Ayn‖. (.)

By (.), (.) and (.), we obtain

‖zn – p‖ ≤ ∥∥yn + ξB(Swn –Ayn) – p
∥∥

= ‖yn – p‖ + ∥∥ξB(Swn –Ayn)
∥∥ + ξ

〈
yn – p,B(Swn –Ayn)

〉
≤ ‖yn – p‖ + ξ ‖B‖‖Swn –Ayn‖ – ξ

∥∥(
Tg
rn – I

)
Ayn

∥∥ – ξ‖Swn –Ayn‖

= ‖yn – p‖ – ξ
(
 – ξ‖B‖)∥∥(

STg
rn – I

)
Ayn

∥∥ – ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥

≤ ‖un – p‖ – ( – α)α‖un – Tun‖

– ξ
(
 – ξ‖B‖)∥∥(

STg
rn – I

)
Ayn

∥∥ – ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥

≤ ‖xn – p‖ – ξ
(
 – ξ‖B‖)∥∥(

STg
rn – I

)
Ayn

∥∥

– ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥ – ( – α)α‖un – Tun‖. (.)

Notice ξ ∈ (, 
‖B‖ ), ξ ( – ξ‖B‖) > . It follows from (.) that

‖zn – p‖ ≤ ‖yn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖ for all n ∈ N,

hence p ∈ Cn, which yields that 
 ⊂ Cn and Cn 	= ∅ for n ∈N.
It is not hard to verify that Cn is closed for n ∈ N, so it suffices to verify Cn is convex for

n ∈N. Indeed, let w,w ∈ Cn+ and γ ∈ [, ], we have

∥∥zn – (
γw + ( – γ )w

)∥∥

=
∥∥γ (zn –w) + ( – γ )(zn –w)

∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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= γ ‖zn –w‖ + ( – γ )‖zn –w‖ – γ ( – γ )‖w –w‖

≤ γ ‖yn –w‖ + ( – γ )‖yn –w‖ – γ ( – γ )‖w –w‖

=
∥∥yn – (

γw + ( – γ )w
)∥∥,

namely ‖zn – (γw + ( – γ )w)‖ ≤ ‖yn – (γw + ( – γ )w)‖. Similarly, ‖yn – (γw + ( –
γ )w)‖ ≤ ‖xn – (γw + ( – γ )w)‖, which implies γw + ( – γ )w ∈ Cn+ and Cn+ is a
convex set, n ∈N.
Notice that Cn+ ⊂ Cn and xn+ = PCn+ (x) ⊂ Cn, then ‖xn+ – x‖ ≤ ‖xn – x‖ for n > .

It follows that limn→∞ ‖xn – x‖ exists. Hence {xn} is bounded, which yields that {zn} and
{yn} are bounded. For some k,n ∈ N with k > n > , from xk = PCk (x) ⊂ Cn and (.), we
have

‖xn – xk‖ + ‖x – xk‖ =
∥∥xn – PCk (x)

∥∥ +
∥∥x – PCk (x)

∥∥

≤ ‖xn – x‖. (.)

By limn→∞ ‖xn – x‖ exists and (.), we have limn→∞ ‖xn – xk‖ = , so {xn} is a Cauchy
sequence.
Let xn → q, then q ∈ 
. Firstly, by xn+ = PCn+ (x) ∈ Cn+ ⊂ Cn, from (.) we have

‖zn – xn‖ ≤ ‖zn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖ → ,

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖ → .
(.)

Setting ρ = ξ ( – ξ‖B‖), by (.) again, we have

ρ
∥∥(
STg

rn – I
)
Ayn

∥∥ + ξ
∥∥(
Tg
rn – I

)
Ayn

∥∥ + ( – α)α‖un – Tun‖

≤ ‖xn – p‖ – ‖zn – p‖ ≤ ‖xn – zn‖
{‖xn – p‖ + ‖zn – p‖} → . (.)

So,

lim
n→∞‖Tun – un‖ = , lim

n→∞‖wn –Ayn‖ = lim
n→∞

∥∥(
Tg
rn – I

)
Ayn

∥∥ = ,

lim
n→∞‖Swn –Ayn‖ = lim

n→∞
∥∥(
STg

rn – I
)
Ayn

∥∥ = , lim
n→∞‖Swn –wn‖ = .

(.)

Notice that limn→∞ ‖Tun – un‖ =  and ‖yn – un‖ = α‖Tun – un‖, so

lim
n→∞‖yn – un‖ = . (.)

Further, from (.) and (.),

lim
n→∞‖xn – un‖ = . (.)

Since xn → q, we have un → q by (.). Thus

‖Tq – q‖ ≤ ‖Tq – Tun‖ + ‖Tun – un‖ + ‖un – q‖ → ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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namely Tq = q and q ∈F (T). On the other hand, for r > , by Lemma ., we have

∥∥Tf
r q – q

∥∥ ≤ ∥∥Tf
r q – Tf

rnxn + Tf
rnxn – xn + xn – q

∥∥
≤ ‖xn – q‖ + |rn – r|

rn

∥∥Tf
rnxn – xn

∥∥ +
∥∥Tf

rnxn – xn
∥∥ + ‖xn – q‖ → ,

which yields q ∈F (Tf
r ) = EP(f ). We have verified q ∈F (T)∩ EP(f ).

Next, we prove Aq ∈F (S)∩ EP(g). Since xn → q and xn – yn →  by (.) and (.) and
wn –Ayn →  by (.), we have yn → q and Ayn → Aq and wn → Aq. So,

‖SAq –Aq‖ ≤ ‖SAq – Swn‖ + ‖Swn –wn‖ + ‖wn –Aq‖ → ,

namely SAq = Aq and Aq ∈ F (S). On the other hand, for r > , by Lemma . again, we
have

∥∥Tg
r Aq –Aq

∥∥ ≤ ∥∥Tg
r Aq – Tg

rnAyn + Tg
rnAyn –Ayn +Ayn –Aq

∥∥
≤ ‖Ayn –Aq‖ + |rn – r|

rn

∥∥Tg
rnAyn –Ayn

∥∥
+

∥∥Tg
rnAyn –Ayn

∥∥ + ‖Ayn –Aq‖ → ,

which implies that Aq ∈F (Tg
r ) = EP(g). We have verified Aq ∈F (S)∩ EP(g).

So, we have obtained q ∈ 
 and xn,un → q and wn → Aq, the proof is completed. �

If T = I or S = I , where I denotes an identity operator, then the following corollaries
follow from Theorem ..

Corollary . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let f : C×C →R and g : K ×K →R be bi-functions satisfy-
ing the conditions (A)-(A) and S : K → K be a non-expansive mapping. Let A :H →H

be a bounded linear operator with its adjoint B. Let x ∈ C := C, {xn} and {un} be sequences
generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Tf
rnxn,

wn = Tg
rnAun,

zn = PC(un + ξB(Swn –Aun)),

Cn+ = {v ∈ Cn : ‖zn – v‖ ≤ ‖un – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), n ∈N,

where ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projection operator

from H into C. Suppose that 
 = {p ∈ EP(f ) : Ap ∈F (S)∩EP(g)} 	= ∅, then xn,un → q ∈ 


and wn → Aq ∈F (S)∩ EP(g).

Corollary . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let T : C → C be a non-expansive mapping and f : C ×C →
R and g : K × K → R be bi-functions satisfying the conditions (A)-(A). Let A :H → H

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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be a bounded linear operator with its adjoint B. Let x ∈ C := C, {xn} and {un} be sequences
generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Tf
rnxn,

yn = ( – α)un + αTun,

wn = Tg
rnAyn,

zn = PC(yn + ξB(wn –Ayn)),

Cn+ = {v ∈ Cn : ‖zn – v‖ ≤ ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), n ∈N,

where, α ∈ (, ), ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projec-

tion operator from H into C. Suppose that 
 = {p ∈ F (T) ∩ EP(f ) : Ap ∈ EP(g)} 	= ∅, then
xn,un → q ∈ 
 and wn → Aq ∈ EP(g).

Corollary . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let f : C × C → R and g : K × K → R be bi-functions sat-
isfying the conditions (A)-(A). Let A : H → H be a bounded linear operator with its
adjoint B. Let x ∈ C := C, {xn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = Tf
rnxn, wn = Tg

rnAun,

zn = PC(yn + ξB(wn –Aun)),

Cn+ = {v ∈ Cn : ‖zn – v‖ ≤ ‖un – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), n ∈N,

where ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→+∞ rn > , PC is a projection operator

from H into C. Suppose that 
 = {p ∈ EP(f ) : Ap ∈ EP(g)} 	= ∅, then xn,un → q ∈ 
 and
wn → Aq ∈ EP(g).

It is well known that the viscosity iterativemethod is always applied to study the iterative
solution for the fixed point problem of nonlinear operators, for example, [, , , , ].
Similarly, the viscosity iterative method can also be used to study the hybrid split prob-
lem (HSP). So, at the end of this paper, we introduce a viscosity iterative algorithm which
can converge strongly to a solution of (HSP).

Theorem . Let H and H be two real Hilbert spaces. Let C ⊂ H and K ⊂ H be two
nonempty closed convex sets. Let h : C → C be a α-contraction mapping, T : C → C and
S : K → K be non-expansive mappings and f : C × C → R and g : K × K → R be bi-
functions satisfying the conditions (A)-(A). Let A :H →H be a bounded linear operator
with its adjoint B. Let x ∈ C, {xn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Tf
rnxn,

wn = Tg
rnAun,

yn = PC(un + ξB(Swn –Aun)),

zn = ( – r)xn + rTyn,

xn+ = αnh(xn) + ( – αn)zn, n ∈N,

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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where r ∈ (, ), ξ ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞), PC is a projection operator fromH into C,

and the coefficients {αn} and {rn} satisfy the following conditions:
() {αn} ⊂ (, ), limn→∞ αn = ,

∑∞
n= αn = ∞;

() lim infn→+∞ rn > , limn→∞ |rn+ – rn| = .
Suppose that 
 = {p ∈ F (T) ∩ EP(f ) : Ap ∈ F (S) ∩ EP(g)} 	= ∅, then xn,un → q ∈ 
 and

wn → Aq ∈F (S)∩ EP(g), where q = P
h(q).

Proof Let p ∈ 
. The following inequalities are easily verified:

‖un – p‖ ≤ ‖xn – p‖, ‖wn –Ap‖ ≤ ‖Aun –Ap‖. (.)

By Lemma .,

‖un – p‖ ≤ ‖xn – p‖ – ∥∥Tg
rnxn – xn

∥∥ = ‖xn – p‖ – ‖un – xn‖;∥∥Swn –Ap
∥∥ =

∥∥STg
rnAun –Ap

∥∥ ≤ ∥∥Tg
rnAun –Ap

∥∥ (.)

≤ ‖Aun –Ap‖ – ∥∥Tg
rnAun –Aun

∥∥.

From (.) and (.), we have

ξ
〈
un – p,B(Swn –Aun)

〉
= ξ

〈
A(un – p) + Swn –Aun – (Swn –Aun),Swn –Aun

〉

= ξ
(


‖Swn –Ap‖ + 


‖Swn –Aun‖ – 


‖Aun –Ap‖ – ‖Swn –Aun‖

)

≤ ξ
(
–


∥∥Tg

rnAun –Aun
∥∥ –



‖Swn –Aun‖

)

= –ξ‖Swn –Aun‖ – ξ
∥∥Tg

rnAun –Aun
∥∥

= –ξ‖Swn –Aun‖ – ξ‖wn –Aun‖ (.)

and

‖yn – p‖ =
∥∥PC(un + ξB(Swn –Aun) – PCp

∥∥

≤ ∥∥un – p + ξB(Swn –Aun)
∥∥

= ‖un – p‖ + ∥∥ξB(Swn –Aun)
∥∥ + ξ

〈
un – p,B(Swn –Aun)

〉
≤ ‖un – p‖ – ξ

(
 – ξ‖B‖)‖Swn –Aun‖ – ξ

∥∥Tg
rnAun –Aun

∥∥

≤ ‖xn – p‖ – ξ
(
 – ξ‖B‖)‖Swn –Aun‖ – ξ

∥∥Tg
rnAun –Aun

∥∥

= ‖xn – p‖ – ξ
(
 – ξ‖B‖)‖Swn –Aun‖ – ξ‖wn –Aun‖. (.)

So, from (.)-(.) and (.), we have

‖yn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖, ‖zn – p‖ ≤ ‖xn – p‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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We say {xn} is bounded. In fact, from (.) and (.), we have

‖xn+ – p‖ =
∥∥αn

(
f (xn) – p

)
+ ( – αn)(zn – p)

∥∥ ≤ ( – αn)‖zn – p‖ + αn
∥∥f (xn) – p

∥∥
≤ ( – αn)‖xn – p‖ + αnα‖xn – p‖ + αn

∥∥f (p) – p
∥∥

=
(
 – αn( – α)

)‖xn – p‖ + αn( – α)
‖f (p) – p‖

 – α
,

which implies that

‖xn – p‖ ≤ max

{
‖x – p‖, ‖f (p) – p‖

 – α

}
, ∀n ∈N, (.)

so {xn} is bounded. Further, {un}, {wn} and {yn} are also bounded by (.).
By Lemma ., from (.) we have

‖un+ – un‖ =
∥∥Tf

rn+xn+ – Tf
rnxn

∥∥

≤
(

‖xn+ – xn‖ + |rn – rn+|
rn

∥∥Tf
rnxn – xn

∥∥)

≤ ‖xn+ – xn‖ + |rn – rn+|
rn

M,

‖wn+ –wn‖ =
∥∥Tg

rn+Aun+ – Tg
rnAun

∥∥

≤
(

‖Aun+ –Aun‖ + |rn – rn+|
rn

∥∥Tg
rnAun –Aun

∥∥)

≤ ‖Aun+ –Aun‖ + |rn – rn+|
rn

M

(.)

and

‖yn+ – yn‖ ≤ ∥∥un+ + ξB(Swn+ –Aun+) – un – ξB(Swn –Aun)
∥∥

=
∥∥un+ – un + ξB

(
Swn+ –Aun+ – (Swn –Aun)

)∥∥

= ‖un+ – un‖ +
∥∥ξB

(
Swn+ –Aun+ – (Swn –Aun)

)∥∥

+ ξ
〈
un+ – un,B

(
Swn+ –Aun+ – (Swn –Aun)

)〉
≤ ‖un+ – un‖ + ξ ‖B‖∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+ ξ
〈
A(un+ – un),Swn+ –Aun+ – (Swn –Aun)

〉
= ‖un+ – un‖ + ξ ‖B‖∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+ ξ
〈
A(un+ – un) + Swn+ –Aun+ – (Swn –Aun),Swn+

–Aun+ – (Swn –Aun)
〉

– ξ
〈
Swn+ –Aun+ – (Swn –Aun),Swn+ –Aun+ – (Swn –Aun)

〉
= ‖un+ – un‖ + ξ ‖B‖∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+ ξ
〈
Swn+ – Swn,Swn+ –Aun+ – (Swn –Aun)

〉
– ξ

∥∥Swn+ –Aun+ – (Swn –Aun)
∥∥
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= ‖un+ – un‖ + ξ ‖B‖∥∥Swn+ –Aun+ – (Swn –Aun)
∥∥

+ ξ


{‖Swn+ – Swn‖ +

∥∥Swn+ –Aun+ – (Swn –Aun)
∥∥

– ‖Aun+ –Aun‖
}

– ξ
∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

= ‖un+ – un‖ + ξ ‖B‖∥∥Swn+ –Aun+ – (Swn –Aun)
∥∥

+ ξ
{‖Swn+ – Swn‖ – ‖Aun+ –Aun‖

}
– ξ

∥∥Swn+ –Aun+ – (Swn –Aun)
∥∥

≤ ‖un+ – un‖ – ξ
(
 – ξ‖B‖)∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+ ξ
{‖wn+ –wn‖ – ‖Aun+ –Aun‖

}
≤ ‖un+ – un‖ – ξ

(
 – ξ‖B‖)∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+ ξ

{
‖Aun+ –Aun‖ + |rn – rn+|

rn
M – ‖Aun+ –Aun‖

}

= ‖un+ – un‖ – ξ
(
 – ξ‖B‖)∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+ ξ
|rn – rn+|

rn
M

≤ ‖xn+ – xn‖ – ξ
(
 – ξ‖B‖)∥∥Swn+ –Aun+ – (Swn –Aun)

∥∥

+
|rn – rn+|

rn
(ξM +M), (.)

whereM is a constant satisfying

sup
n∈N

{
‖xn+ – xn‖

∥∥Tf
rnxn – xn

∥∥ +
|rn – rn+|

rn

∥∥Tf
rnxn – xn

∥∥,

‖Aun+ –Aun‖
∥∥Tg

rnAun –Aun
∥∥ +

|rn – rn+|
rn

∥∥Tg
rnAun –Aun

∥∥
}

≤ M.

Proving ‖xn+ – xn‖ →  as n → ∞. Setting βn =  – ( – αn)( – r) and vn = xn+–xn+βnxn
βn

,
namely vn = αnf (xn)+(–αn)rTyn

βn
. Let M be a constant satisfying supn∈N{‖ f (xn+)

βn+
‖,‖ f (xn)

βn
‖,

‖Tyn‖} ≤ M for all n ∈N. Then

‖vn+ – vn‖ =
∥∥∥∥αn+f (xn+) + ( – αn+)rTyn+

βn+
–

αnf (xn) + ( – αn)rTyn
βn

∥∥∥∥
≤ αn+

∥∥∥∥ f (xn+)βn+

∥∥∥∥ + αn

∥∥∥∥ f (xn)βn

∥∥∥∥ + r
∥∥∥∥ ( – αn+)Tyn+

βn+
–
( – αn)Tyn

βn

∥∥∥∥
≤ (αn+ + αn)M + r

∥∥∥∥ ( – αn+)(Tyn+ – Tyn)
βn+

+
( – αn+)Tyn

βn+
–
( – αn)Tyn

βn

∥∥∥∥
≤ (αn+ + αn)M + r

( – αn+)‖yn+ – yn‖
βn+

+
∣∣∣∣ ( – αn+)

βn+
–
( – αn)

βn

∣∣∣∣M
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= (αn+ + αn)M + r
( – αn+)‖yn+ – yn‖

βn+

+
∣∣∣∣ ( – r)(αn – αn+) + βn+αn – βnαn+

βnβn+

∣∣∣∣M

≤ (αn+ + αn)M + r
( – αn+)‖yn+ – yn‖

βn+
+ 

αn + αn+

βnβn+
M

:= ρn + r
( – αn+)‖yn+ – yn‖

βn+
. (.)

From (.) and (.), we have

‖vn+ – vn‖ ≤
(

ρn + r
( – αn+)‖yn+ – yn‖

βn+

)

= ρ
n + ρnr

( – αn+)‖yn+ – yn‖
βn+

+ r
( – αn+)‖yn+ – yn‖

β
n+

,

≤ ρ
n + ρnr

( – αn+)‖yn+ – yn‖
βn+

+ r
( – αn+)

β
n+

‖xn+ – xn‖

+ r
( – αn+)

β
n+

|rn – rn+|
rn

( + ξ )M. (.)

By the conditions () and () and (.), we obtain

lim sup
n→∞

{‖vn+ – vn‖ – ‖xn+ – xn‖
} ≤ . (.)

Notice ‖vn+ – vn‖ – ‖xn+ – xn‖ = (‖vn+ – vn‖ – ‖xn+ – xn‖)(‖vn+ – vn‖ + ‖xn+ – xn‖),
hence from (.) we have

lim sup
n→∞

{‖vn+ – vn‖ – ‖xn+ – xn‖
} ≤ . (.)

By Lemma . and (.), we have limn→∞ ‖vn – xn‖ = , which implies that

lim
n→∞‖xn+ – xn‖ =  (.)

by the definition of vn. Since ‖xn+ – zn‖ → , together with (.), we have

lim
n→∞‖xn – zn‖ = . (.)

Using (.), (.) and (.),

‖xn+ – p‖ =
∥∥αn

(
f (xn) – p

)
+ ( – αn)(zn – p)

∥∥

≤ ( – αn)‖zn – p‖ + αn
∥∥f (xn) – p

∥∥

≤ ( – r)‖xn – p‖ + r‖un – p‖ + αn
∥∥f (xn) – p

∥∥

≤ ‖xn – p‖ – r‖un – xn‖ + αn
∥∥f (xn) – p

∥∥, (.)
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which yields

r‖un – xn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + αn
∥∥f (xn) – p

∥∥

=
(‖xn – p‖ + ‖xn+ – p‖)(‖xn – p‖ – ‖xn+ – p‖) + αn

∥∥f (xn) – p
∥∥

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (xn) – p

∥∥. (.)

From (.) we have

lim
n→∞

∥∥Tf
rnxn – xn

∥∥ = lim
n→∞‖un – xn‖ = . (.)

Again, applying (.), (.) and (.), we have

‖xn+ – p‖ ≤ ( – αn)‖zn – p‖ + αn
∥∥f (xn) – p

∥∥

≤ ( – r)‖xn – p‖ + r‖yn – p‖ + αn
∥∥f (xn) – p

∥∥

≤ ‖xn – p‖ – rξ
(
 – ξ‖B‖)‖Swn –Aun‖

– rξ‖wn –Aun‖ + αn
∥∥f (xn) – p

∥∥, (.)

which implies that

rξ
(
 – ξ‖B‖)‖Swn –Aun‖ + rξ‖wn –Aun‖

≤ {‖xn – p‖ + ‖xn+ – p‖}‖xn – xn+‖ + αn
∥∥f (xn) – p

∥∥. (.)

From (.) we have

lim
n→∞

∥∥Tg
rnAun –Aun

∥∥ = lim
n→∞‖wn –Aun‖ = , lim

n→∞‖Swn –Aun‖ =  (.)

and

lim
n→∞‖Swn –wn‖ = . (.)

Notice yn = PC(un + ξB(Swn –Aun)) and un ∈ C for all n ∈N, so

‖yn – un‖ =
∥∥PC

(
un + ξB(Swn –Aun)

)
– PCun

∥∥ ≤ ∥∥ξB(Swn –Aun)
∥∥

≤ ξ‖B‖‖Swn –Aun‖,

so

lim
n→∞‖yn – un‖ = . (.)

Further, from (.), (.) and (.), we have

lim
n→∞‖yn – xn‖ = , lim

n→∞‖yn – zn‖ =  (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/47
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and

lim
n→∞‖yn – Tyn‖ =  by (.), (.) and (.). (.)

Let q = P
f (q). Choose a subsequence {xnk } such that

lim sup
n→∞

〈
f (q) – q,xn – q

〉
= lim

k→∞
〈
f (q) – q,xnk – q

〉
. (.)

Since {xn} is bounded, {〈f (q) – q,xn – q〉} is bounded. Hence lim supn→∞〈f (q) – q,xn – q〉
is a constant, namely limn→∞〈f (q) – q,xnk – q〉 exists, which implies (.) is well defined.
Because {xn} is bounded, {xnk } has a weak convergence subsequence which is still denoted
by {xnk }. Suppose xnk ⇀ x*, we say x* ∈ 
. When xnk ⇀ x*, from (.), (.) and (.),
we have

unk ⇀ x*, ynk ⇀ x*, znk ⇀ x*, Aunk ⇀ Ax*, wnk ⇀ Ax*. (.)

If Tx* 	= x*, then by (.) and (.) and Opial’s condition, we have

lim inf
k→∞

∥∥ynk – x*
∥∥ < lim inf

k→∞
∥∥ynk – Tx*

∥∥
≤ lim inf

k→∞
{‖ynk – Tynk‖ +

∥∥Tynk – Tx*
∥∥}

≤ lim inf
k→∞

{‖ynk – Tynk‖ +
∥∥ynk – x*

∥∥}
= lim inf

k→∞
∥∥ynk – x*

∥∥, (.)

which is a contradiction, so Tx* = x* and x* ∈F (T). Since for each r > , EP(f ) =F (Tf
r ) by

Lemma ., we have x* ∈ F (Tf
r ). Otherwise, if there exists r >  such that Tf

r x* 	= x*, then
by (.) and Lemma . and Opial’s condition, we have

lim inf
k→∞

∥∥xnk – x*
∥∥ < lim inf

k→∞
∥∥xnk – Tf

r x
*∥∥

≤ lim inf
k→∞

{∥∥xnk – Tf
nk xnk

∥∥ +
∥∥Tf

nk xnk – Tf
r x

*∥∥}

= lim inf
k→∞

∥∥Tf
nk xnk – Tf

r x
*∥∥

≤ lim inf
k→∞

{∥∥xnk – x*
∥∥ +

|rnk – r|
rnk

∥∥Tf
nk xnk – xnk

∥∥}

= lim inf
k→∞

∥∥xnk – x*
∥∥, (.)

which is also a contradiction, so Tf
r x* = x* and x* ∈ F (Tf

r ) = EP(f ). Up to now, we have
proved x* ∈F (T)∩ EP(f ). Similarly, we can also prove Ax* ∈F (S)∩ EP(g). Hence x* ∈ 
,
because of this, we can also obtain

lim sup
n→∞

〈
f (q) – q,xn – q

〉
= lim

k→∞
〈
f (q) – q,xnk – q

〉

=
〈
f (q) – q,x* – q

〉 ≤ , where q = PCf (q). (.)
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Finally, we prove the conclusion of this theorem is right. For q = P
f (q), from (.) we
have

‖xn+ – q‖ =
∥∥αn

(
h(xn) – q

)
+ ( – αn)(zn – q)

∥∥

≤ ( – αn)‖zn – q‖ + αn
〈
h(xn) – q,xn+ – q

〉
≤ ( – αn)‖xn – q‖ + αn

〈
h(xn) – h(q) + h(q) – q,xn+ – q

〉
≤ ( – αn)‖xn – q‖ + αnα‖xn – q‖‖xn+ – q‖ + αn

〈
h(q) – q,xn+ – q

〉
≤ ( – αn)‖xn – q‖ + αnα‖xn – q‖ + αnα‖xn+ – q‖

+ αn
〈
h(q) – q,xn+ – q

〉
= ( – αn)‖xn – q‖ + α

n‖xn – q‖ + αnα‖xn – q‖ + αnα‖xn+ – q‖

+ αn
〈
h(q) – q,xn+ – q

〉
. (.)

From (.) we have

‖xn+ – q‖ ≤
(
 – αn

 – α
 – αnα

)
‖xn – q‖ + α

n
 – αnα

‖xn – q‖

+ 
αn

 – αnα

〈
h(q) – q,xn+ – q

〉
, (.)

by (.) and Lemma ., we have xn → q ∈ 
. Again, from (.) and (.), we have
un → q ∈ 
 and wn → Aq ∈ F(S)∩ EP(f ), respectively. The proof is completed. �

Remark
() In this paper, the iterative coefficient α or r can be replaced with the sequence {ζn} if

{ζn} satisfies {ζn} ⊂ [,ϑ], where ,ϑ ∈ (, );
() Obviously, if H =H in this paper, these weak and strong convergence theorems are

also true;
() In this paper, if T is a nonexpansive mapping from H into H and f (x, y) is a

bi-function from H ×H into R with the conditions (A)-(A), S is a nonexpansive
mapping from H into H and g(u, v) is a bi-function from H ×H into R with the
conditions (A)-(A), then we may obtain a series of similar algorithms.
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